
Which Source Code Plagiarism Detection Approach
is More Humane?

Oscar Karnalim
Faculty of Information Technology

Maranatha Christian University
Bandung, Indonesia

oscar.karnalim@it.maranatha.edu

Lisan Sulistiani
Faculty of Information Technology

Maranatha Christian University
Bandung, Indonesia

lisans1601@gmail.com

Abstract—This paper contributes in developing source code
plagiarism detection that is more aligned with human perspective.
Three evaluation mechanisms that directly relate human perspec-
tive with evaluated approaches are proposed: think-aloud, aspect-
oriented, and empirical mechanism. Using those mechanisms, a
comparative study toward attribute- and structure-based plagia-
rism detection approach (i.e., two popular approach categories
in source code plagiarism detection) is conducted. According to
that study, structure-based approach is more effective than the
attribute-based one; its signature aspect and resulted similarity
degrees are more related to human preferences. In addition,
such approach is related to most human-oriented aspects for
suspecting source code plagiarism.

Keywords—source code plagiarism detection; human-oriented
evaluation; programming; human-computer cooperation; com-
puter science education

I. INTRODUCTION

Source code plagiarism occurs when a student claims an-
other student’s source code as their original work [1]. In
programming courses, it is considered as an illegal behavior;
the correlation between student’s knowledge and grade will be
weakened, resulting more complicated recruitment process for
industry. Mitigating such illegal behavior is a crucial task for
programming examiners (e.g., lecturers or assistant lecturers).

To mitigate human effort, automated plagiarism detection
approaches have been developed [2]. Using such approaches,
plagiarism-suspected pairs could be detected in a no time.
However, most approaches (where some of them are im-
plemented on publicly available tools such as JPlag [3])
could be either too sensitive or insensitive when compared
to human. Some of them could generate numerous false
positives (i.e., non-plagiarized pairs which are considered as
plagiarism-suspected pairs) while the others could generate
numerous false negatives (i.e., plagiarized pairs which are not
considered as plagiarism-suspected pairs). The existence of
false results would complicate accusation process: examiner
needs to double-check each result comprehensively to avoid
mis-detection.

One of the solutions for reducing false results is to utilize a
plagiarism detection approach which behaves like humans (i.e.,
examiners), considering correct detection results are originally
defined by them. Therefore, it is natural to evaluate plagiarism

detection approaches from human perspective. Nevertheless,
to the best of our knowledge, existing evaluation mechanisms
only indirectly consider human perspective. We would argue
that direct relation between human perspective and evaluated
plagiarism detection approaches are needed to favor human-
like approach in evaluation.

This paper proposes two contributions. First, three eval-
uation mechanisms that directly relate human perspective
to evaluated plagiarism detection approaches are proposed.
Such mechanisms could become evaluation alternatives in
addition to conventional mechanism (which relies on human-
annotated dataset). Second, using proposed evaluation mech-
anisms, a comparative study between attribute- and structure-
based approach (i.e., two well-known approach categories in
plagiarism detection [4], [5]) is presented. This study draws
the applicability of proposed evaluation mechanisms.

II. RELATED WORKS

In general, source code plagiarism detection approaches
work in two phases: conversion and comparison phase. Con-
version phase translates given source codes and/or their fea-
tures to intermediate representations for more effective and
efficient comparison phase. Some of frequently-used inter-
mediate representations are: source code token sequence [3],
[4], [6]–[19], source code word sequence (i.e., a sequence
generated from natural language tokenizer) [20], [21], low-
level token sequence (i.e., a sequence generated from exe-
cutable file of given source code) [5], [22]–[25], program
dependency graph [26], and abstract syntax tree [27], [28].
After translated, resulted intermediate representations are then
passed to comparison phase—that measures similarity degree
and defines which pairs are suspected as plagiarism cases.
With regard to this phase, plagiarism detection approaches
can be further classified into three categories: attribute-based,
structure-based, and hybrid approach [4], [5].

Attribute-based approach determines plagiarism-suspected
pairs based on shared source code characteristics (e.g., the
number of unique operators [8] and token occurrences [10]).
Initially, similarity measurement on such approach relies on
attribute-counting mechanism; two codes are considered sim-
ilar if both of them share the same characteristic occurrence

ar
X

iv
:1

80
9.

08
55

9v
1 

 [
cs

.S
E

] 
 2

3 
Se

p 
20

18



frequencies [8], [9], [29]. Later, advanced similarity measure-
ments are incorporated. These measurements are adapted from
Fuzzy Logic (e.g., Fuzzy C-Means [10]), Machine Learning
(e.g., Random Forest [28]), and Information Retrieval (e.g.,
Cosine Similarity [11], [12], Jaccard Coefficient [14], Lan-
guage Model [28], and Latent Semantic Analysis [20], [21]).

Structure-based approach determines plagiarism-suspected
pairs based on shared source code structure. This ap-
proach typically relies on string-matching algorithms—such
as Running-Karp-Rabin Greedy-String-Tiling [3], [5], [17]–
[19], [22], [24], [25], local alignment [23], and Winowing
algorithm [17]—that have been modified to handle token
streams. However, considering the limitation of those algo-
rithms, some graph-matching algorithms (e.g., tree kernel
algorithm [27] and graph isomorphism algorithm [26]) are
proposed as alternative comparison algorithms.

Hybrid approach combines both attribute- and structure-
based approach for determining plagiarism-suspected pairs.
Such combination aims to enhance either effectiveness [6],
[7], [16] or efficiency [15]. For enhancing effectiveness, these
combined approaches either show the results of both con-
ventional approaches at once [7] or treat the result of one
approach as an input of another (e.g., using the result of
structure-based approach as an attribute for learning algorithm
[6] or clustering algorithm [16]). On the other, for enhanc-
ing efficiency, plagiarism-suspected pairs from attribute-based
approach are used as the inputs of structure-based approach
[15]. In such manner, not all source pairs are compared using
structure-based approach (which is typically costly in terms of
processing time).

In the context of effectiveness evaluation, two mechanisms
are frequently used in source code plagiarism detection: sta-
tistical and domain-specific mechanism. Statistical mechanism
utilizes metrics commonly used in statistic (such as precision)
to determine the performance of given plagiarism detection
approaches [3], [4], [6], [10]–[15], [17], [19]–[21], [27], [28].
This mechanism requires an evaluation dataset covering all
statistical result categories (i.e., true positive, true negative,
false positive, and false negative). In contrast, domain-specific
mechanism utilizes metrics specifically designed for plagia-
rism detection (e.g., similarity degree) to determine plagiarism
detection approaches’ performance [5], [7], [16], [18], [22]–
[26], [30]. Unique to this mechanism, it only relies on true
positives (that are frequently created in controlled environ-
ment). In other words, it is more practical to be used (since
only true positives are required) yet it is less related to real
environment (since other result categories are not considered).

One of the objectives in developing automated source
code plagiarism detection is to let computer imitates manual
plagiarism detection done by human. Hence, it is natural to
evaluate the effectiveness of plagiarism detection approaches
from human perspective. However, existing evaluation mech-
anisms (i.e., statistical and domain-specific mechanism) may
not sufficiently reflect human perspective; considering such
perspective is not directly related to evaluated approaches; they
are only related in indirect manner through human-annotated

dataset. Such dissonance could complicate accusation process
due to the existence of false results.

III. HUMAN-ORIENTED EVALUATION
MECHANISMS

Three human-oriented evaluation mechanisms (i.e., eval-
uation mechanisms that directly relate human perspective
with evaluated plagiarism detection approaches) are proposed:
think-aloud, aspect-oriented, and empirical evaluation mech-
anism. To mitigate qualitative bias, human-oriented effec-
tiveness is determined by comparing plagiarism detection
approaches to each other through questionnaire survey. Con-
sidering such comparison is best performed with only two
instances, proposed evaluation mechanisms are designed to ac-
cept two approaches per execution. However, if necessary, they
could compare numerous approaches by adapting tournament
selection from Genetic Algorithm [31] (with an assumption
that each approach refers to one instance and fitness function
is the human-oriented effectiveness degree).

A. Think-Aloud Evaluation Mechanism

Think-aloud evaluation mechanism compares the effective-
ness of two source code plagiarism detection approaches based
on respondents’ descriptions about how manual detection
works. It is suitable to be used when only a limited number
of plagiarism cases exists for evaluation and the main goal is
to observe from process perspective (i.e., factors considered
while detecting plagiarism). This mechanism is inspired from
think-aloud protocols used in Empirical Software Engineering
[32].

Think-aloud evaluation mechanism consists of three phases.
First of all, respondents are asked to manually suspect plagia-
rized source codes for reminding them how manual detection
works. Second, they should describe how they suspected
plagiarized codes as detail as possible in natural language
sentences. Third, each aspect from resulted descriptions will
be qualitatively linked to evaluated plagiarism detection ap-
proaches; an approach is more effective than another if its
characteristics are frequently mentioned on respondents’ de-
scriptions. To mitigate bias, no clue should be given to respon-
dents in regard to evaluated plagiarism detection approaches.

It is important to note that this mechanism might not capture
some human-oriented aspects due to human limitations namely
low interpretation skill and awareness. Low interpretation skill
occurs when the respondent cannot formalize what is in their
mind while suspecting plagiarized source codes; whereas,
low awareness occurs when the respondent does not aware
about some parts of detection process (which have been
unconsciously conducted).

B. Aspect-Oriented Evaluation Mechanism

Aspect-oriented evaluation mechanism relies on one differ-
entiating aspect between two source code plagiarism detection
approaches to measure human-oriented effectiveness. If that
aspect affects (or positively correlates more with) humans’
preferences, it can be stated that an approach with such aspect



is more effective. Otherwise, the approach without such aspect
is preferred. This mechanism is suitable to be used when
there is a salient differentiating aspect between both plagiarism
detection approaches and the main goal is to observe from
result perspective (i.e., resulted similarity degree). In general,
this mechanism works by asking respondents to rank plagia-
rism cases from human perspective wherein the results will be
further analyzed in qualitative and quantitative perspective. It
is inspired from ranking concept in Information Retrieval [33]
where relevancy (i.e., similarity in our case) is defined based
on ranks.

Prior to asking respondents, survey cases (that accentuate
the impact of differentiating aspect) should be artificially
developed. For each case, an original source code is pla-
giarized to several codes where the only modification is the
differentiating aspect with various degree. To guarantee that
the impact of differentiating aspect is shown, on such cases,
the difference between both evaluated approaches in terms
of similarity degree should be statistically significant. The
significance itself can be measured using t-test.

For each survey case, respondents are asked to rank pla-
giarized codes in descending order based on their similarity
degree toward original code from human perspective. Each
plagiarized code will be assigned with a rank where the first
rank refers to the highest similarity; if two or more codes are
equally similar, they could be assigned with similar rank. To
provide more objective results, each survey case should be
rated by more than one respondent.

After all survey cases are ranked by the respondents, human-
oriented effectiveness of evaluated approaches can be ana-
lyzed from both qualitative and quantitative perspective. From
qualitative perspective, an approach with aforementioned dif-
ferentiating aspect is more effective if human-assigned ranks
are changed as the degree of involved differentiating aspect
is modified. In contrast, from quantitative perspective, the
effectiveness of evaluated plagiarism detection approaches is
defined through Pearson correlation between similarity degrees
and averaged human-assigned ranks; a plagiarism detection
approach is more effective than another if its resulted similarity
degrees (measured on artificially-plagiarized codes toward
their originals) generate higher correlation toward averaged
human-assigned ranks. Considering similarity degree’s result
interpretation (where higher value is preferred) contradicts
human-assigned rank’s (where lower value is preferred), aver-
aged human-assigned ranks will be negated before correlating
to make its result interpretation proportional to similarity
degree’s.

C. Empirical Evaluation Mechanism

Empirical evaluation mechanism relies on humans’ prefer-
ences toward contradicting plagiarism pairs (i.e., pairs where
each of their members exclusively favors a plagiarism de-
tection approach), selected from existing plagiarism dataset,
to evaluate human-oriented effectiveness. This mechanism
is suitable to be used when the main goal is to observe
from result perspective (i.e., resulted similarity degree) and a

publicly-available plagiarism dataset is involved. It is inspired
from ranking concept in Information Retrieval [33] (where
relevancy is defined based on ranks) and A/B testing in Web
Analytics [34] (where human should select one between two
instances based on their qualitative perspective).

Contradicting plagiarism pairs are selected from a plagia-
rism dataset in fourfold. First, plagiarized codes are clustered
based on their original code (one cluster for each original
code). Second, per plagiarism detection approach, plagiarized
codes will be compared with their originals, resulting a set
of similarity degrees. Third, for each cluster and a plagiarism
detection approach, plagiarized codes are ranked in descending
similarity order. Fourth, contradicting plagiarism pairs are
selected for each cluster. Two plagiarized source codes (e.g.,
A and B) are considered as a contradicting plagiarism pair iff
returned value from either (1) or (2) is true. P1 returns a rank
resulted from the first plagiarism detection approach while P2
returns a rank resulted from another.

Con1(A,B) = (P1(A) > P1(B))∧ (P2(A) < P2(B)) (1)

Con2(A,B) = (P1(A) < P1(B))∧ (P2(A) > P2(B)) (2)

To provide more insight, suppose we have three plagiarized
codes (A, B, and C); their similarity degree toward original
code—measured using two detection approaches: P1 and P2—
can be seen on Table I. According to given example, P1’s and
P2’s ranking order are {A, C, B} and {C, A, B} respectively.
As a result, A and C are considered as a contradicting pair;
they satisfy (1) since P1(A) > P1(C) and P2(A) < P2(C).

TABLE I
SIMILARITY DEGREES FOR ILLUSTRATING HOW CONTRADICTING

PLAGIARISM PAIRS ARE SELECTED

Plagiarized
Code

P1’s Similarity
Degree

P2’s Similarity
Degree

A 70% 50%
B 50% 40%
C 60% 95%

Two things should be considered while selecting contradict-
ing pairs. First, plagiarized codes in each contradicting pair
should be explicitly different to each other when perceived by
human. Hence, it is preferable to select pairs that generate
high delta similarity degree between evaluated approaches.
Second, the difference between evaluated approaches should
not be coincidental on selected contradicting pairs. Hence, it is
important to assure that similarity degrees resulted from both
approaches are significantly different to each other; wherein
the significance can be measured using t-test.

For each contradicting pair, each respondent should select
one plagiarized code that seems more similar to original code;
preferred code will be assigned with the 1st rank while another
will be assigned with the 2nd rank.

The result of this evaluation can be quantitatively analyzed
by correlating averaged human-assigned ranks with resulted
similarity degrees (measured on plagiarized codes with their
originals per evaluated plagiarism detection approach) using



Pearson correlation; higher correlation refers to higher effec-
tiveness degree. Similar to aspect-oriented mechanism, aver-
aged human-assigned ranks should be negated beforehand to
make its result interpretation proportional to similarity degree’s
(where higher value is preferred). Further, the effectiveness of
evaluated plagiarism detection approaches can also be naively
measured by counting how many favoring codes are assigned
with the 1st rank for each approach.

Qualitative analysis is discouraged to be conducted. Pla-
giarized codes are not specifically designed to accentuate the
difference between evaluated plagiarism detection approaches.
It will therefore be difficult to qualitatively collect findings
regarding why a favoring code is preferred than another.

IV. CASE STUDY: COMPARING ATTRIBUTE- WITH
STRUCTURE-BASED APPROACH

As our case study, proposed evaluation mechanisms will be
applied to compare human-oriented effectiveness of Attribute-
Based Approach (ABA) and Structure-Based Approach (SBA).
These approaches are the baseline of most plagiarism detection
approaches [4], [5]. We are aware that a work proposed in
[35] also compares those categories. Yet, human perspective
is not directly linked to plagiarism detection approaches in
their evaluation.

Both ABA and SBA work by accepting two source codes to
return a similarity degree. At first, inputted source codes are
tokenized using ANTLR [36] (with an exclusion of comment
tokens). Later, resulted token sequences will be compared to
each other using specific similarity algorithm. ABA will utilize
Vector Space Model and Cosine Similarity [33] (where each
vector refers to token occurrence frequency). Whereas, SBA
will utilize Running-Karp-Rabin Greedy-String-Tiling algo-
rithm [37], with two as its minimum matching threshold and
average similarity equation [38] as its normalization technique.

Fifteen lecturer assistants are involved in this evaluation.
They are experienced in terms of checking students’ program-
ming assignments. Hence, it is expected that resulted evalua-
tion findings will be considerably objective. It is true that the
number of respondents are somewhat limited. However, since
the main goal of this case study is to prove the applicability of
proposed evaluation mechanism, we would argue such limited
number of respondents are enough.

A. Methodology

Proposed evaluation mechanisms will be merged as one in
this case study. Fig. 1 shows that such combination generates
five phases: artificial cases generation, contradicting plagiarism
pairs selection, respondent-answering, describing, and analysis
phase.

Artificial cases (for aspect-oriented evaluation mechanism)
are generated by considering token order as a differentiating
aspect; such aspect is only considered by SBA while de-
termining similarity. Four artificial cases are considered in
this study, covering various scopes of order-changed token
sequences: single-instruction, multiple-instructions, method,
and class scope. All of them are written in Java programming

Fig. 1. Combined phases from proposed evaluation mechanisms

language. A case with single-instruction scope has 4 plagia-
rized codes that are formed by swapping N instructions (where
N in these codes are 0, 1, 3, and 5 respectively). Remaining
cases contain 6 plagiarized codes each, that are formed by
changing the order of three subsequences in combinatoric
manner. Generated artificial cases are valid to be used in
our evaluation; their SBA’s and ABA’s result are statistically
different (in terms of similarity degree) when measured using
two-tailed paired t-test. It generates p=0.02, which is lower
than 0.05.

Contradicting plagiarism pairs (for empirical evaluation
mechanism) are selected from a Java-based plagiarism dataset
[30] by clustering plagiarized codes per original code and
plagiarism level [9], resulting 42 clusters (plagiarism level is
added to our consideration for providing more comprehensive
findings). Forty-five contradicting pairs are selected for our
survey; they are formed from level-2 to level-6 plagiarism
categories where each category contributes 5, 9, 11, 10,
10 contradicting pairs respectively. Those pairs lead to a
statistically significant difference between ABA and SBA
when measured using two-tailed paired t-test. It generates p-
value=1.59E-78, which is lower than 0.05. Hence, they are
valid to be used in this evaluation.

Regarding artificial cases and contradicting plagiarism pairs,
respondents will be asked to rank them in similar manner
as defined in aspect-oriented and empirical evaluation mecha-
nism. However, considering ranking 45 contradicting pairs (for
empirical evaluation mechanism) at once may generate biased
result due to human fatigue, our respondents are divided to
three groups of five where the member of each group is only
responsible to rank one-third of total pairs.

After ranking artificial cases and contradicting plagiarism
pairs, describing phase will be conducted. At this phase,
respondents will be asked to write down their manual detection
technique as detail as possible.

Survey results collected from respondent-answering and
describing phase will be further analyzed in qualitative and
quantitative manner. These analysis works exactly similar as
in our proposed evaluation mechanisms.



B. Results

According to our evaluation, token order (which is SBA’s
signature aspect) is considered by respondents when detecting
plagiarism cases. Plagiarized code without such change (i.e.,
a verbatim copy of original code) is always assigned with
the highest rank when compared to its counterpart with such
change. Further, resulted negated ranks are strongly correlated
with SBA’s similarity degrees in positive manner; their correla-
tion degree is 0.833 when measured using Pearson correlation
(where 1 represents the strongest positive correlation). Conse-
quently, it can be stated that SBA is preferred than ABA from
aspect-oriented evaluation perspective.

It is important to note that the correlation between negated
ranks and ABA’s similarity degrees is immeasurable due to
Pearson correlation’s nature. It cannot correlate two sequences
when one of them has no variability (which is ABA in our
case study, it generates resemblant similarity degrees for all
artificial cases).

When perceived from empirical evaluation, SBA is preferred
than ABA in both general and plagiarism level perspective.
Fig. 2 shows that SBA’s percentage of respondent-preferred
codes is far higher than ABA’s. Further, SBA’s similarity de-
grees are more positively correlated with negated respondent-
assigned ranks despite their low correlation. As seen in Fig.
3, on all categories, SBA generates positive correlation while
ABA generates the negative one. Low correlation between
similarity degrees and respondent-assigned ranks is natural
considering plagiarized codes are not specifically designed
to accentuate the difference between evaluated plagiarism
detection approaches.

Fig. 2. The percentage of respondent-preferred favoring codes on contra-
dicting plagiarism pairs. Each number is generated by counting how many
favoring codes are assigned with the 1st rank and then normalized based on
the number of involved plagiarism pairs.

SBA generates the strongest correlation on level-2 pla-
giarism level category (which is about identifier renaming).
Hence, it can be stated that respondents tend to detect pla-
giarism as SBA when source code structure is unchanged.
In contrast, it generates the weakest correlation on level-4
plagiarism level category. In other words, method structure
change (i.e., level-4 signature attack) makes respondents focus
less on source code structure.

Fig. 3. Pearson correlation degree between similarity degrees and negated
respondent-assigned ranks on contradicting plagiarism pairs.

Respondents’ descriptions about their manual detection
technique show that six aspects are considered while sus-
pecting plagiarism cases. Table II displays those aspects,
including their occurrences (calculated based on the number of
respondents mentioning it) and their relationship to evaluated
plagiarism detection approaches. Most of mentioned aspects
are related to SBA. Hence, it can be stated that SBA is more
effective than ABA from think-aloud evaluation perspective.

TABLE II
CONSIDERED ASPECTS WHILE SUSPECTING PLAGIARISM CASES

Aspect Occurrences Relationship to Evaluated Approaches
Statement
order 11 Related to SBA since order is a part of

source code structure.

Semantic 5 Related to SBA since semantic is pre-
served based on source code structure.

Identifier
name 3 Related to ABA since identifier name is

a source code characteristic.
Structure 2 Obviously related to SBA.

Output 1 Related to SBA since output is defined
based on source code structure.

Line of code 1 Related to ABA since line of code is a
source code characteristic.

To sum up, from human perspective, SBA is more effective
than ABA according to three rationales. First, SBA’s signature
aspect (i.e., token order) is considered by respondents when
detecting plagiarism cases. Second, SBA’s favoring cases is
preferred than ABA’s. Third, SBA is related to more human-
oriented aspects for suspecting source code plagiarism.

V. CONCLUSION AND FUTURE WORK

In this paper, three human-oriented evaluation mechanisms
in source code plagiarism detection have been proposed.
Unique to these mechanisms, they directly relate human
perspective with evaluated plagiarism detection approaches.
These mechanisms have been tested on a case study toward
attribute- and structure-based plagiarism detection approach.
According to such test, structure-based approach is more
effective; its signature aspect and similarity degree is more
related to respondents’ preferences. Further, it is related to



most aspects that are mentioned by respondents for suspecting
plagiarism cases.

For future works, we plan to evaluate human-oriented effec-
tiveness of frequently-used features on source code plagiarism
detection (such as method linearization [24], [25]) using
aspect-oriented evaluation mechanism. Further, we also plan to
systematize how human suspects source code plagiarism (with
and without machine learning algorithm). The results of such
work (e.g., features with high human-oriented effectiveness
degree and systematic steps to suspect plagiarism) will be used
to develop source code plagiarism detection approach that is
more aligned to human perspective.

REFERENCES

[1] G. Cosma and M. Joy, “Towards a Definition of Source-Code Plagia-
rism,” IEEE Transactions on Education, vol. 51, no. 2, pp. 195–200,
may 2008.

[2] T. Lancaster and F. Culwin, “A Comparison of Source Code Plagiarism
Detection Engines,” Computer Science Education, vol. 14, no. 2, pp.
101–112, jun 2004.

[3] L. Prechelt, G. Malpohl, and M. Philippsen, “Finding Plagiarisms among
a Set of Programs with JPlag,” Journal of Universal Computer Science,
vol. 8, no. 11, pp. 1016–1038, 2002.

[4] Z. A. Al-Khanjari, J. A. Fiaidhi, R. A. Al-Hinai, and N. S. Kutti,
“PlagDetect: a Java programming plagiarism detection tool,” ACM
Inroads, vol. 1, no. 4, p. 66, dec 2010.

[5] O. Karnalim, “A Low-Level Structure-based Approach for Detecting
Source Code Plagiarism,” IAENG International Journal of Computer
Science, vol. 44, no. 4, 2017.

[6] S. Engels, V. Lakshmanan, M. Craig, S. Engels, V. Lakshmanan, and
M. Craig, “Plagiarism detection using feature-based neural networks,”
ACM SIGCSE Bulletin, vol. 39, no. 1, p. 34, mar 2007.

[7] M. El Bachir Menai and N. S. Al-Hassoun, “Similarity detection in
Java programming assignments,” in 2010 5th International Conference
on Computer Science & Education. IEEE, aug 2010, pp. 356–361.

[8] K. J. Ottenstein and K. J., “An algorithmic approach to the detection
and prevention of plagiarism,” ACM SIGCSE Bulletin, vol. 8, no. 4, pp.
30–41, dec 1976.

[9] S. K. Faidhi, J. A. W; Robinson, “An empirical approach for detecting
program similarity and plagiarism within a university programming
environment,” Computers & Education, vol. 11, no. 1, pp. 11–19, jan
1987.

[10] G. Acampora and G. Cosma, “A Fuzzy-based approach to programming
language independent source-code plagiarism detection,” in 2015 IEEE
International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, aug
2015, pp. 1–8.

[11] U. Inoue and S. Wada, “Detecting plagiarisms in elementary program-
ming courses,” in 2012 9th International Conference on Fuzzy Systems
and Knowledge Discovery. IEEE, may 2012, pp. 2308–2312.

[12] T. Ohmann and I. Rahal, “Efficient clustering-based source code plagia-
rism detection using PIY,” Knowledge and Information Systems, vol. 43,
no. 2, pp. 445–472, may 2015.

[13] M. Mozgovoy, K. Fredriksson, D. White, M. Joy, and E. Sutinen, “Fast
Plagiarism Detection System,” in International Symposium on String
Processing and Information Retrieval. Springer, Berlin, Heidelberg,
2005, pp. 267–270.

[14] L. Moussiades and A. Vakali, “PDetect: A Clustering Approach for
Detecting Plagiarism in Source Code Datasets,” The Computer Journal,
vol. 48, no. 6, pp. 651–661, nov 2005.

[15] S. Burrows, S. M. M. Tahaghoghi, and J. Zobel, “Efficient plagiarism
detection for large code repositories,” Software: Practice and Experi-
ence, vol. 37, no. 2, pp. 151–175, feb 2007.

[16] J. Y. Poon, K. Sugiyama, Y. F. Tan, and M.-Y. Kan, “Instructor-centric
source code plagiarism detection and plagiarism corpus,” in Proceedings
of the 17th ACM annual conference on Innovation and technology in
computer science education - ITiCSE ’12. New York, New York, USA:
ACM Press, 2012, p. 122.

[17] Z. Duric and D. Gasevic, “A Source Code Similarity System for
Plagiarism Detection,” The Computer Journal, vol. 56, no. 1, pp. 70–86,
jan 2013.

[18] A. M. Bejarano, L. E. Garcı́a, and E. E. Zurek, “Detection of source
code similitude in academic environments,” Computer Applications in
Engineering Education, vol. 23, no. 1, pp. 13–22, jan 2015.

[19] C. Kustanto and I. Liem, “Automatic Source Code Plagiarism Detec-
tion,” in 2009 10th ACIS International Conference on Software En-
gineering, Artificial Intelligences, Networking and Parallel/Distributed
Computing. IEEE, 2009, pp. 481–486.

[20] E. Flores, A. Barrón-Cedeño, L. Moreno, and P. Rosso, “Cross-Language
Source Code Re-Use Detection Using Latent Semantic Analysis.” Jour-
nal of Universal Computer Science, vol. 21, no. 13, pp. 1708–1725,
2015.

[21] G. Cosma and M. Joy, “An Approach to Source-Code Plagiarism
Detection and Investigation Using Latent Semantic Analysis,” IEEE
Transactions on Computers, vol. 61, no. 3, pp. 379–394, mar 2012.

[22] O. Karnalim, “Detecting source code plagiarism on introductory pro-
gramming course assignments using a bytecode approach,” in The 10th
International Conference on Information & Communication Technology
and Systems (ICTS). Surabaya: IEEE, 2016, pp. 63–68.

[23] F. S. Rabbani and O. Karnalim, “Detecting Source Code Plagiarism
on .NET Programming Languages using Low-level Representation and
Adaptive Local Alignment,” Journal of Information and Organizational
Sciences, vol. 41, no. 1, pp. 105–123, jun 2017.

[24] O. Karnalim, “An Abstract Method Linearization for Detecting Source
Code Plagiarism in Object-Oriented Environment,” in The 8th Inter-
national Conference on Software Engineering and Service Science
(ICSESS). Beijing: IEEE, 2017.

[25] O. Karnalim, “IR-based technique for linearizing abstract method invo-
cation in plagiarism-suspected source code pair,” Journal of King Saud
University - Computer and Information Sciences, feb 2018.

[26] C. Liu, C. Chen, J. Han, and P. S. Yu, “GPLAG: detection of software
plagiarism by program dependence graph analysis,” in Proceedings
of the 12th ACM SIGKDD international conference on Knowledge
discovery and data mining - KDD ’06. New York, New York, USA:
ACM Press, 2006, p. 872.

[27] D. Fu, Y. Xu, H. Yu, and B. Yang, “WASTK: A Weighted Abstract
Syntax Tree Kernel Method for Source Code Plagiarism Detection,”
Scientific Programming, vol. 2017, pp. 1–8, feb 2017.

[28] D. Ganguly, G. J. F. Jones, A. Ramı́rez-de-la Cruz, G. Ramı́rez-de-la
Rosa, and E. Villatoro-Tello, “Retrieving and classifying instances of
source code plagiarism,” Information Retrieval Journal, pp. 1–23, sep
2017.

[29] P. Vamplew and J. Dermoudy, “An anti-plagiarism editor for software
development courses,” in Proceedings of the 7th Australasian conference
on Computing education. ACM, 2010, pp. 83–90.

[30] O. Karnalim and S. Budi, “The Effectiveness of Low-Level Structure-
based Approach Toward Source Code Plagiarism Level Taxonomy,” in
The 6th International Conference on Information and Communication
Technology (ICoICT). Bandung: IEEE, 2018.

[31] S. J. Russell, P. Norvig, J. F. Canny, J. M. Malik, and D. D. Edwards,
Artificial intelligence: a modern approach. Prentice hall, 2003, vol. 2,
no. 9.

[32] J. Singer, S. E. Sim, and T. C. Lethbridge, “Software Engineering Data
Collection for Field Studies,” in Guide to Advanced Empirical Software
Engineering. London: Springer London, 2008, pp. 9–34.

[33] W. B. Croft, D. Metzler, and T. Strohman, Search engines : information
retrieval in practice. Addison-Wesley, 2010.

[34] R. Kohavi and R. Longbotham, “Online Controlled Experiments and
A/B Testing,” in Encyclopedia of Machine Learning and Data Mining.
Boston, MA: Springer US, 2017, pp. 922–929.

[35] K. L. Verco and M. J. Wise, “Software for detecting suspected plagia-
rism,” in Proceedings of the first Australasian conference on Computer
science education - ACSE ’96. New York, New York, USA: ACM
Press, 1996, pp. 81–88.

[36] T. Parr, The definitive ANTLR 4 reference. Pragmatic Bookshelf, 2013.
[37] M. J. Wise, “Neweyes: A System for Comparing Biological Sequences

Using the Running Karp-Rabin Greedy String-Tiling Algorithm,” in
International Conference on Intelligent Systems for Molecular Biology.
AAAI, 1995.

[38] M. J. Wise, “Detection of Similarities in Student Programs: YAP’ing
May be Preferable to Plague’ing,” in Proceedings of the twenty-third
SIGCSE technical symposium on Computer science education - SIGCSE
’92, vol. 24, no. 1. New York, New York, USA: ACM Press, 1992,
pp. 268–271.


	I INTRODUCTION
	II RELATED WORKS
	III HUMAN-ORIENTED EVALUATION MECHANISMS
	III-A Think-Aloud Evaluation Mechanism
	III-B Aspect-Oriented Evaluation Mechanism
	III-C Empirical Evaluation Mechanism

	IV CASE STUDY: COMPARING ATTRIBUTE- WITH STRUCTURE-BASED APPROACH
	IV-A Methodology
	IV-B Results

	V CONCLUSION AND FUTURE WORK
	References

