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ABSTRACT

This paper proposes a zero-shot text-to-speech (TTS) conditioned
by a self-supervised speech-representation model acquired through
self-supervised learning (SSL). Conventional methods with embed-
ding vectors from x-vector or global style tokens still have a gap in
reproducing the speaker characteristics of unseen speakers. A novel
point of the proposed method is the direct use of the SSL model to
obtain embedding vectors from speech representations trained with a
large amount of data. We also introduce the separate conditioning of
acoustic features and a phoneme duration predictor to obtain the dis-
entangled embeddings between rhythm-based speaker characteris-
tics and acoustic-feature-based ones. The disentangled embeddings
will enable us to achieve better reproduction performance for unseen
speakers and rhythm transfer conditioned by different speeches. Ob-
jective and subjective evaluations showed that the proposed method
can synthesize speech with improved similarity and achieve speech-
rhythm transfer.

Index Terms— Speech synthesis, self-supervised learning
model, speaker embeddings, zero-shot TTS

1. INTRODUCTION
Developments in text-to-speech (TTS) synthesis have achieved
natural-sounding human speech from a large amount of speech
uttered by a single speaker [1, 2]. Through multi-speaker TTS, arbi-
trary speaker’s TTS has been achieved from a small amount of target
speaker utterances [3]. However, re-training the acoustic models
with adaptation data, which requires computational resources and
time consuming training, is still necessary for obtaining high-quality
synthesized speech by an arbitrary speaker. This implies that we
encounter difficulty with zero-shot TTS, adapting an acoustic model
by using only a limited amount of data without re-training. This
paper addresses zero-shot TTS in a severe situation.

Most zero-shot TTS methods are based on neural speaker em-
beddings, i.e., the continuous vector representations of speaker in-
formation. Two main approaches have been used to obtain such em-
beddings: speaker-recognition-based embedding such as d-vector [4,
5] and x-vector [3, 6], and embedding from the reference encoder
trained simultaneously with the acoustic model, such as using global
style tokens (GSTs) [7, 8]. The advantage of the first approach is
obtaining robust embeddings for unseen speakers because a large
amount of data not limited to the training data for TTS can be used
for training the embedding extractor. However, individual speech
rhythm, an important factor among speaker characteristics [9, 10, 11]
can not be sufficiently reflected on the synthesized speech using the
embeddings. This is because the embeddings mainly carry acoustic-
feature-based characteristics not rhythm-based ones [12]. The sec-
ond method, i.e., using GSTs, achieves the reference speech’s style
modeling to some extent. The problem is the limited reproduction
quality for unseen speakers because GSTs must be trained only with

a comparably small amount of data for TTS. The goal of this study
was zero-shot TTS, which can synthesize a more natural reproduc-
tion for the unseen target speaker’s speech.

To achieve this goal, we believe that self-supervised learn-
ing (SSL) models such as HuBERT [13] and wav2vec 2.0 (w2v2)
[14], which obtain speech representations from a large amount of
data without any labels, are promising. SSL models have been
widely used in many speech-research areas, such as automatic
speech recognition (ASR), speaker recognition, and speech-emotion
recognition [15]. For speech-generation tasks, SSL models have
been used as the robust phoneme-like unit extractor for high-quality
speech re-synthesis [16], voice conversion (VC) [17], and direct
speech-to-speech translation [18]. Other studies have shown inter-
esting properties of SSL models, e.g., the extracted representation
vectors of each layer have different information related to the input
speech sequence [19, 20]. Therefore, we expect embeddings includ-
ing richer information well-suited for zero-shot TTS can be obtained
from an SSL model because such a model is trained with a large
amount of data containing many speakers and speaking styles. With
these embeddings, the reproduction and quality of zero-shot TTS
should greatly improve.

We propose a zero-shot TTS method conditioned using an SSL
model. The key idea is the direct use of an SSL model to obtain
speaker embeddings in the same manner as models in [15]. By ob-
taining the embedding vector expressed as the weighted-sum of out-
puts from each hidden layer of the pre-trained SSL model, the pro-
posed method obtains an adequate embedding vector from a mas-
sive amount of SSL parameters for reproducing speaker characteris-
tics in zero-shot TTS. We also introduced the separate conditioning
of acoustic features and a phoneme duration predictor by obtaining
embedding vectors for the duration predictor and other predictors
in the non-autoregressive TTS model, respectively. This separate
conditioning improves the zero-shot TTS performance by obtaining
the disentangled embeddings between rhythm-based speaker charac-
teristics and acoustic-feature-based ones. The disentangled embed-
dings also enable speech-rhythm transfer, which generates speech
with one target speaker’s acoustic characteristics and another target
speaker’s rhythm characteristics. Audio samples are available in our
demo page1.

2. PROPOSED METHOD
2.1. Overview
Figure 1 shows an overview of the proposed method. The method
mainly consists of three components, i.e., a non-autoregressive TTS
model, such as FastSpeech2 [2], SSL model, and embedding mod-
ule. Although these components are similar to other zero-shot TTS
methods, the main difference is the use of an SSL model to obtain the
embedding vector instead of other embedding extractors, such as x-
vector. Although GenerSpeech [21] uses an SSL model as the global

1https://ntt-hilab-gensp.github.io/23icassp-sasb-zeroshot/
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Fig. 1. Overview of the proposed method. Non-autoregressive TTS
model is conditioned with latent representations from SSL model.
LR denotes length regulator.

style estimator, the proposed method is fundamentally different be-
cause GenerSpeech can be considered as an extension of speaker-
recognition-based neural speaker embeddings. This requires fine-
tuning the SSL model for speaker and emotion recognition.

The proposed method first converts the input speech sequence
into a frame-level sequence of speech representation vectors: the
outputs from each layer of the SSL model on every frame. The di-
mension of the speech representation vector is Dsr = Dl × L, and
the frame-level sequence of the speech-representation vector con-
sists of Dsr × F . Here, Dl, L, and F are the dimension of each
layer, number of layers of the SSL model, and number of frame-level
sequences, respectively. The frame-level sequence of the speech-
representation vector is also converted into a fixed length vector,
i.e., embedding vector, through the embedding module described
in Sect. 2.2. Finally, the obtained embedding vector is input into
the non-autoregressive TTS model. Since the non-autoregressive
TTS model and embedding module are trained simultaneously dur-
ing model training, a suitable embedding vector can be obtained
from a massive amount of SSL parameters for the TTS model. De-
tails of the proposed method are described in the following sections.

2.2. Embedding module
The embedding module converts the output frame-level sequence of
the speech-representation vector into a fixed-length embedding vec-
tor. This module consists of two parts, i.e., weighted-sum and aggre-
gation. The weighted-sum part converts the sequence of the speech-
representation vector into the sequence of the weighted-sum speech
representation vector, which consists of Dl×F , in the same manner
as models in [19]. The aggregation part then converts the obtained
frame-level sequence into a fixed-length embedding vector.

As the aggregation part, we compare two methods, i.e., aver-
age pooling and soft-attention of LSTM outputs. Average pooling
obtains the average vector of the frame-level sequence in the same
manner as in previous studies. Although it is a simple approach to
obtain an embedding vector, the simple averaging process ignores
temporal features, e.g., speech rhythm.

Soft-attention of LSTM outputs, on the other hand, is mainly
composed of two steps: 1) LSTM processes the weighted-sum
speech-representation vector, and 2) the sequence of the LSTM hid-
den state is aggregated with an attention-based structure [22, 23].
The attention mechanism obtains embedding vectors more suit-
able for reproducing the speaker characteristics with the non-
autoregressive TTS model by extracting important frames from
speech-representation sequences. This method will also enable to
capture temporal features, e.g., speech rhythm, by taking the time
series of the weighted-sum speech representation vector into ac-
count. This is because the speaking rhythm information may be
considered as the velocity and acceleration of representation-vector
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Fig. 2. Overview of separate conditioning. Duration predictor and
other components are conditioned separately. For rhythm transfer,
different input speech sequence is given for conditioning duration
predictor (indicated with dotted boxes).

sequences from SSL models.
2.3. Separate conditioning
Figure 2 gives an overview of the separate conditioning of acoustic
features and a phoneme duration predictor. Because the output of the
duration predictor does not affect other predictors, a phoneme dura-
tion predictor and other predictors would be independent in most
non-autoregressive TTS models. Therefore, the proposed method
can condition both the duration predictor and other predictors by
obtaining embedding vectors for each predictor separately. This
leads to precise speaker modeling by obtaining disentangled em-
bedding vectors containing rhythm-based speaker characteristics and
acoustic-feature-based ones separately for each predictor.

These disentangled embedding vectors also enable speech-
rhythm transfer, which can generate speech with the acoustic char-
acteristics of a target speaker and rhythm characteristics of another
target speaker. The non-autoregressive TTS model generates speech
parameters referring to different speeches given at each predictor.

3. EXPERIMENTAL SETUP
3.1. Training-set for TTS model

For training the non-autoregressive TTS model, we used an in-house
Japanese speech database which includes 1,083 speakers. This
database consists of several speaker types including professional
speakers, i.e., newscasters, narrators, and voice actors, and non-
professional speakers. The database was split into three; 135,202
utterances by 978 speakers, 7,243 by 52, and 6,421 by 53 for train-
ing, validation, and test. The sampling frequency of the speech was
22.05 kHz. All speech samples were manually annotated with the
accentual information.

3.2. Training conditions
We newly trained two Japanese SSL models, i.e., w2v2 and Hu-
BERT based on the basis of fairseq [24]. The training data were from
the corpus of spontaneous Japanese (CSJ) [25], which includes 660
hours of speech data uttered by 1,417 Japanese speakers. The model
parameters and training procedures were the same as BASE in the
original w2v2 and HuBERT studies [13, 14]. An SSL model pro-
cesses the input 16 kHz raw audio sequence into 768-dimensional
sequences, and the embedding module converts them into a 256-
dimensional fixed-length vector. The parameters of these SSL mod-
els were fixed while training the non-autoregressive TTS model, i.e.,
FastSpeech2 implemented on the basis of a previous study [26]. We
use the Adam optimizer and follow the same learning rate schedule
in Vaswani et al. [27]. The input and target sequence to FastSpeech2
were a 303-dimensional linguistic vector and 80-dimensional mel-
spectrograms. The frame shift was 5.0ms. To evaluate the per-
formance by changing each condition, we trained FastSpeech2 with



Table 1. Results of objective evaluations. Common and separate are
conditions with single and separate embeddings, respectively. Spec.
and Dur. are MAE of log melspectrogram and RMSE of phoneme
duration (ms).

model aggregation condition parallel non-parallel
Spec. Dur. Spec. Dur.

x-vector SAP common 1.33 21.4 1.36 22.0
separate 1.32 21.8 1.34 22.5

w2v2
average common 1.19 17.8 1.33 22.5

separate 1.20 18.2 1.33 22.8

LSTM common 1.19 18.2 1.30 21.3
separate 1.19 16.0 1.30 22.9

HuBERT
average common 1.17 17.3 1.30 22.3

separate 1.16 17.0 1.30 22.4

LSTM common 1.15 17.7 1.27 21.6
separate 1.15 15.6 1.27 22.0

different SSL models, i.e., w2v2 and HuBERT, conditionings (com-
mon and separate), and aggregation methods (average pooling, and
LSTM with attention). “Common” and “separate” conditionings re-
spectively indicate a common conditioning for each predictor and
separate conditioning described in Sect. 2.3.

We also trained FastSpeech2 with x-vector trained using CSJ
as the conventional method (hereafter, x-vector) to compare with the
proposed method. The 256-dimensional x-vector was extracted from
16 kHz speech signals by using the speaker identification model
based on FastResNet-34 with self-attentive pooling (SAP) trained
with angular prototypical loss [28]. As well as the proposed method,
we trained x-vector models with two conditions: common and sepa-
rate. Under the “separate” condition, x-vectors were converted with
a full-connected layer for each predictor. We used HiFi-GAN [29]
for waveform generation for all proposed and x-vector methods.

4. RESULTS
4.1. Objective evaluation on zero-shot TTS

We first conducted an objective evaluation to evaluate the perfor-
mance of the proposed and conventional (x-vector) methods under
a data-parallel condition, in which the text to synthesize matches
the text of the reference speech, and data-non-parallel condition in
which the text to synthesize does not match the reference. Under
the non-parallel condition, we randomly selected one utterance from
each speaker as a reference speech. The mean absolute error (MAE)
of the log melspectrogram and root mean square error (RMSE) of
phoneme duration were used as the evaluation metrics. To calcu-
late the MAE between generated and test ones with the same time
alignment, we generated a log melspectrogram using the original
phoneme durations extracted from test speech. We also obtained
the RMSEs of durations by comparing the original phoneme dura-
tions of test speech with predicted ones from the duration predictor.
Note that under the non-parallel condition, objective metrics were
obtained not by comparing the target speaker’s reference speech and
the generated one but by comparing the target speaker’s speech and
the generated one with the same speech content.

Table 1 lists objective-evaluation results. Under the parallel con-
dition, the proposed method performed better for both melspectro-
gram and phoneme duration than the x-vector. Comparing the em-
bedding and aggregating methods, the separate conditioning with
LSTM-based aggregation performed the best with both w2v2 and
HuBERT. Since the RMSEs of phoneme duration drastically im-
proved using the separate conditioning with LSTM-based aggrega-
tion, the proposed method can successfully acquire embeddings hav-

Table 2. Naturalness and similarity scores with 95% confidential
interval.

Model MOS-naturalness DMOS-similarity
x-vector 3.40± 0.05 2.86± 0.05

HuBERT (average) 3.25± 0.05 3.73± 0.04
HuBERT (LSTM) 3.45± 0.05 3.73± 0.04

ing rhythm-based speaker characteristics and acoustic-feature-based
ones separately.

Under the non-parallel condition, the proposed method per-
formed almost comparably to x-vector in phoneme duration, al-
though the MAEs of the melspectrogram improved. The reason for
this would be the intra-speaker variation. Even though the same
speaker utters, the speech rhythm of each utterance would be incon-
sistent. Therefore, the proposed method would not necessarily lead
to performance improvement in the non-parallel case, although it
can accurately reproduce the characteristics of the reference speech.

HuBERT performed better than w2v2, which is consistent with
the results in a previous study [15], where HuBERT performed well
in many tasks.

4.2. Subjective evaluations on zero-shot TTS

We conducted subject evaluations to evaluate the naturalness and
similarity of the proposed method. From the results of objective
evaluations, we compared the conventional method, i.e., separately
conditioned x-vector, with the separately conditioned proposed
method, i.e., using HuBERT with average and LSTM aggrega-
tion (HuBERT (average) and HuBERT (LSTM)). For each model,
we synthesized 20 sentences from each of the six speakers in test
data (Male and Female children, adults, and voice actors) under
the non-parallel condition. To evaluate the performance regarding
out-of-domain (OOD) speakers, children speakers were chosen as
such speakers for the SSL models and x-vector. This is because
CSJ mainly includes younger adults. Fifteen participants rated the
naturalness of synthetic speech on the basis of the mean opinion
score (MOS) on a five-point scale of 5: very natural to 1: very
unnatural. The similarity was rated on the basis of the differential
MOS (DMOS) on a five-point scale of 5: very similar to 1: very
dissimilar.

Table 2 shows that x-vector and HuBERT (LSTM) are almost the
same naturalness, better than HuBERT (average), and both HuBERT
versions have higher similarity to the target speech than x-vector.
There are two reasons for the better performance of the proposed
method: the performance of rhythm reproduction and robustness for
OOD speakers. As shown in objective evaluations, the proposed
method can capture rhythm-based speaker characteristics, which is
one crucial factor for perceived speaker similarity. Therefore, the
proposed method makes it possible to generate speech with higher
similarity than x-vector, especially for speakers with characteristic
speech rhythms, i.e., voice actors. The similarity scores of x-vector
for OOD speakers, i.e., children, were also lower than those with
the proposed method. One reason for this is that x-vector cannot
adequately distinguish OOD speakers. Since the x-vectors obtained
from different children speakers would be close in the embedding
space, x-vector would not be able to reproduce speaker characteris-
tics for children adequately. In contrast, the proposed method cap-
tured speaker characteristics for OOD speakers by obtaining embed-
ding vectors from a large number of SSL parameters.

4.3. Evaluations on speech-rhythm transfer
We conducted an XAB test to evaluate the performance of the
speech-rhythm transfer under the non-parallel condition with the



Table 3. Preference scores for similarity on speech-rhythm transfer.
Model preference

x-vector vs HuBERT 9.3% - 90.7%

Table 4. Speaking rate of original, reference, and generated utter-
ances (mora/sec) with standard deviation. Original and reference
(Dur.) are speaking rate of speaker and speaker of reference speech
given for duration predictor, respectively.

Speaker original reference (Dur.) x-vector HuBERT
#1 8.17 5.75 7.68± 0.04 5.64± 0.05
#2 5.75 8.17 7.81± 0.05 8.13± 0.05

proposed and conventional methods (separately conditioned Hu-
BERT (LSTM) and x-vector). We selected two speeches from
two female speakers #1 and #2 from the test data, respectively.
Twenty utterances of them were generated by replacing their speak-
ing rhythm with each other. In case an input-text X is synthesized
with the voice of speaker #1, the reference speech and reference
speech (duration) are respectively from speaker #1 and #2. Text
X and speech contents are all different. The participants were the
same as in the previous subjective evaluations. Each was presented
with synthesized speech samples then asked which sample had a
similar rhythm to the reference speech. As the reference speech, we
used one utterance used for conditioning the duration predictor. All
permutations of synthetic speech pairs were presented in two orders
(XAB and XBA) to eliminate bias in the order of stimuli.

Tables 3 and 4 respectively list the preference scores and speak-
ing rates of the original and generated utterances. The speaking
rates of the original and reference (Dur.) are those of their ref-
erence speech, and those of the generated are the average of the
20 generated utterances from each method. The proposed method
had a higher preference score and closer speaking rate to the refer-
ence speech than x-vector. These results indicate that the proposed
method enables rhythm transfer. However, x-vector could not re-
flect speech rhythm because it mainly carries acoustic-feature-based
speaker characteristics.

5. DISCUSSION
5.1. Contribution analysis for weighted-sum
To analyze the contribution of each layer in the SSL models, we
visualize the weights that aggregate representations (Fig. 3). We vi-
sualized the weights of LSTM aggregation methods of w2v2 and
HuBERT with common and separate conditioning. The first and
second rows of separate model show the weights for conditioning
the acoustic features and phoneme duration, respectively.

We can see that the zeroth layer, the output from the convolu-
tional neural network, is dominant when the model is conditioned
with the common condition. This indicates that the model extracts
speaker information from the layers, including the information close
to the spectrogram [19, 20]. On the other hand, the weights of the
separate condition show interesting tendencies. The weights for con-
ditioning acoustic features (Spec.) show almost the same tendency
as common condition ones. However, the weights for the phoneme
duration (Dur.) weigh on different layers comparably deeper lay-
ers. These tendencies indicate that the dominant factor of obtained
embeddings under the common condition would still be acoustic
feature-based speaker characteristics as well as x-vector. In other
words, the proposed method with separate conditioning can suc-
cessfully extract disentangled embeddings between rhythm-based
speaker characteristics and acoustic-feature-based ones by obtaining
different information from the SSL model suited for conditioning
acoustic features and the phoneme duration predictor, respectively.

0 1 2 3 4 5 6 7 8 9 101112
w2v2(common)

w2v2,sep(Spec.)
w2v2,sep(Dur.)

HuBERT(common)
HuBERT,sep(Spec.)

HuBERT,sep(Dur.) 0.00
0.05
0.10
0.15
0.20

Fig. 3. Visualized weight that aggregates representations from SSL
models. “sep” is separate condition. “spec” and “dur” are weights
for spectrogram and duration, respectively.
Table 5. Results of objective evaluations with SSL models trained
with English corpus.

model corpus parallel non-parallel
Spec. Dur. Spec. Dur.

w2v2 BASE CSJ 1.19 16.0 1.30 22.9
LibriSpeech 1.16 16.2 1.28 23.3

w2v2 LARGE LibriLight 1.11 15.9 1.25 22.2

HuBERT BASE CSJ 1.15 15.6 1.27 22.0
LibriSpeech 1.15 16.0 1.29 23.0

HuBERT LARGE LibriLight 1.12 16.1 1.27 22.9

5.2. Analysis of training language and model size
We finally analyzed the language dependency and effects of SSL
model size. We used four publicly available SSL models2, w2v2 and
HuBERT BASE trained on LibriSpeech, and w2v2 and HuBERT
LARGE trained on LibriLight [13, 14]. LibriSpeech and LibriLight
are English speech data corpora of 960 hours from 2,338 speakers
and 60K hours from 7,439 speakers, respectively.

Table 5 lists the objective evaluation results in the same man-
ner as in Table 1. We first analyzed the language dependency by
comparing SSL models trained with CSJ and LibriSpeech both hav-
ing almost the same amount of training data. The results indicate
that the language dependency on the proposed method would be
limited since the performance of both models was comparable. As
shown in the previous section, acoustic-feature-based speaker char-
acteristics are obtained from the shallower layer, which is gener-
ally not strongly related to language. Additionally, the speaking
rhythm information would not be related to language because this
information would be extracted from the velocity and acceleration
of representation-vector sequences from the SSL models.

Next, we analyzed the effect by the amount of training data and
model parameters. We can see that the LARGE model trained with
larger data achieved higher reproduction in terms of melspectro-
gram. By using a larger variety of speakers, the SSL model would be
able to extract the characteristics of unseen speakers more robustly.

6. CONCLUSIONS
We proposed a zero-shot TTS method conditioned using an SSL
model. Objective and subjective evaluations showed that the pro-
posed method can generate utterances with higher reproduction than
a conventional method using speaker recognition-based embedding,
i.e., x-vector. The proposed method also enabled rhythm transfer by
separate conditioning for each predictor.

Although this paper focused on zero-shot TTS, we believe that
the key idea of the proposed method would be easily applicable for
other speech generation tasks, including fine-grained modeling for
TTS [30, 31] and VC considering speech rhythm [32]. Applying
the proposed embedding extractor to other speaker-related tasks not
limited to speech generation, such as target speaker ASR [33] and
target speech extraction [34, 35], is also for future work.

2https://github.com/facebookresearch/fairseq



7. REFERENCES

[1] J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang,
et al., “Natural TTS synthesis by conditioning WaveNet on mel
spectrogram predictions,” in ICASSP, 2018.

[2] Y. Ren, C. Hu, X. Tan, T. Qin, S. Zhao, Z. Zhao, and T.-Y.
Liu, “FastSpeech 2: Fast and high-quality end-to-end text to
speech,” in ICLR, 2020.

[3] E. Cooper, C.-I. Lai, Y. Yasuda, F. Fang, X. Wang, N. Chen,
and J. Yamagishi, “Zero-shot multi-speaker text-to-speech
with state-of-the-art neural speaker embeddings,” in ICASSP,
2020.

[4] G. Heigold, I. Moreno, S. Bengio, and N. Shazeer, “End-to-end
text-dependent speaker verification,” in ICASSP, 2016.

[5] R. Doddipatla, N. Braunschweiler, and R. Maia, “Speaker
adaptation in DNN-based speech synthesis using d-vectors.,”
in Interspeech, 2017.

[6] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khu-
danpur, “X-vectors: Robust DNN embeddings for speaker
recognition,” in ICASSP, 2018.

[7] Y. Wang, D. Stanton, Y. Zhang, R.-S. Ryan, E. Battenberg,
J. Shor, et al., “Style tokens: Unsupervised style modeling,
control and transfer in end-to-end speech synthesis,” in ICML,
2018.

[8] R. Valle, J. Li, R. Prenger, and B. Catanzaro, “Mellotron:
Multispeaker expressive voice synthesis by conditioning on
rhythm, pitch and global style tokens,” in ICASSP, 2020.

[9] E. Zetterholm, “Intonation pattern and duration differences in
imitated speech,” in The International Conference on Speech
Prosody, 2002.

[10] E. Zetterholm, “The same but different–three impersonators
imitate the same target voices,” in ICPhS, 2003.

[11] D. Gomathi, S. A. Thati, K. V. Sridaran, and B. Yegnanarayana,
“Analysis of mimicry speech,” in Interspeech, 2012.

[12] K. Fujita, A. Ando, and Y. Ijima, “Phoneme Duration Mod-
eling Using Speech Rhythm-Based Speaker Embeddings for
Multi-Speaker Speech Synthesis,” in Interspeech, 2021.

[13] W.-N. Hsu, B. Bolte, Y.-H. H. Tsai, K. Lakhotia, R. Salakhut-
dinov, and A. Mohamed, “HuBERT: Self-supervised speech
representation learning by masked prediction of hidden units,”
IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 29, pp. 3451–3460, 2021.

[14] A. Baevski, Y. Zhou, A. Mohamed, and M. Auli, “wav2vec
2.0: A framework for self-supervised learning of speech repre-
sentations,” in NeurIPS, 2020.

[15] S. w. Yang, P.-H. Chi, Y.-S. Chuang, C.-I. J. Lai, K. Lakho-
tia, Y. Y. Lin, et al., “SUPERB: Speech Processing Universal
PERformance Benchmark,” in Interspeech, 2021.

[16] A. Polyak, Y. Adi, J. Copet, E. Kharitonov, K. Lakhotia, W.-
N. Hsu, A. Mohamed, and E. Dupoux, “Speech resynthesis
from discrete disentangled self-supervised representations,” in
Interspeech, 2021.

[17] Y. Y. Lin, C.-M. Chien, J.-H. Lin, H.-y. Lee, and L.-s. Lee,
“Fragmentvc: Any-to-any voice conversion by end-to-end ex-
tracting and fusing fine-grained voice fragments with atten-
tion,” in ICASSP, 2021.

[18] A. Lee, P.-J. Chen, C. Wang, J. Gu, S. Popuri, X. Ma, , et al.,
“Direct speech-to-speech translation with discrete units,” in
ACL, 2022.

[19] S. Chen, Y. Wu, C. Wang, S. Liu, Z. Chen, P. Wang, et al.,
“Why does self-supervised learning for speech recognition
benefit speaker recognition?,” in Interspeech, 2022.

[20] J. Shor, A. Jansen, W. Han, D. Park, and Y. Zhang, “Univer-
sal paralinguistic speech representations using self-supervised
Conformers,” in ICASSP, 2022.

[21] R. Huang, Y. Ren, J. Liu, C. Cui, and Z. Zhao, “GenerSpeech:
Towards style transfer for generalizable out-of-domain text-to-
speech synthesis,” in NeurIPS, 2022.

[22] G. Bhattacharya, M. J. Alam, and P. Kenny, “Deep speaker
embeddings for short-duration speaker verification.,” in Inter-
speech, 2017.

[23] A. Ando, S. Kobashikawa, H. Kamiyama, R. Masumura,
Y. Ijima, and Y. Aono, “Soft-target training with ambiguous
emotional utterances for DNN-based speech emotion classifi-
cation,” in ICASSP, 2018.

[24] M. Ott, S. Edunov, A. Baevski, A. Fan, S. Gross, N. Ng, et al.,
“fairseq: A fast, extensible toolkit for sequence modeling,” in
NAACL-HLT, 2019.

[25] K. Maekawa, “Corpus of spontaneous japanese: Its design and
evaluation,” in SSPR, 2003.

[26] C.-M. Chien, J.-H. Lin, C.-y. Huang, P.-c. Hsu, and H.-y.
Lee, “Investigating on incorporating pretrained and learnable
speaker representations for multi-speaker multi-style text-to-
speech,” in ICASSP, 2021.

[27] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, et al., “Attention is all you need,” in NeurIPS,
2017.

[28] J. S. Chung, J. Huh, S. Mun, M. Lee, H. S. Heo, S. Choe,
C. Ham, S. Jung, B.-J. Lee, and I. Han, “In defence of metric
learning for speaker recognition,” in Interspeech, 2020.

[29] J. Kong, J. Kim, and J. Bae, “HiFi-GAN: Generative adversar-
ial networks for efficient and high fidelity speech synthesis,” in
NeurIPS, 2020.

[30] Y. Lee and T. Kim, “Robust and fine-grained prosody control
of end-to-end speech synthesis,” in ICASSP, 2019.

[31] G. Sun, Y. Zhang, R. J. Weiss, Y. Cao, H. Zen, and Y. Wu,
“Fully-hierarchical fine-grained prosody modeling for inter-
pretable speech synthesis,” in ICASSP, 2020.

[32] K. Qian, Y. Zhang, S. Chang, J. Xiong, C. Gan, D. Cox, and
M. Hasegawa-Johnson, “Global prosody style transfer without
text transcriptions,” in PMLR, 2021.

[33] T. Moriya, H. Sato, T. Ochiai, M. Delcroix, and T. Shinozaki,
“Streaming target-speaker ASR with neural transducer,” in In-
terspeech, 2022.

[34] H. Sato, T. Ochiai, M. Delcroix, K. Kinoshita, N. Kamo, and
T. Moriya, “Learning to enhance or not: Neural network-based
switching of enhanced and observed signals for overlapping
speech recognition,” in ICASSP, 2022.

[35] H. Sato, T. Ochiai, M. Delcroix, K. Kinoshita, T. Moriya, and
N. Kamo, “Should we always separate?: Switching between
enhanced and observed signals for overlapping speech recog-
nition,” in Interspeech, 2021.


	1  Introduction
	2  Proposed method
	2.1  Overview
	2.2  Embedding module
	2.3  Separate conditioning

	3  Experimental Setup
	3.1  Training-set for TTS model
	3.2  Training conditions

	4  Results
	4.1  Objective evaluation on zero-shot TTS
	4.2  Subjective evaluations on zero-shot TTS
	4.3  Evaluations on speech-rhythm transfer

	5  Discussion
	5.1  Contribution analysis for weighted-sum
	5.2  Analysis of training language and model size

	6  Conclusions
	7  References

