
Hindawi Publishing Corporation
Applied Computational Intelligence and Soft Computing
Volume 2012, Article ID 650818, 6 pages
doi:10.1155/2012/650818

Research Article

Environmental Sound Recognition Using Time-Frequency
Intersection Patterns

Xuan Guo,1 Yoshiyuki Toyoda,1 Huankang Li,2 Jie Huang,1 Shuxue Ding,1 and Yong Liu1

1 Graduate Department of Computer and Information Systems, Graduate School of Computer Science and Engineering,
The University of Aizu, Aizu-Wakamatsu 965-8580, Japan

2 Department of Computer Science and Engineering, Shanghai Jiaotong University, 200240 Shanghai, China

Correspondence should be addressed to Jie Huang, j-huang@u-aizu.ac.jp

Received 13 January 2012; Accepted 27 February 2012

Academic Editor: Zhishun She

Copyright © 2012 Xuan Guo et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Environmental sound recognition is an important function of robots and intelligent computer systems. In this research, we use
a multistage perceptron neural network system for environmental sound recognition. The input data is a combination of time-
variance pattern of instantaneous powers and frequency-variance pattern with instantaneous spectrum at the power peak, referred
to as a time-frequency intersection pattern. Spectra of many environmental sounds change more slowly than those of speech or
voice, so the intersectional time-frequency pattern will preserve the major features of environmental sounds but with drastically
reduced data requirements. Two experiments were conducted using an original database and an open database created by the
RWCP project. The recognition rate for 20 kinds of environmental sounds was 92%. The recognition rate of the new method
was about 12% higher than methods using only an instantaneous spectrum. The results are also comparable with HMM-based
methods, although those methods need to treat the time variance of an input vector series with more complicated computations.

1. Introduction

Understanding environmental sounds is an essential func-
tion of human hearing. For example, people can recognize
the beginning of a rain shower by the rain sound, be cautious
when they hear footsteps coming from behind at night, and
open the door to welcome visitors after the sound of the
door-knocking. Environmental sound recognition is also im-
portant for intelligent robots and computer systems. An
intelligent robot can be aware of the environments by the au-
dition and use its hearing function to complement its vision
[1].

In recent years, environmental sound recognition has
received increasing attention, and we have seen some pio-
neering research in this field. An environmental sound da-
tabase (RWCP-DB) has been created for research use [2].
The sounds in the database were recorded in an anechoic
environment with durations of 250 to 500 ms. In total, there
are 105 instances, with each instance including 100 samples.
We reclassified this database into 12 types and 45 kinds

as listed in Table 1. For many sounds, there are multiple
instances with similar but different materials.

An environmental sound recognition method using the
instantaneous spectrum at the power peak was proposed [3].
It was reported that the rate of recognition was about 80%
for 20 instances of environmental sounds. In this research,
the target sounds are limited to impact sounds that have a
single power peak followed by exponential attenuation. The
instantaneous spectrum Sp(ωm) was calculated at the power
peak, where ωm (m = 1, 2, . . . ,M) is the frequency. Since
the input information was only based on the peak spectrum
without time variance, it was not able to capture the en-
vironmental sounds and thus the recognition rate was low.

It is natural to consider using existing methods that have
proven useful for speech recognition, for example, the hid-
den Markov Model (HMM) method and the time delay
neural network (TDNN) method [4–6], since those methods
deal with time variations of an input vector series. Miki
and others achieved recognition rate of 95.4% using HMM
method for 90 instances of RWCP-DB [5], and Sasou, and
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Table 1: The RWCP environmental sound database.

Sound type Kind of materials Instances

Impact sound

Wood plates 12

Metal cans, boxes, and so forth 10

Plastic cases 3

Glass cups, bottles, and so forth 8

Bundle of paper 1

Handclap/handclaps 4

Falling pieces
Grains 2

Coin/coins 7

Dice 3

Air jet

Small air pump 1

Spray 1

Firecracker 1

Air bubbles 1

Dryer 1

Friction sound
File 1

Sand paper 2

Saw 2

Musical instruments

Castanets 1

Cymbals 1

Drum 1

Horn 1

Kara 1

Maracas 1

Ring 1

String 1

Whistle 3

Tambourine 1

Phone, buzzer

Buzzer 1

Clock alarm 2

Phone 4

Toys 3

Open Cap 2

Broken
Chopsticks 1

Tearing paper 1

Crumpling paper 1

Release Clip 2

Shaking Metal bell/bells 7

Rotation Coffee mill 1

Others

Doorlock 1

Leaf through a book 2

Mech bell 1

Padlock 1

Punch 1

Shaver 1

Stapler 1

others reported the recognition rate for 59 instances of
RWCP-DB using AR-HMM method was 83.0% [6].

The recognition rate of the HMM method was greater
than that of the peak-spectrum method. Because the HMM
method uses a time series of frequency-feature vectors

[Sn(ωm)] that includes the time-frequency variance of the
signals, where ωm (m = 1, 2, . . . ,M) is the frequency and
Sn(ωm) indicates the spectrum (or cepstrum) for time frame
n (n = 1, 2, . . . ,N). However, HMM-based methods may
not be the best choice for environmental sound recognition
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Figure 1: The time-frequency intersection pattern refers to the
combination of the time-variance patter containing instantaneous
powers (or their square roots) for all time frames and the frequency-
variance patter with the instantaneous spectrum at power peak.
(The time-variance pattern is illustrated as the line along with the
spectrum-peaks.)

because environmental sounds differ from human speech.
The frequency characteristics of most environmental sounds
do not significantly change over time, and therefore it is not
necessary to deal with state-transferring in many cases, as the
HMM methods for speech signals require.

We can use a simpler method using the combination of
a time-variance pattern containing the instantaneous pow-
ers (or their square roots) calculated by the sum-of-squares
method for all time frames and a frequency-variance pattern
with the instantaneous spectrum at the power peak as
illustrated in Figure 1. Since this combination contains
both time-variance and frequency variance of the signal, it
incorporated almost the information needed for environ-
mental sound recognition. We call this input data type a
time frequency intersection pattern and refer to the time-
variance patter of power as power-variance pattern. Thus,
the information can be represented as [Sp(ωm),P(tn)], where
ωm (m = 1, 2, . . . ,M) is the frequency, Sp(ω) indicates
the spectrum at the time frame of power peak, and P(tn)
indicates the power of sound for time frame tn (n =
1, 2, . . . ,N). The total information includes two vectors with
sizes M and N (total M + N), which is less than that of
HMM-based methods (M × N in total). This method can
drastically reduce the input data while preserving the main
time-frequency characteristics of environmental sounds.

We use perceptron NNs for environmental sound recog-
nition. A multistage classification-recognition strategy is
adopted to cover environment sounds with different time
lengths. The first stage is the classification part, which clas-
sifies environmental sounds into three categories, single
bursts, repeated sounds, and continuous sounds, based on
their long-term power-variance patterns. The second stage
is the recognition part, for individual recognition of each
sound. In this stage, three different NN groups are used for
different categories of environmental sounds. Two experi-

ments were conducted using an original environment sound
database recorded in an ordinary room and the RWCP
database recorded in an anechoic chamber to verify the
proposed new method.

2. Environmental Sound
Database and Preprocessing

Since this research is concerned with a project that aims to
develop a security patrol and home-helper robot capable
of understanding environmental sounds, the target envi-
ronmental sounds are chosen to be important for the
robot to achieve its tasks. As seen in Table 3, 10 kinds of
environmental sounds were selected and recorded in an
ordinary room environment, with 30 samples of each kind.
The original sampling frequency was 44.1 kHz.

For comparison with the previous methods, we selected
10 kinds of sounds and a total of 45 instances from the
RWCP-DB as seen in Table 4.

Since there are unlimited kinds of environmental sounds,
no database can cover all of them. Therefore, no system will
be able to recognize all environmental sounds. Instead, for a
practical system, the target sounds must be limited according
to the practical environment and the purpose of tasks. That
is, environmental sound recognition is task dependent.

At the preprocessing stage, the environmental sound data
were downsampled to 8 kHz. The instantaneous power was
calculated for each time frame of 128-point length. While
the long-term power-variance patter contains the power data
of 48 frames, the short-term power-variance patter is of 16
frames. The peak spectrum was calculated around power
peak with a time frame of 64 points. All data were normalized
to have a maximum value of one.

3. System Construction

In many cases, environmental sounds can be mainly classi-
fied into collision sounds, friction sounds, vibration sounds,
electric sound, and other noises. Based on their power-
variance patterns, environmental sounds can be roughly
classified into single bursts, repeated bursts, continuous
sounds, and other noises. It is reasonable to first classify
the environmental sounds into different categories based on
their long-term power-variance patterns in the classification
stage. Recognition based on the combination of short-term
power-variance patterns and frequency-variance patterns at
the power peak will be performed in the second stage.

The data flow of the environmental sound recognition
system is presented in Figure 2. The system consists of a
classification part and a recognition part.

A three-layer perceptron NN is used for sound clas-
sification and recognition. The construction of the NN is
described in Table 2.

3.1. Classification by Long-Term Power-Variance Patterns.
The data needed for classification is the long-term power-
variance patterns for each input sound. An example of the
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Figure 2: System data flow.
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Figure 3: A sample of long-term power-variance pattern (a door-
knocking sound).

Table 2: Construction of NNs for classification and recognition
parts.

Input layer neuron 48

Intermid layer neuron 32

Output layer neuron 2

long-term power-variance pattern of a door-knocking sound
is presented in Figure 3.

This classification stage classifies sounds with short im-
pact sounds as single-impact sounds; sounds of friction, vib-
ration, noises, and electric sounds like phone bells as con-
tinuous sounds; some sounds with repetition, for example,
hand claps or knocks on a door, as repeated sounds.

Power pattern
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Neuron
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Figure 4: NN in the recognition part.

3.2. Construction of the Recognition Part. For almost all kinds
of environmental sounds, the time variances of the frequency
characteristics are usually rather stable and there are few
marked changes during their period compared with speech
sounds. The input data for the recognition part assigns the
short-term power-variance pattern to the first 16 inputs and
the instantaneous spectrum calculated at the power peak to
the remaining 32 inputs, as seen in Figure 4. The output layer
of each NN has two neurons that correspond to the results of
correct and incorrect matching.

The three NNs in the recognition part correspond to
the three target sound categories. Each NN, constructed by
a three-layered perceptron, is trained for one target sound
category. The final recognition result depends on the differ-
ence between the two output neurons of each NN. The NN
that obtains the maximum difference of correct and incorrect
output is dominant and gives the final recognition result
(Figure 2).
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Table 3: Results of recognition experiments for environmental sounds in the original database.

Sound kind First stage rate Final recognition rate

Boll impact 100% 100%

Metal impact 100% 95%

Door opening/closing 100% 85%

Lock 100% 95%

Switch on/off 100% 100%

Typing 100% 75%

Repeated typing 80% 80%

Knock 90% 90%

Telephone ringing 100% 100%

Japanese vowels 100% 100%

Average 92.0%

Table 4: Results of recognition experiments for environmental sounds in the RWCP database.

Sound kind First stage rate Final recognition rate

Wood impact 100%, 96.5%

Metal impact 99.5%, 92.5%

Clap 97.5%, 89.2%

Plastic impact 100%, 100%

Grains falling 100%, 80.0%

Telephone ringing 100%, 88.3%

Metal bell 99.2%, 98.3%

Spray 100%, 95.0%

Whistle 100%, 100%

Drier 100%, 86.0%

Average 92.7%

4. Recognition Experiments

Two experiments using the original prerecorded environ-
mental sound database and the RWCP database were con-
ducted. In all of the experiments, the computer system used
was an MS-Windows PC with an Athlone 1600 XP CPU and
512 MB of memory. The NNs were implemented using the
MATLAB programming language.

For the original database, 10 samples of each sound kind
were used for NN training, and 10 samples of data were
used for the recognition tests. The NN training time was
about 1 hour in total, and the recognition time for each
input data sample was less than 0.1 second. The results of
the recognition are listed in Table 3. The average rate of
recognition was 92.0%.

From the RWCP database, data for 10 kinds of sounds
(total of 45 instances) were selected for the experiments.
In the experiments, 10 samples of each sound kind were
used for NN training and 20 samples were used for testing.
Since there were not enough kinds of repeated sounds in
this database, only single-impact and continuous sounds
were tested. The required training time was 2 hours, and
the recognition time for each data sample was less than 0.1
second. The recognition results are presented in Table 4. The
average recognition rate was 92.7%.

5. Conclusion

In this research, we propose a multistage environmental
sound recognition method. The method consists of a
classification stage and a recognition stage. The classification
stage classifies environmental sounds into three categories
based on their long-term power-variance patterns, and the
recognition stage recognizes the sound kind based on a
combination of the short-term power-variance pattern and
the instantaneous spectrum at the power peak.

The merit of this method is that it uses a one-dimensional
intersectional time-frequency pattern that combines the
power-variance pattern and the instantaneous spectrum at
the power peak. The recognition rate of the new method
was 12% higher than methods using only an instantaneous
spectrum at the power peak. The results are also comparable
with HMM-based methods, although those methods must
accommodate the time variance of the input vector series
with more complicated computations.
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