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ABSTRACT

Data quality is critical for multimedia tasks, while various
types of systematic flaws are found in image benchmark
datasets, as discussed in recent work. In particular, the exis-
tence of the semantic gap problem leads to a many-to-many
mapping between the information extracted from an image
and its linguistic description. This unavoidable bias fur-
ther leads to poor performance on current computer vision
tasks. To address this issue, we introduce a Knowledge Rep-
resentation (KR)-based methodology to provide guidelines
driving the labeling process, thereby indirectly introducing
intended semantics in ML models. Specifically, an iterative
refinement-based annotation method is proposed to optimize
data labeling by organizing objects in a classification hierar-
chy according to their visual properties, ensuring that they are
aligned with their linguistic descriptions. Preliminary results
verify the effectiveness of the proposed method.

Index Terms— Data Quality, Semantic Gap Problem,
Image Datasets, Visual Properties

1. INTRODUCTION
Data is critical in machine learning (ML) systems, e.g., multi-
media understanding, since it is one of the core infrastructures[1].
As a data-driven science, ML is affected by data quality,
which in turn impacts downstream work. Sambasivan et al.
[2] explore the downstream effects of data problems, and find
data cascades usually exist in tasks that underestimate the
quality of data. Thus, early intervention, especially in the
data collection and labeling process which is the one step
that impacts the downstream most, is of vital importance to
improve the performance of various tasks.

Recent work reports various types of systematic flaws in
the development of object recognition benchmark datasets.
For example, Dimitris et.al. provide an extensive analysis of
the labeling mistakes in ImageNet [3], and point out that noisy
data collection pipelines lead to systematic misalignment be-
tween generated benchmarks and real-world tasks. Shreya
et.al. [4] critically analyze the geodiversity of ImageNet as
well as OpenImages [5] and show that they exhibit Amero-
centric and Eurocentric representation bias. Lucas et. al.
[6] describe the bias inherent in the annotation pipeline via
which ImageNet was constructed. Terrance et. al. [7] report

Fig. 1: An interesting case of the semantic gap problem.

significant discrepancies in the classification accuracy of six
‘in production’ object recognition systems, and ties the dis-
crepancies to diversity in socio-economic status, culture and
language from where the images were sourced.

Our intuition is that these flaws are grounded in the way
language and perception interact. The key observation is that
there is a misalignment between what computer vision (CV)
systems perceive from media and the words that humans use
to describe the same sources. Specifically, current datasets
utilize words or phrases to label images. For example, all
category labels in ImageNet are words/phrases taken from
WordNet, and we call them lexical labels. During the la-
beling process, the use of such lexical labels will make a
significant impact on the quality of the constructed dataset:
the ground truth of the dataset will be directly affected by
user experience, and users with different backgrounds may
give inconsistent labeling results since they have different un-
derstandings to the same lexical labels and images [8]. This
problem has been identified as Semantic Gap Problem (SGP)
[9], where it was crystallized in [10] as the fact that there is
a many-to-many mapping between the information extracted
from the visual data and their possible contextual linguistic
interpretations. The SGP is actually a consequence of the fact
that the linguistic descriptions of an image are subjective and
context-dependent. An interesting example is different ob-
jects icebergs and ice cubes are both regarded as “ice” in Fig-
ure 1. The SGP exists not only between different people but
also appears in the same person in different scenarios.

To address the above issues, we introduce a knowledge
representation (KR) theory [11] and approach into the pro-
cess of data collection and labeling. We propose an image
labeling process based on iterative refinement, aiming to gen-
erate high-quality ground truth datasets. The intuition stems
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from the fact that the current labeling process is largely un-
specified, leaving much freedom to annotator subjective judg-
ments, who can then select among the many SGP mappings.
In this paper, we focus on alleviating two types of ambigu-
ity caused by SGP, i.e., object ambiguity and visual ambi-
guity. The idea is to apply KR-base methodology to intro-
duce the human experience to provide guidance that drives
the labeling process, thereby indirectly introducing intended
semantics in the ML model, codified in a natural language
format. During this process, machines and humans will refine
the ground truth through iterative interaction and collabora-
tion to obtain higher-quality datasets. We organize the label-
ing process based on a two-step labeling strategy, where each
step is responsible for a specific aspect of the SGP many-to-
many mapping, as (i) localizing objects in an image to elimi-
nate a possible source of object ambiguity.(ii) identifying vi-
sual properties used to characterise objects rather than lexical
labels to eliminate a possible source of visual ambiguity.

The contributions of our work are summarized as follows:
• We introduce a KR-based methodology to guide image

labeling and constitute a paradigm shift by attempting
to integrate CV with KR.

• During dataset labeling, we refine the ground truth of
the dataset by introducing humans into an iterative pro-
cess, and improve dataset quality by asking humans to
provide feedback and supervision.

• Preliminary experiment results demonstrate that the
datasets constructed based on our proposed methodol-
ogy keep a higher inter-annotator agreement.

The remainder of the paper is organized as follows. Sec. 2
the mislabeling types that arise in current image datasets. We
illustrated the proposed labeling strategy in Sec. 3 and detail
the labeling process in Sec. 4. Preliminary results are given
in Sec. 5. Finally, Sec. 6 concludes the paper.

2. TYPES OF MISLABELING
We take ImageNet as an example to explore the ground truth
in object recognition datasets and analyze the mislabeling in
it. We divide the mislabeling cases into two types, i.e., object
ambiguity and visual ambiguity. We give some examples of
the above two types in Fig. 2, and analyze the details below.
Note that in this process, we ignore the “simple” mistakes
caused by the carelessness of the annotators since they are
easily identifiable, such as an image labeled by ImageNet as
‘acoustic guitar’ is a ‘fake’ guitar shaped on a birthday cake,
as the two images shown in Fig. 2(a).
Object Ambiguity. This type arises from the presence of
multiple objects in an image. It occurs when there is an sys-
tematic incongruence between the ImageNet label and the la-
bel of the most likely main object, as deemed by humans.
An example is given in Fig. 2(b), which is labeled ‘oboe’ in
ImageNet but labeled ‘orchestral’ by humans. In fact, em-
pirical evidence from cognitive psychology [12] suggests that
humans select the main object by perceptual attributes (stim-
uli) when looking to multi-object images, since it is usually

Fig. 2: Mislabeled samples of different types, where the la-
bels are from ImageNet.

the most visually salient. However, we observe that ImageNet
exhibits biases for many multi-object images. The labels of
these images correspond to a distinctive object rather than the
main object in the image, making it a challenge for models to
extract features from the corresponding categories[13].
Visual Ambiguity. When annotators label images, ambiguity
arises in the understanding of visual data. This is determined
by the background and experience of different annotators. Im-
ages are visually polysemic when their visual “semantics are
described only partially” [9]. Interpretations of images are
not unique, so an image may be described with different labels
by different annotators. As shown in Fig. 2(c), an example is
labeled by different annotators as ‘sports car’ and ‘convert-
ible’, which are two same-level classes in ImageNet. Further-
more, the two similar images in Fig. 2(d), labeled ‘seashore’
and ‘lakeside in ImageNet, are also representative examples
that confuse the annotators. Such confusing class pairs are
caused by design factors of ImageNet, namely labeled only
based on lexical labels. As a result, choosing disjoint labels
grounded in linguistic properties is insufficient for humans to
visually disambiguate confusing class pairs in the face of po-
tential overlapping image distributions.

Due to the semantic gap problem described above, even
aside from occasional annotator errors, the resulting dataset
may not accurately capture the ground truth, which seriously
affects the quality of the dataset.

3. TWO-STEP LABELING STRATEGY
In this section, we introduce a two-step labeling strategy and
analyze the reasons that this strategy is able to effectively
bridge the mislabeling caused by the SGP. Before that, we
summarize the characteristics of good images in a dataset by
analyzing images in ImageNet with high inter-annotators con-
sistency. Firstly, these images are almost always those con-
taining a single object (the ‘main object’, as called in [13]).
Secondly, these images are less noisy, in the sense that they
have the minimum influence of confounding variables such as
occlusion and clutter distorting them. Thirdly, all of these im-
ages are captured from an optimal viewpoint leading to clear
visibility of their defining visual characteristic.

The proposed two-step labeling strategy is as follows:



• S1: Object localization. Identify object(s) in an image,
thus eliminating the possible object ambiguity.

• S2: Visual classification. Identify the visual properties
used to characterize objects, thus eliminating a possible
source of visual ambiguity.

Note that such two steps are not splits of currently popular
task object detection, but are designed based on different pur-
poses. Localization is inherently visual, while classification is
inherently semantics-intensive and is performed after object
localization. Based on this distinction, and following the em-
pirically validated theory of teleosmantics [11, 14], we distin-
guish two types of concepts, substance concept (SC) and Cat-
egory Concept (CC) [15], to represent objects. As a result of
object localization, SC can be seen as a visual representation
of a single object, which is in turn amenable for visual clas-
sification. As the representations of entity concept-oriented
language descriptions, CC is described by natural language
descriptions (i.e., lexical labels) in the current datasets. In
this process, given a continuous feed of images, the goal is to
organize objects into a classification hierarchy based on their
pre-defined visual features.
S1: Object Localization. Object localization refers to ac-
tivities in which all objects in an image are localized (but not
identified), for instance via bounding polygons [16]. This step
aims to eliminate the possibility of object ambiguity by iden-
tifying and extracting relevant objects in the images, as far
as possible to ensure that they satisfy the basic characteris-
tics of a good images. During this process, SC is represented
by localizing objects in multiple images, which does not dis-
tinguish between individuals (e.g., ‘oboe#123’) and classes
(e.g., ‘oboe’). Meanwhile, the key to the continuous localiza-
tion of a substance is grounded in its internal causal factor
[11] which is incrementally manifested and extracted as per-
ceivable visual properties.
S2: Visual Classification. The goal of step S2 is to identify
the visual properties used to characterize objects, thus elimi-
nating possible sources of visual ambiguity. We predefine two
sets of visual properties for objects, called visual genus and
visual differentia, and build visual subsumption hierarchies
by perceiving visual properties from the new images. Specif-
ically, visual genus is a set of visual properties shared across
different objects, while Visual differentia refers to another set
of visual properties different from visual genus, which are ex-
ploited to distinguish objects within the same genus. For ex-
ample, the visual genus of the class ‘lobster’ is “marine crea-
tures with carapace”, and one pre-eminent way of visually
classifying further can be based on the visual differentia “the
presence and shape of claws” with its different instantiations,
i.e. “without claws” (Spiny lobster) and “with large tender
claws”(American lobster).

One observation is that the many-to-many mapping of the
SGP still occurs in the good image category, which is caused
exactly by the choice of different differentia for the same
genus. That is why the classification based on category labels

suffers from the SGP many-to-many mapping. SGP appears
when annotators, even the same annotator, implicitly apply a
different visual differentia to two images of the same object
when selecting category labels based on their personal expe-
rience. Based on the above considerations, we make three
fundamental assumptions in S2:

• The object hierarchy is built based on the visual genus
and differentia of objects rather than category labels.

• The visual properties on which the differentia is com-
puted are consistent across all objects in that category.

• The visual properties used to compute the differentia is
consistent with the modeling decisions that are taken
linguistically, i.e., with the genus and differentia de-
fined by the gloss of the corresponding WordNet class.

Note that our approach differs significantly from main-
stream CV, especially from the way ground truth datasets have
been generated so far. Furthermore, the visual classification
proceeds by a (successive) selection of visual differentia as-
sume in an egocentric setting. In other words, how to select
the visual differentia completely depend on the background,
point-of-view, experience, and purpose of the annotators. In
practice, the selection of what we define as visual differen-
tia depends on the highly egocentric differentiation of affor-
dances [17], with the guidance of cognitive psychology [18],
in particular tends to visual properties that correspond to ob-
ject functions (e.g., the visual property “a pair of joined reeds
that vibrate together” for an oboe denotes the function of play-
ing them to produce sound).

4. THE ITERATIVE LABELING PROCESS
In this section, we detail the image labeling methodology.
This is an iterative refinement process, which includes three
loops, namely the top-level loop, the vertical loop, and the
horizontal loop. The first step object localization is applied
in the top-level loop, and the second step visual classification
produced by the vertical loop and horizontal loop.
The Top-level Loop. The top-level loop is designed to con-
tinuously offer good images for the iterative labeling method.
In this process, the object localization step is introduced to
avoid object ambiguity. An object localization model [19] is
introduced to automatically locate objects by machine in an
image, and crop the image based on the coordinates of ob-
jects, aiming to obtain images with a single object. As a re-
sult, we can obtain multiple single-object images from one
multi-object image. Note that, although the square bounding
box sometimes contains parts of other objects in the cropped
image, the main object of these images will be more defined
than the original image, thus, we treat the cropped image as a
single-object image. Then, all images are input to the follow-
ing vertical loop and horizontal loop one by one for labeling.
The Vertical Loop. The goal of the vertical loop is to iter-
atively refine the label of the input image through layer-by-
layer computation to label it precisely. There is also a hierar-
chy that is input at the same time as the image, which will be



gradually enriched by adding nodes and samples in the cur-
rent iterative process. When inputting a new object, the simi-
larity is applied to compare with the categories already stored
in the hierarchy, and the category with the highest similarity
is regarded as the “candidate”. Next, humans join this loop to
determine whether the object has the common visual genus as
the “candidate”. If the answer is “False”, proceed to compare
this object to other categories at the same layer with “can-
didate” in the hierarchy, and enter the horizontal loop until
“True” is obtained. None of “True” obtained means the ob-
ject does not share a visual genus with any categories, then it
will be labeled as a new category and stored in the hierarchy.
During this process, the machine is responsible for recom-
mending initial labeled options and performing the method,
while humans take charge of determining the visual genus to
decide whether further labeling refinement is needed.
The Horizontal Loop. The goal of the horizontal loop is to
label the most refined category for the input object by com-
paring them within a domain category. It is triggered by the
vertical loop and compares the input object with the subcate-
gories of the candidate (if the candidate category has no sub-
categories, the input object is labeled as the candidate cat-
egory). The process starts from the subcategories with the
highest similarity of the object and asks humans whether they
have visual differentia. If the answer is “False”, it means that
they belong to the same category, and the input object is la-
beled as the current subcategory; if the answer is “True”, the
same comparison is proceed with the next subcategory. If all
subcategories in the candidate has visual differentia from the
input image, it means the object does not belong to any sub-
category, and it is labeled as a new category and added to the
hierarchy as a new subcategory of the candidate. In the pro-
cess, we complete the labeling and enrich the hierarchy at the
same time. This incremented hierarchy will also continue to
be utilized in the next top-level loop.
Observation and Analysis There are two important observa-
tions. Firstly, the fact that, though we have a detailed set of
canonical principles for ensuring the visual subsumption hier-
archy to be ontologically thorough, the task becomes particu-
larly critical due to the tradeoff between the appropriate ver-
tical and horizontal choice in uniquely classifying an object.
The choice must be guided by the specific object recognition
task that must be performed by the model trained using the
dataset generated. In other words, there cannot be a fits-it-all
dataset. Instead, we envisage a future where this methodology
will allow the construction of datasets with clear and precisely
specified semantic properties, which will then be introduced
in the ML models by using them for training. Secondly, as a
consequence of the first observation, human supervision can
often be necessary for determining the exact (succession of)
differentia in sync with the egocentric hierarchy in the mind of
the user. The key observation underlying both observations,
also factoring in other phases, is that the faceted classification
process, while (of course) not eliminating human subjectiv-

Table 1: The image labeling results by two annotators, where
“1, 1 1, ...” represent nine different categories, respectively,
and the “Alpha” is Krippendorff’s alpha measure.

Categories 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 3 1 2 1 3 Alpha
Expert1 17 42 21 21 22 13 12 33 10 0.9832Expert2 17 42 20 22 22 13 12 33 10

Table 2: Classification results on two datasets.

Methods Accuracy
VGG [21] GoogleNet [22] ResNet [23] RAN [24] SENets [25]

ImageNet (subset) 0.699 0.727 0.538 0.706 0.734
Refine dataset (ours) 0.762 0.825 0.741 0.790 0.804

ity, does provide the guidelines for enforcing a one-to-one
mapping between visual and linguistic properties. Overall,
although the proposed iterative refinement process of image
labeling still suffers from human subjectivity, it does provide
the guidelines for enforcing a one-to-one mapping between
visual and linguistic properties.

5. PRELIMINARY RESULTS
Inter-annotator agreement. To evaluate the inter-annotator
agreement, we collect 191 musical instrument images of nine
categories from ImageNet and invite two annotators to label
these images based on our proposed iterative refinement pro-
cess. After finishing labeling, the number of images for each
category is shown in Table 1. We introduce Krippendorff’s
alpha[20] for agreement measure. Results as high as 0.9832
demonstrate near-perfect agreement between two annotators,
which verifies the reliability of our method.
Machine Learning Experiment. In this experiment, we
used two different datasets to train five classic ML methods.
ImageNet (subset) refers to a subset containing nine musi-
cal instrument categories collected from ImageNet with the
original labels. The refined dataset (ours) is labeled by our
proposed iterative refinement strategy with the same images.
During training, we keep all parameters consistent and use the
same test set. The results of object recognition are shown in
Table 2. It can be found that the accuracy of the same meth-
ods is significantly improved when trained on our dataset.
These results confirm that our dataset has higher data quality,
and verifies the validity of the proposed methodology.

6. CONCLUSION
In this paper, we propose a general iterative refinement pro-
cess based on KR methodology to generate high-quality
ground truth image datasets, aiming to overcome the limita-
tions imposed by SGP on current labeling processes. In the
future, we will focus on the construction of large benchmark
datasets by extending the data labeling methodology.
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Xiaohua Zhai, and Aäron van den Oord, “Are we done
with imagenet?,” arXiv preprint:2006.07159, 2020.

[7] Terrance de Vries, Ishan Misra, Changhan Wang, and
Laurens van der Maaten, “Does object recognition work
for everyone?,” in CVPR, 2019, pp. 52–59.

[8] Fausto Giunchiglia, Mayukh Bagchi, and Xiaolei Diao,
“Visual ground truth construction as faceted classifica-
tion,” arXiv preprint arXiv:2202.08512, 2022.

[9] Arnold WM Smeulders, Marcel Worring, Simone San-
tini, Amarnath Gupta, and Ramesh Jain, “Content-based
image retrieval at the end of the early years,” IEEE
TPAMI, vol. 22, no. 12, pp. 1349–1380, 2000.

[10] Fausto Giunchiglia, Luca Erculiani, and Andrea
Passerini, “Towards visual semantics,” Springer Nature
Computer Science (SNCS), vol. 2, no. 6, 2021.

[11] Fausto Giunchiglia and Mattia Fumagalli, “Concepts as
(recognition) abilities,” in FOIS, 2016, pp. 153–166.

[12] Eleanor Rosch, Carolyn B Mervis, Wayne D Gray,
David M Johnson, and Penny Boyes-Braem, “Basic ob-
jects in natural categories,” Cognitive psychology, vol.
8, no. 3, pp. 382–439, 1976.

[13] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom,
Andrew Ilyas, and Aleksander Madry, “From ima-
genet to image classification: Contextualizing progress
on benchmarks,” in International Conference on Ma-
chine Learning. PMLR, 2020, pp. 9625–9635.

[14] Ruth Garrett Millikan, “Neuroscience and teleoseman-
tics,” Synthese, pp. 1–9, 2020.

[15] Ruth Garrett Millikan, Language: A biological model,
Oxford University Press on Demand, 2005.

[16] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, et al.,
“Imagenet large scale visual recognition challenge,”
IJCV, vol. 115, no. 3, pp. 211–252, 2015.

[17] James J Gibson, “The theory of affordances,” Hilldale,
USA, vol. 1, no. 2, pp. 67–82, 1977.

[18] Carolyn F Palmer, Rebecca K Jones, Beth L Hennessy,
Marsha G Unze, and Anne D Pick, “How is a trumpet
known? the “basic object level” concept and perception
of musical instruments,” The American journal of psy-
chology, pp. 17–37, 1989.

[19] Joseph Redmon and Ali Farhadi, “Yolov3:
An incremental improvement,” arXiv preprint
arXiv:1804.02767, 2018.

[20] John Hughes, “Krippendorffsalpha: An r package for
measuring agreement using krippendorff’s alpha coeffi-
cient,” The R Journal, vol. 1, no. 1, 2021, Also: arXiv
preprint arXiv:2103.12170.

[21] Karen Simonyan and Andrew Zisserman, “Very deep
convolutional networks for large-scale image recogni-
tion,” in ICLR, 2015.

[22] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Ser-
manet, Scott Reed, Dragomir Anguelov, Dumitru Erhan,
Vincent Vanhoucke, and Andrew Rabinovich, “Going
deeper with convolutions,” in CVPR, 2015, pp. 1–9.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun, “Deep residual learning for image recognition,” in
CVPR, 2016, pp. 770–778.

[24] Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang,
Cheng Li, Honggang Zhang, Xiaogang Wang, and Xi-
aoou Tang, “Residual attention network for image clas-
sification,” in CVPR, 2017, pp. 3156–3164.

[25] Jie Hu, Li Shen, and Gang Sun, “Squeeze-and-
excitation networks,” in CVPR, 2018, pp. 7132–7141.


	1  Introduction
	2  Types of mislabeling
	3  Two-step Labeling strategy
	4  The iterative labeling process
	5  Preliminary Results
	6  Conclusion
	7  Acknowledgments
	8  References

