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Abstract— A general decentralized computational framework
for set-valued state estimation and prediction for the class of
systems that accept a hybrid state machine representation is
considered in this article. The decentralized scheme consists of
a conjunction of distributed state machines that are specified
by a decomposition of the external signal space. While this
is shown to produce, in general, outer approximations of the
outcomes of the original monolithic state machine, here, specific
rules for the signal space decomposition are devised by utilizing
structural properties of the underyling transition relation,
leading to a recovery of the exact state set results. By applying a
suitable approximation algorithm, we show that computational
complexity in the decentralized setting may thereby essentially
reduce as compared to the centralized estimation scheme.

I. INTRODUCTION

Set-valued state computation is often used in the analysis
and synthesis of complex systems. As state sets are thereby
guaranteed to contain the true state of the system, such
a computational approach can be efficiently employed for
the prediction of the system’s behavior involving physical
and measurement uncertainties. For instance, reachability
analysis for verification of safety specifications is a typical
application in this context. In hybrid systems, abstraction-
based approaches naturally lead to a set-valued compu-
tational framework, see e.g. [1]. Yet, the computational
complexity remains often prohibitive, which has been an
impetus for the increasing interest on the decentralized state
estimation and prediction schemes, particularly in the area of
discrete event systems with applications to failure detection
and diagnosis, see e.g. [2], [3].

In this paper, a general framework for decentralized
estimation and prediction for a class of hybrid and dis-
crete event systems with a finite external signal space is
considered. Therefore, initially the original signal space is
decomposed into a finite number of aggregate signal spaces
of a lower cardinality, which physically may be interpreted
as substitution of a “high resolution sensor” by a finite set
of “coarser” ones. Thereby, each of the introduced aggre-
gate signal spaces invokes a distributed state machine by
“relabeling” the symbols of the monolithic state machine.
However, due to the reduction in the measurement resolution,
state set predictions of individual distributed state machines,
and as a consequence, of the whole decentralized scheme
itself, is indeed conservative. To obviate this, the “coarse
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sensors” must be appropriately designed in the sense that the
intersection of the individual computation outcomes resulting
thereof, invariably leads to exact state set estimates. To
this end, in this article, specific signal space decomposition
rules are constructed by utilizing the structural properties
of the transition relation of the underlying monolithic state
machine. A simple algorithm is developed based on the
concept of so-called “non-deterministic chains”, which rep-
resent a special class of transition relations featuring inherent
injective transition functions. Our computational framework
relates to the work [4] which focuses on distributed set-
valued state estimation for I/S/O machines. Yet it includes
additional perspectives of decentralized computation. For
instance, one of the primers here has been the development
of the guidelines for the design of the decentralized scheme
itself. Moreover, our framework covers the larger class of
state machines that preserve injectivity in the state transi-
tion function such as non-deterministic automata or I/S/-
representations with singleton output maps. Recently, this
approach has been further generalized in [5] to the class of
systems involving non-injective state transition functions.

The remainder of the paper is organized as follows. In
Section II, we recall a few basic concepts from the behavioral
system theory. In addition, a recursive algorithm for the
computation of the set-valued state estimates and predictions
is presented. Section III represetns the core of the work.
Here, we define the decentralized computational scheme,
and introduce external signal space decomposition using
specific aggregation functions. In particular, the concept
of non-deterministic chains and the corresponding main
algorithm for the signal space decomposition are presented.
In Section IV, the results are employed in a decentralized
estimation setup using `-complete approximations. In addi-
tion, a comparison of the space/time complexity between the
decentralized and monolithic scheme is shortly discussed.
Finally, an illustrative numerical example for decentralized
set-valued state estimation is included.

We use the following notation: capital letters denote signal
spaces, e.g. X , U , Y , W represent the state space, the input
and output spaces, and the external signal space, respectively.
The corresponding elements are denoted by greek lowercase
letters, e.g. W = {ω1, . . . , ωm}. We consider the discrete
time domain, hence signals, which are denoted by lowercase
letters, are sequences of symbols from the appropriate signal
space, e.g. w : N0 → W represents the external signal. The
restriction of a signal to an interval [τ, t], τ, t ∈ N0, 0 ≤
τ ≤ t, is denoted by ·|[τ,t], e.g. w|[τ,t] = w(τ) . . . w(t). The
space of the finite sequences (strings) w|[τ,t] will be denoted
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as W [τ,t] = W t−τ+1. The string w|[τ,t] will be considered
as an element of W [τ,t], i.e. they will be represented by an
(t−τ+1)-tuple ordered by the time parameter. Finally, let f be
an arbitrary function f defined on some domain X . If Ξ is a
subset of X , we will use the convention f(Ξ) := ∪x∈Ξf(x).
For singleton sets we avoid usage of brackets.

II. PRELIMINARIES

A. Systems & realizations

This section provides basic system and realization con-
cepts from the behavioral perspective, see e.g. [6]. A dy-
namical system Σ is defined as a triple (T,W,B), with time
axis T ⊆ R, the external signal space W , and the behavior
B ⊆ WT , where WT = {w : T → W}. Throughout
this article, the discussion is confined to discrete-time sys-
tems, hence T = N0. The external signal space is finite:
W = {ω1, . . . , ωm}. B then represents a set of sequences
w : N0 → W which are compatible with the dynamics
of the system Σ. A dynamical system Σ = (N0,W,B)
is said to be time invariant if σB ⊆ B, where σ is the
backwards time shift operator: σw(t) := w(t+ 1), t ∈ N0,
and σB := {σw;w ∈ B}; for τ > 1, στ := σστ−1 .

A state machine is a tuple P = (X,W,∆, X0) where X
denotes the state space, W the external signal space, ∆ ⊆
X ×W ×X the transition relation, and X0 ⊆ X the initial
state set. If X = Rn×D, where n ∈ N0 and |D| ∈ N <∞,
P is a hybrid state machine; for n = 0, P is a finite state
machine. Throughout the paper, P is assumed to be non-
blocking, that is for all ξ ∈ X there exists a ω ∈ W such
that (ξ, ω, ξ′) ∈ ∆. Furthermore, we assume X0 = X . Then,
σB = B, implying that Σ is time-invariant.

For systems exhibiting an input/output structure, the exter-
nal signal space W can be decomposed as W = U×Y , with
U and Y being the sets of input and output symbols. Then,
P = (X,U × Y,∆, X0), is said to be an I/S/- machine if
for each state ξ ∈ X and each µ ∈ U , there exists a ν ∈ Y
and a ξ′ ∈ X , such that (ξ, (µ, ν), ξ′) ∈ ∆. If ν and ξ′

are unique for all ξ ∈ X and µ ∈ U , P is said to be an
I/S/O machine. Note that I/S/O machines are deterministic
by definition. A state machine P = (X,W,∆, X0) induces
a state space system ΣS = (N0,W × X,BS), where BS is
referred to as the full behavior, and is defined as

BS :={(w,x); (x(t),w(t),x(t+1))∈∆, t∈N0, x0∈X0}. (1)

The external behavior Bex of ΣS is then defined to be
the projection of BS onto WN0 , that is Bex := PWBS =
{w;∃x ∈ XN0 , (w, x) ∈ BS}. Finally, a state machine P =
(X,W,∆, X0) with induced external behavior Bex is said to
be a realization of a dynamical system Σ = (N0,W,B) if
Bex = B. This will be denoted by P ∼= Σ.

B. State set estimation & prediction

Let BS and Bex be the induced full and external behavior
of the state machine P = (X,W,∆, X), respectively. Define
state sets compatible to an external string w|[τ,t] ∈W [τ,t] at

the time instants t and t+ 1 as

χ(w|[τ,t]):={ξ;∃(w′, x)∈BS,x(t)=ξ,w′|[τ,t] =w|[τ,t]}, (2a)
ρ(w|[τ,t]):={ξ;∃(w′, x)∈BS,x(t+1)=ξ,w′|[τ,t] =w|[τ,t]}. (2b)

Both, χ and ρ, are families of set-valued functions W [τ,t] →
2X parametrized by a restriction interval [τ, t]. Note that
w|[τ,t] ∈ Bex|[τ,t] ⇔ χ(w|[τ,t]) 6= ∅. In general, more
information about the past leads to more accurate state
estimates. This fact is reflected by the following proposition.

Proposition 1: Consider a machine P = (X,W,∆, X)
with induced external behavior Bex, and let w ∈ Bex. Then

χ(w|[0,t]) ⊆ χ(w|[1,t]) ⊆ . . . ⊆ χ(w|[t,t]), (3a)
ρ(w|[0,t]) ⊆ ρ(w|[1,t]) ⊆ . . . ⊆ ρ(w|[t,t]). (3b)

Proof: Introduce the set of behaviors Bτ := {w′ ∈
Bex;w′|[τ,t] = w|[τ,t]}, which contains all sequences in Bex
that share the same restriction w|[τ,t]. Then, by definition
(2a), χ(w|[τ,t]) = χ(Bτ ) := ∪w′∈Bτχ(w′|[τ,t]). It is obvious
that B0 ⊆ B1 ⊆ . . . ⊆ Bt, which implies χ(B0) ⊆ χ(B1) ⊆
. . . ⊆ χ(Bt). This proves (3a). Equation (3b) follow by same
lines of argument.

We introduce now few one-step prediction expressions,
which will reveal an iterative computation procedure for
the state sets in (2a) and (2b). Therefore, introduce the
parametrized state transition function ρ̂ω : X → 2X as

ρ̂ω(ξ) := {ξ′; (ξ, ω, ξ′)∈∆}. (4a)

For Ω ⊆ W and Ξ ⊆ X in accordance with the adopted
notation convention we define

ρ̂Ω(Ξ) := ∪ω∈Ω,ξ∈Ξ ρ̂ω(ξ). (4b)

The predicted states in X , resulting from the occurrence of
the symbol ω ∈W , are then computed by

ρ(ω) = ρ̂ω(χ(ω)) (4c)

where according to (2a)

χ(ω) = {ξ;∃ξ′, (ξ, ω, ξ′) ∈ ∆}, (4d)

with ω = w|[t,t]. For sequences, we get analogously

ρ(w|[τ,t]) = ρ̂w(t)(χ(w|[τ,t])). (4e)

Moreover, by definition (2a)

χ(w|[τ,t]) = ρ(w|[τ,t−1]) ∩ χ(w(t)), (4f)

which along with (4e) reveals a recursive structure in com-
puting χ(w|[τ,t]) and ρ(w|[τ,t]).

III. DECENTRALIZED COMPUTATION SCHEME

A. Signal space decomposition

Consider the external signal space W , as defined in
Section II, and introduce a finite set of aggregation functions

Ak : W → Vk, k ∈ {1, 2, . . . , p} (5)



where |Vk| ≤ |W |. The functions (5) are required to fulfill
the following resolvability or consistency condition

∩pk=1A
−1
k (Ak(ω)) = ω (ω ∈W ) (6)

where the inverse mapping A−1
k : Vk → 2W , is defined as

A−1
k (θk) := {ω ∈W ;Ak(ω) = θk}. (7)

Due to consistency, each symbol ω ∈W is uniquely resolved
by an ordered p-tuple (θ1, . . . , θp), where θk = Ak(ω), k ∈
{1, . . . , p}. We refer to this as a decomposition of the original
signal space W into p signal spaces, and write

W  V1 × V2 × . . .× Vp. (8)

In general, the opposite does not hold: not every p-tuple in
V1 × V2 × . . .× Vp will be associated with a symbol in W .

Now extend the definition of aggregation functions to
Ak : W [τ,t] → V

[τ,t]
k , by a symbolwise mapping. That is,

vk|[τ,t] = Ak(w|[τ,t]) if vk(l) = Ak(w(l)) (τ ≤ l ≤ t).
Then, it is clear that the resolvability condition (6) carries
over to strings, as well, that is

∩pk=1A
−1
k (Ak(w|[τ,t])) = w|[τ,t] (w ∈WN0). (9)

B. Distributed state machines

Having introduced the signal spaces Vk, k ∈ {1, . . . , p},
each is now associated with a distributed state machine Pk =
(X,Vk,∆k, X), where ∆k⊆X×Vk×X is defined as

∆k = {(ξ, θk, ξ′);∃ω∈A−1
k (θk), (ξ, ω, ξ′)∈∆}. (10)

The original state machine P = (X,W,∆, X) is referred
to as the monolithic state machine. From (10) it follows for
the full and external behavior of a machine Pk: Bs,k :=
{(vk, x); vk = Ak(w), (w, x) ∈ Bs} and Bex,k = Ak(Bex) :=
{Ak(w);w ∈ Bex}, respectively. The definitions for the
estimation and prediction functions χk : V

[τ,t]
k → 2X and

ρk : V
[τ,t]
k → 2X , k ∈ {1, . . . , p}, are analogous to those in

(2a-2b) for the monolithic machine P . Equivalently stated:

ρk = ρ ◦ A−1
k , χk = χ ◦ A−1

k . (11)

For instance,

ρk(vk|[τ,t]) = ρ(A−1
k (vk|[τ,t])) = ∪skl=1ρ(wkl|[τ,t]), (12)

for some sk ∈ N. The external behavior Bex,k of the
machine Pk is a coarse approximation of the “monolithic”
behavior Bex, in that w|[τ,t] ∈ A−1

k (vk|[τ,t]) if vk = Ak(w),
for any w ∈ Bex. However, the resolvability condition
∩pk=1A

−1
k (vk|[τ,t]) = w|[τ,t] suggests a computation scheme

with p distributed state machines Pk including an intersection
of the respective outcomes. Therefore, consider a string
w|[τ,t] corresponding to the p-tuple (v1|[τ,t], . . . , vp|[τ,t]).
Then, in general, it follows

∩pk=1χk(vk|[τ,t]) = ∩pk=1χ(A−1
k (vk|[τ,t]))

⊇ χ(∩pk=1A
−1
k (vk|[τ,t]))

= χ(w|[τ,t]), (13a)

where we use the fact: φ(M1)∩φ(M2) ⊇ φ(M1 ∩M2), and
the consistency condition. Similarly,

∩pk=1ρk(vk|[τ,t]) ⊇ ρ(w|[τ,t]). (13b)

As a consequence, the parallel computation scheme pro-
vides, in general, an overapproximation of the outcomes of
the original monolithic state machine. However, for certain
classes of transition relations ∆, specific consistent functions
Ak, k ∈ {1, . . . , p} can be constructed, which lead to
exact computation results in the decentralized scheme. The
basic concept which we use in constructing such aggregation
functions is that of “non-deterministic chains”.

C. Non-deterministic chains

Definition 1: Consider a state machine P=(X,W,∆, X),
and let Ω ⊆ W . A transition subrelation δ ⊆ ∆ is said to
be a non-deterministic chain over Ω if for all ξ ∈ X and
ω′, ω′′ ∈ Ω:

(i) (ξ, ω′, ξ′) ∈ δ, (ξ, ω′′, ξ′′) ∈ δ ⇒ ω′ = ω′′,

(ii) (ξ′, ω′, ξ) ∈ δ, (ξ′′, ω′′, ξ) ∈ δ ⇒ ξ′ = ξ′′.
The transition relation δ can naturally be associated with the
functions χc : Ω → 2X , ρc : Ω → 2X , and the transition
function ρ̂c : χ(Ω)→ 2X , defined as

χc := χ|Ω, ρc := ρ|Ω, ρ̂c := ρ̂Ω. (14)

Then, (i) can be equivalently restated as χc(ω′)∩ χc(ω′′) 6=
∅ ⇒ ω′ = ω′′, while (ii) is equivalent to ρ̂c(ξ′) ∩ ρ̂c(ξ′′) 6=
∅ ⇒ ξ′1 = ξ′′, leading to the following statement.

Proposition 2: A transition relation δ ⊆ ∆ is a non-
deterministic chain if and only if χc and ρ̂c are absolutely
injective set-valued maps.

In the sequel, we introduce a systematic method for signal
space decomposition which results from partitioning the
transition relation ∆ into a finite set of non-deterministic
chains. To this end, for a given monolithic machine P =
(X,W,∆, X), suppose that partitionings

W = ∪rj=1Ωj , and ∆ = ∪rj=1δj (15)

exist, such that each transition subrelation δj ⊆ ∆ over Ωj
represents a non-deterministic chain. Then, we claim that
the state machine P is chain-decomposable. The following
example illustrates this idea.

Example 1: Consider an I/S/- machine P = (X,U ×
Y,∆, X) with singleton output maps. Let U = {µj ; j =
1, . . . , r}, and introduce the partitioning W = U × Y =
∪rj=1Ωj , where Ωj := {µj} × Y . This induces a partition-
ing of the transition relation ∆ = ∪rj=1δj . By definition,
functions f :X×U→2X and h:X×U→Y exist, such that

(ξ, (µj , ν), ξ′) ∈ δj ⇔ ξ′∈f(ξ, µj), ν=h(ξ, µj). (16)

Then, each state ξ ∈ X can be associated with a unique sym-
bol pair (µj , ν) ∈ Ωj . Hence, (i) in Definition 1 is fulfilled.
Define further ρ̂cj : X → 2X as ρ̂cj(ξ) := f(µj , ξ), and let it
be absolutely injective. Then, δj is a non-deterministic chain
for all j ∈ {1, . . . , r}.



Next, introduce a consistent signal space decomposition
as discussed in Section III-A, for Ωj , j ∈ {1, . . . , r}

Ωj  Vj,1 × · · · × Vj,p. (17)

Notice that such decompositions invariably yield a consistent
decomposition for the original signal space W  V1×· · ·×
Vp if, e.g.

Vk = ∪rj=1Vj,k, (18)

The state machines Pk, k ∈ {1, . . . , p} are then easily
constructed using the procedure described in Section III-
B. We now want to show that the intersection of their
estimates and predictions produces the exact outcomes of
the underlying monolithic state machine P .

Referring to (14) and Proposition 2, it is important to keep
in mind, that the absolute injectivity of

χcj := χ|Ωj , ρcj := ρ|Ωj , ρ̂cj := ρ̂Ωj , (19)

is, per construction, preserved in all disjoint subspaces Ωj .
Note also that for any t ∈ N0, all elements of the inverse
mapping of a symbol θk ∈ Vk belong to the same subspace
Ωj for each k ∈ {1, . . . , p} and some j ∈ {1, . . . , r}.
Now, fix a string w|[τ,t] and consider the corresponding tuple
(v1|[τ,t], . . . , vp|[τ,t]) in the decentralized scheme. Then,

∩pk=1ρk(vk|[τ,t]) = ∩pk=1 ∪
sk
lk=1 ρ(wklk |[τ,t])

= ∪s1l1=1 · · · ∪
sp
lp=1 ∩

p
k=1ρ(wklk |[τ,t])

= ∪s̄1l1=1 · · · ∪
s̄p
lp=1 ∩

p
k=1ρ(wklk |[τ,t−1]w(t))

where s̄k ≤ sk is the number of all strings in W [τ,t] of the
form wklk |[τ,t−1]w(t), k ∈ {1, . . . , p}. In the 3rd line we took
advantage of the consistency condition and the fact that ρcj :

Ωj → 2X is absolutely injective. All the stringsA−1
k (vk|[τ,t])

that do not end with w(t) are then neglectable. Moreover,
using the recursive formula (4f), and the injectivity of the
transition function ρ̂cj ,

∩pk=1ρk(vk|[τ,t]) =

= ∪s̄1l1=1 · · · ∪
s̄p
lp=1 ∩

p
k=1ρ̂

c
j

[
χcj(w(t)) ∩ ρ(wklk |[τ,t−1])

]
= ρ̂cj

[
χcj(w(t)) ∩

(
∪s̄1l1=1 · · · ∪

s̄p
lp=1 ∩

p
k=1ρ(wklk |[τ,t−1])

)]
= ρ̂cj

[
χcj(w(t)) ∩

(
∩pk=1ρk(vk|[τ,t−1])

)]
.

As a consequence, a recursive expression is obtained, which
transfers the computation task from the interval [τ, t] to [τ, t−
1]. Repeating the recursion until [τ, τ ], leads to an expression
on the right-hand side equal to ρ(w|[τ,t]), which is the proof
of the following main statement.

Theorem 1: Let P=(X,W,∆, X) be chain decomposable.
Then, a decentralized scheme including the state machines
Pk, k ∈ {1, . . . , p} induced by (18) provides exact state
estimates and predictions, that is

∩pk=1χk(vk|[τ,t]) = χ(w|[τ,t]), (20a)
∩pk=1ρk(vk|[τ,t]) = ρ(w|[τ,t]). (20b)

Following the discussion in Example 1 for I/S/- state ma-
chines, we further conclude.

Corollary 1 (I/S/-): Consider the class of I/S/- realizations
P = (X,U × Y,∆, X), which fulfills (16). Introduce a
partitioning of ∆ as described in Example 1. Then, a de-
centralized scheme built upon any consistent decomposition
with Vk = U × Ak(Y ), k ∈ {1, . . . , p}, provides exact
computation results of the form (20a) and (20b).

Example 2: In order to illustrate the proposed method, con-
sider the automaton in Fig. 1. Its external signal space can be

ξ1

ξ2

ξ3 ξ4

ξ5

ξ6

a1

a1
a2

a2

b1

b1

b2

b2

c1

c2

d1

d2

Fig. 1.Finite state machine.

partitioned as W = Ω1 ∪ Ω2 with
Ω1 = {a1, b1, c1, d1} and Ω2 =
{a2, b2, c2, d2}. As indicated by the
solid and dashed lines, the cor-
responding transition relations δ1
and δ2 are both non-deterministic
chains. According to the previous
elaborations, any consistent set of
aggregation functions can be ap-
plied on Ω1 and Ω2. E.g. a particular
signal space decomposition results
from

V1,1 = {θ1
1, θ

2
1} with θ1

1 ← {a1, b1}, θ2
1 ← {c1, d1},

V1,2 = {θ1
2, θ

2
2} with θ1

2 ← {a1, c1}, θ2
2 ← {b1, d1},

V2,1 = {θ3
1, θ

4
1} with θ3

1 ← {a2, b2}, θ4
1 ← {c2, d2},

V2,2 = {θ3
2, θ

4
2} with θ3

2 ← {a2, c2}, θ4
2 ← {b2, d2}.

The corresponding decomposition reads W  V1 × V2,
where V1 = V1,1 ∪ V2,1 and V2 = V1,2 ∪ V2,2, leading to
the distributed machines P1 = (X,V1,∆1, X) and P2 =
(X,V2,∆2, X). Now assume that the original system accepts
a string, sayw|[τ,t] = a1b2. The corresponding estimate of
the monolithic machine is χ(a1b2) = ξ2. The distributed
machines measure accordingly the strings v1|[0,1] = θ1

1θ
3
1

and v2|[0,1] = θ1
2θ

4
2 , providing the estimates χ1(θ1

1θ
3
1) = ξ2

and χ2(θ1
2θ

4
2) = {ξ2, ξ3}, respectively. The decentralized

estimate is thus given by χ(θ1
1θ

3
1) ∩ χ(θ1

2θ
4
2) = ξ2, which is

exactly the same outcome obtained by the monolithic state
machine P = (X,W,∆, X). According to Theorem 1, this
must hold for all strings accepted by P .

IV. DECENTRALIZED ESTIMATION USING
`-COMPLETE APPROXIMATION

This section addresses the set-valued state estimation for
time-invariant systems Σ = (N0,W,B) using the `-complete
approximation algorithm. Note that Σ is said to be `-
complete, [7], if

w ∈ B ⇔ σtw|[t,t+`] ∈ B|[0,`], (t ∈ N0). (21)

A. `-Complete approximation

Consider a time-invariant system Σ. The model Σ` =
(N0,W,B`), ` ∈ N, is a strongest `-complete approximation
of Σ if (i) B` is `-complete; (ii) B` ⊇ B, and (iii) B′` ⊇ B,
B′` being `-complete ⇒ B′` ⊇ B`. We consider here the
realization algorithm for the strongest `-complete abstraction
Σ` as follows (see also [4]).

Definition 2: The state machine P` = (Z`,W,∆`, Z0) is
a realization of Σ` with



(a) Z0 = W ;

(b) Z` := ∪`r=1W
r, where W r = wα1wα2 . . . wαr ;

(c) transition ∆` := ∪`r=0∆r
` ⊆ Z` ×W × Z`, defined by:

∆r
` :={(w|[0,r−1], w(r), w|[0,r]):w|[0,r]∈B`|[0,r], 1≤r<`},

∆`
` :={(w|[0, −̀1], w(`), w|[1,`]):w|[0,`]∈B`|[0,`]}.

The `-complete representation keeps track of the system’s
past trajectories with a sliding time window of length `. The
resulting behavior B` includes the sequences compatible with
Σ, while B0 ⊇ B1 ⊇ · · · ⊇ B holds. Using Definition 2, the
state ζ ∈ Z` of P` at a time instant t reads

ζ(t) =

{
w|[0,t] if 0 ≤ t < `,
w|[t−`+1,t] if t ≥ `. (22)

For t < `, the state ζ is determined by the whole signal
string, whereas for t ≥ ` only by its suffix of length `.
Therefore, it is evident that each state ζ(t) can be associated
with unique estimates χ(ζ(t)) ⊆ X , defined as

χ(ζ(t)) :=

{
χ(w|[0,t]) if 0 ≤ t < `,
χ(w|[t−`+1,t]) if t ≥ `. (23)

As a consequence of Proposition 1, in the latter case, due
to χ(w|[0,t]) ⊆ χ(w|[t−`−1,t]), the state sets attached to ζ,
provide a coarse – yet instantaneous – estimation of the
system realization P = (X,W,∆, X) compatible with the
measurement w|[0,t] for t ≥ `. Another consequence of
Proposition 1 suggests that the estimation accuracy can be
improved by increasing `. Indeed, given two approximation
automata P`1 and P`2 with `2 ≥ `1, the estimates for
t ≥ `2 correlate as χ(w|[t−`2+1,t]) ⊆ χ(w|[t−`1+1,t]).
Clearly, the estimation accuracy is improved, as P`2 stores
a larger content of information (i.e. a longer suffix) on
w|[0,t]. A major drawback is, however, that the number of
states and transitions of the `-complete automaton increases
exponentially with increasing `, which provides a motivation
for the decentralized approach.

For the distributed state machines Pk = (X,Vk,∆k, X),
k = 1, . . . , p, as introduced in Section III-B, the `-complete
automata Pk,` = (Zk,`, Vk,∆k,`, Z0,k) are obtained from the
algorithm in Definition 2. Then, Zk,` includes states

ζk(t) :=

{
vk|[0,t] if 0 ≤ t < `,
vk|[t−`,t] if t ≥ `, (24)

which store the estimates

χk(ζk(t)) :=

{
χk(vk|[0,t]) if 0 ≤ t < `,
χk(vk|[t−`,t]) if t ≥ `. (25)

For a given string w|[τ,t] = (v1|[τ,t], . . . , vp|[τ,t]), the mono-
lithic approximation P` and each Pk,` assume unique states
ζ ∈ Z` and ζk ∈ Zk,`, as defined above. Then, in accordance
with the elaboration in Section III:

∩pk=1χk(ζk(t)) ⊇ χ(ζ(t)) or ∩pk=1 χk(ζk(t)) = χ(ζ(t)).

B. Space/time complexity

Following the discussion in the last section, it is obvi-
ous that the complexity of the monolithic and distributed
estimators is directly related to the number of states in the

corresponding implementation with `-complete automata. In
accordance with (22) and (24), the number |Zk,`| of the states
of automata with a memory depth ` refers to the number of
substrings of length `. For instance, for a distributed automa-
ton Pk,` = (Zk,`, Vk,∆k, Z0,k): |Zk,`| ≤

∑`
i=0 |Vk|i. For

comparison purposes, here, the maximal number of possible
states in the automata implementation is considered. That
is, the numbers

∑p
k=1

∑`
i=0 |Vk|i (decentralized implemen-

tation) and
∑`
i=0 |W |i (monolithic implementation) need to

be compared. As, by definition, |Vk| < |W |, it is obvious that
for a sufficiently large `, the decentralized setup requires less
memory space than the monolithic implementation.

The memory requirements depend also significantly on
the amount of the stored data χk(ζ). For instance, for
a finite state machine, a finite number of sets has to be
stored. Similarly, for switched linear systems, the estimation
sets are polytopes, which, again, can be stored as a finite
number of sets representing the polytope vertices. Due to the
exponential growth of the number of states with increasing
`, the memory requirements can be significantly reduced by
the decentralized approach at the price of additional online
effort for the computation of set intersections. For certain
classes of hybrid systems this operation can be implemented
efficiently (such as polytope intersection in the case of
switched linear systems). For other classes, the estimation
sets can be offline overapproximated, e.g. by polyhedral
methods, in order to obtain a computationally efficient online
intersection operation. In general, a significant reduction in
the offline computational time and required memory space
is expected, as exemplified in the following section.
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Fig. 2. Two-tank system.

C. Numerical example

The plant consists of two tanks with corresponding water
levels x1 and x2, inflows u1 and u2, and outflow parameters
a1 and a2, that are connected by a pipe with a flow constant
b (Fig. 2). The dynamics can be described by the difference
equations:

x(t+1) =

[
1−a1−b b

b 1−a2−b

]
x(t) +

[
1 0
0 1

]
u(t), (26)

where t ∈ N0, x = [x1, x2]T , u = [u1, u2]T , y = [y1, y2]T ,
and y(t) = x(t). In the following, the simulations will be
performed for a set of input symbols Uj={µ1

j ,µ
2
j ,µ

3
j}, where

µ1
j , µ2

j , µ3
j represent the inputs uj = 1, uj = 7, uj = 14,

respectively, with j ∈ {1, 2}. Analogously, Yj={ν1
j ,ν

2
j ,ν

3
j },

where ν1
j , ν2

j , ν3
j encode the measurements yj∈[0, 10), yj∈

[10, 20), yj ∈ [20, 30], respectively. Furthermore a1 = a2 =
0.35 and b=0.25.

Note that this system assumes an infinite-dimensional
I/S/O state machine representation P = (X,W,∆, X),



where the external signal space is given by W = U1×U2×
Y1 × Y2. Hence, in accordance with Example 1, only the
output space is to be aggregated. For a decentralized setting
including two state-machines, the resulting signal spaces of
P1,` and P2,` are given by V1 = U1×U2×A1(Y1×Y2) and
V2 = U1×U2×A2(Y1×Y2), respectively. Thereby, we adopt
the mappings A1 and A2 according to {(νi1,%)} 7→ θi1 and
{(%, νi2)} 7→ θi2, i ∈ {1, 2, 3}. As a result, |V1|+ |V2| = 54,
while |W | = 81, indicating a reduction in the computational
complexity (see below).

The `-complete approximations of monolithic and dis-
tributed estimators with ` = 2 are simulated for 0 ≤ t ≤
7 with the input sequence u(t) as depicted in Fig. 3 and
x(0) = [0, 0]T . Obviously, the reachable sets for an arbitrary
sequence of input and measurement symbol pairs is repre-
sented by polytopes with a finite number of edges. As system
(26) fulfills the conditions of Corollary 1, the decentralized
estimation scheme must provide the exact outcome of the
monolithic estimator. For instance, following (22) and (24),
at the time instant t = 2, the monolithic and distributed
estimators reach the states

ζ(2) = 〈(µ2
1, µ

2
2, ν

1
1 , ν

1
2), (µ2

1, µ
2
2, ν

1
1 , ν

1
2), (µ2

1, µ
2
2, ν

2
1 , ν

2
2)〉,

ζ1(2) = 〈(µ2
1, µ

2
2, θ

1
1), (µ1

1, µ
2
2, θ

1
1), (µ1

1, µ
2
2, θ

2
1)〉,

ζ2(2) = 〈(µ2
1, µ

2
2, θ

1
2), (µ2

1, µ
2
2, θ

1
2), (µ2

1, µ
2
2, θ

2
2)〉,

respectively, and the intersection of χ1(ζ1(2)) (the polygon
with dashed edges) and χ2(ζ2(2)) (the polygon with dotted
edges), is indeed equal to the set provided by the monolithic
estimator (the gray area indicated by χ(ζ(2))), see Fig. 3.
Note that the true state of the system denoted by small filled
circles is always contained in the corresponding state set.

Table I indicates that complexity of the estimators is
strongly related to the number of states |Z`| of the `-complete
automata used for realization of the approximations and the
overall number of vertices of the associated sets χ(ζ) given
by nχ. Observe that, compared to the monolithic estimator,
already for ` = 2, the decentralized setup with two estimators
requires a lower offline computational cost |Z`|, and amount
of memory nχ.

` P` P1,` P1,` & P2,`

|Z`| nχ |Z`| nχ Σ|Z`| Σnχ

2 172 993 54 307 108 617
3 2260 17743 703 5509 1406 11065

TABLE I
COMPLEXITY ANALYSIS.

V. CONCLUSIONS

A general decentralized framework for set-valued state
estimation and prediction for hybrid state machines has
been discussed in this article. The outcome of the decen-
tralized scheme is computed as the intersection of the sets
provided by the individual distributed state machines. The
distributed state machines are defined as abstractions of the
monolithic one, as specified by an appropriate decomposition
of the original external signal space. In general, we show
that decentralized schemes provide outer approximates of
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Fig. 3. Set-valued state estimation using `-complete approximation (` = 2).

the estimates and predictions obtained by the monolithic
computation. Based on the concept of non-deterministic
chains, we develop a simple decomposition algorithm for the
external signal space, invariably leading to exact set-valued
decentralized state estimation and prediction. Due to the
smaller cardinality of the constructed external signal spaces
corresponding to the distributed state machines, a significant
reduction in the overall space/time computational complexity
may result. This is illustrated here by applying `-complete
approximation. Moreover, advantages in terms of robustness
and reliability are gained. Indeed, in order to prevail the
failure of a single processor, the decentralized scheme could
be extended by a redundant state machine and a failure
detection for switching off the malfunctioning processor. The
proposed decentralized framework can be applied in different
contexts, including data fusion, fault tolerant control, etc.
Optimal signal space decomposition leading to a minimal
computational complexity is a problem of interest for the
future work. A further development of the algorithm based
on non-deterministic chains can be found in [5].
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