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Abstract

Facial occlusions pose significant problems for auto-
matic face recognition systems. In this work, we propose
a novel occlusion-resistant three-dimensional (3D) facial
identification system. We show that, under extreme oc-
clusions due to hair, hands, and eyeglasses, typical 3D
face recognition systems exhibit poor performance. In or-
der to deal with occlusions, our proposed system employs
occlusion-resistant registration, occlusion detection, and
regional classifiers. A two-step registration module first
detects the nose region on the curvedness-weighted convex
shape index map, and then performs fine alignment using
nose-based Iterative Closest Point (ICP) algorithm. Oc-
cluded areas are determined automatically via a generic
face model. After non-facial parts introduced by occlu-
sions are removed, a variant of Gappy Principal Compo-
nent Analysis (Gappy PCA) is used to restore the full face
from occlusion-free facial surfaces. Experimental results
obtained on realistically occluded facial images from the
Bosphorus 3D face database shows that, with the use of
score-level fusion of regional Linear Discriminant Analy-
sis (LDA) classifiers, the proposed method improves rank-
1 identification accuracy significantly: from 76.12% to
94.23%.

1. Introduction
As a biometric modality, face is preferred due to its con-

tactless acquisition technology and its potential for non-
cooperative scenarios. Recently, it has been shown that the
face biometric can attain high performance under specific
conditions, reaching the high level of security achieved by
fingerprint or iris modalities [17]. However, face recogni-
tion remains a challenging task when adverse scenarios are
considered such as the situations where illumination varia-
tions, pose changes, facial expressions, or occlusions cover-
ing the facial surface are present. In the three-dimensional

(3D) domain, some of these challenges can be handled
more effectively than in 2D: illumination differences can
be avoided, small pose changes can be corrected. However,
handling of extreme occlusions remains a challenging task,
since occluding objects change the 3D surface information
substantially.

Previous work on designing occlusion-resistant recogni-
tion systems usually involves 2D appearance-based tech-
niques. In some of these 2D face recognition studies, the fa-
cial surface is divided into local regions, which are indepen-
dently compared and the local classifiers are fused by basic
voting [10], or by a probabilistic approach [14]. In [21], fa-
cial parts that are likely to have occlusions are eliminated.
In [15], occlusions caused by eyeglasses are considered and
a technique to compensate for the missing data is proposed.
For the 3D modality, Colombo et al. proposed several ap-
proaches to detect the occluded regions [6], [7]. After the
occlusions are detected, Gappy Principal Component Anal-
ysis (Gappy PCA) [8] is utilized to reconstruct the facial
image. Reconstructed faces are then identified by a holis-
tic approach. In [1], Alyuz et al. divide the facial surface
into local parts and fuse the regional classifiers to cope with
surface variations caused by expressions and occlusions. In
that work, occlusions are not automatically detected and oc-
clusion robustness is handled at the classifier fusion phase.
An attempt to detect and restore occlusions in registered 3D
facial surfaces has been made in [2]. However, registration
of occluded surfaces remains an unsolved problem.

In this work, we aim to tackle the occlusion handling
problem by i) designing an occlusion invariant 3D facial
registration method, ii) detecting the occluded areas to ob-
tain occlusion-free surfaces, iii) restoring or ignoring the
missing parts, and iv) using multiple regional classifiers.
For occlusion detection, accurate facial surface registration
is a crucial step. In this work, we handle registration by
a nose-based approach which assumes partial visibility of
the nose. After automatically locating the nose area, a local
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rigid surface fitting with the Iterative Closest Point (ICP)
method is carried out to globally align the. Estimation of
alignment parameters using local ICP-based method makes
the overall registration scheme occlusion insensitive. Once
faces are transformed into a canonical coordinate system
and aligned, non-facial surface regions caused by an occlud-
ing object are determined at the occlusion detection phase.
At this phase, a generic face model is used to locate surface
parts that belong to the occluding object. By the removal of
these outlier regions, we can obtain an occlusion-free1 face
where occluded parts are removed from the original surface
data. Occlusion-free faces contain actual facial surface data
with missing regions. Therefore, it is possible to use them
for identification purposes in two ways: 1) by restoring the
missing regions as accurate as possible and 2) by ignoring
the reconstruction process to use occlusion-free faces di-
rectly in classification. In our work, we studied both ap-
proaches. For restoration-based approach, we use face spe-
cific modeling via Gappy PCA that allows reconstruction
of faces with missing parts. For the latter approach, using
occlusion-free faces directly without restoration, we com-
pute dissimilarity scores on mutually available depth image
regions of gallery and probe faces. Lastly, we investigate
the benefits of component-based representation schemes
with respect to holistic approaches. We show that local
component-based representations of restored faces which
enable the use of statistical feature extraction schemes such
as Linear Discriminant Analysis (LDA), can outperform
holistic approaches. In our work, we used the Bospho-
rus 3D face database which is the largest publicly available
database that contains realistic 3D facial occlusions. In the
Bosphorus database, from each of the 105 subjects, several
types of occluded scans were collected systematically.

2. Proposed System
Our occlusion robust 3D face recognition method con-

sists of five main stages: (1) nose localization based on
curvature maps, in order to provide an initialization for
fine registration; (2) nose-based fine registration via ICP, to
transform 3D faces into a common coordinate system; (3)
occlusion detection and removal, where the extraneous ob-
jects are found automatically and discarded; (4) restoration,
to fill in the parts that are labeled as occluded in the pre-
vious phase; and (5) classification, where local classifiers
are combined to improve the performance of the recognizer.
The overall diagram of the system is given in Figure 1.

3. Nose-based Registration
Before any comparison between two faces can be made,

the facial surfaces should be brought into a common coor-
dinate system. In 3D registration, the surfaces are aligned

1In our work, we refer to occlusion-free faces as faces where extraneous
occluding object’s surface is removed from scanned 3D facial data.

and a correspondence between the two sets of surface points
is obtained. However, in the presence of facial occlusions,
the geometry of the occluded face is altered by the exte-
rior object, complicating the registration process. In this
work, we propose an occlusion-robust 3D registration ap-
proach based on the assumption that the nose area will be
mostly visible. First, the nose area is automatically detected
for coarse alignment. Fine tuning of the initial alignment is
handled by nose-based ICP registration. The ICP variant
used in this work registers nasal facial area of the test face
to a generic nose model, referred to as the Average Region
Model (AvRM). The nose AvRM is utilized in both stages
of the registration: (1) in nose detection, serving as a tem-
plate; (2) in fine registration, defining the reference.

3.1. Nose Detection for Initial Registration

ICP algorithm [3] is widely used in geometric alignment
of rigid 3D surfaces. However, the performance of itera-
tive approaches like ICP rely heavily on the initial condi-
tions. Hence, it is necessary to provide an initial registra-
tion, which will be improved iteratively. Most of the 3D
face recognition systems are dependent on localization of
facial landmarks [13], [4], [5]. Unfortunately, the presence
of occluding objects over the facial surface complicate the
task of locating such distinctive features, especially around
nose borders and inner eye cavities. Therefore, in this work,
we preferred to estimate the location of the whole nose area
instead of localizing individual landmark points.

Our nose detection algorithm utilizes surface curvature
information, which is advantageous due to its invariance
to rotation and translation. We compute two curvature
maps for a surface: (1) the shape index map; (2) the
curvedness map. Introduced by [11], these two local shape
measures can be defined as polar coordinate transforma-
tion of maximum (κmax) and minimum (κmin) curvatures.
This transformation provides the separation of compo-
nents that are scale-independent and scale-dependent [22].
Scale-independent components such as shape index provide
the distinction between spherical and cylindrical surfaces,
whereas scale-dependent components such as curvedness
give the magnitude of curvature. Given κmax and κmin,
shape index value SI(p) at surface point p can be computed
as follows:

SI(p) =
1

2
− 1

π
tan−1κmax(p) + κmin(p)

κmax(p)− κmin(p)
(1)

The shape index map SI takes values in [0, 1] and provides
a gradual transition between concave (0 < SI < 0.5) and
convex (0.5 < SI < 1) shapes. The scale-dependent coun-
terpart of shape index is the curvedness value. This mea-
sures the rate of the curvature at each point, giving the de-
gree of how curved the surface is. Curvedness value C(p)



Figure 1. Overall diagram of the proposed method.

at point p is defined as

C(p) =

√
κ1(p)2 + κ2(p)2

2
. (2)

A planar surface will have a curvedness value of zero,
whereas a non-planar surface will have a curvedness value
proportional to its rate of curvature. Our nose detector first
constructs shape index and curvedness maps. Since nose is
a convex structure, thresholding is applied over the SI map
(where th=0.5), eliminating concave regions. The convex
SI map, referred to as SIcx, is defined as

SIcx(p) =

{
0 if SI(p) < 0.5

SI(p) otherwise.
(3)

After the construction of SIcx, it is weighted with curved-
ness [12] to integrate scale-dependent components with
scale-independent curvature information:

WSI(p) = SIcx(p) ∗ C(p) (4)

Here,WSI is the curvedness-weighted convex shape index.
Shape index, convex shape index, curvedness, and weighted
convex shape index maps are illustrated in Figure 2 for an
example face image.

(a) (b) (c) (d) (e)

Figure 2. Curvature maps utilized for nose detection are illustrated
on an example image: (a) depth image, (b) shape index, (c) convex
shape index, (d) curvedness, and (e) weighted convex shape index.

As the example in Figure 2 illustrates, the nose region
appears as a distinguishable fork-shaped structure in the
WSI map. We propose to localize the nose area via tem-
plate matching, and for this purpose we construct a nose
template. We first construct an average face model using a
set of registered neutral and non-occluded training images
using Thin Plate Spline warping algorithm [18]. Then, we
manually crop the average face model to obtain the average

nose region model. On this regional model, we construct the
convex shape index and curvedness maps, and finally obtain
the WSI map. The final regional WSI map constitutes
the nose template. Given a test image, normalized cross-
correlation based template matching is then performed to
locate the most similar nose-like region.

3.2. ICP-based Fine Registration

The localization of the nose area provides a starting point
for the fine registration process. Assuming that the facial
surfaces are nearly frontal, faces can be coarsely aligned by
translating the center of the detected nose region to the cen-
ter of the reference nose template. This translation provides
a sufficient initialization, whereas small pose deflections
will be compensated in ICP-based fine registration. The aim
of the fine registration step, is to find a rigid transformation
that aligns the probe face, P = {p1, . . . ,pf} to the nose
AvRM, N = {n1, . . . ,nm} where n and p are 3D points
for the probe and nose AvRM surfaces, respectively. The
transformation T can be defined by three rotations around
x, y, z axes, Rx,Ry,Rz respectively, and a translation t:

T(pi) = RxRyRzpi + t, i = 1, . . . , f. (5)

The error of transformation can then be computed as:

m∑
j=1

||T(pi)− nj || (6)

where nj is model point corresponding to the surface point
pi. The registration can be optimized by finding the trans-
formation that minimizes the total error:

T̂ = argmin
T

m∑
j=1

||T(pi)− nj || (7)

In this work, ICP method is utilized to solve the system of
linear equations. After the convergence of the ICP, the final
transformation is applied to the whole probe face, bringing
it in alignment with the average face model.

4. Occlusion Detection
After the facial surfaces have been registered, it is im-

portant to locate facial areas occluded by exterior objects.



In this work, we have implemented a generic face model-
based occlusion detection method. In this approach, occlu-
sion detection is handled by thresholding the difference map
obtained by computing the absolute difference between an
average face model and the input face. Afterwards, a binary
mask is obtained by thresholding the difference map. The
binary occlusion mask is then post-processed by morpho-
logical dilation and connected component analysis opera-
tions.

5. Restoration with Gappy PCA
Gappy PCA [8] was proposed as a Principal Component

Analysis (PCA) variant to handle data with missing compo-
nents. With Gappy PCA, it is possible to reconstruct orig-
inal signal up to a certain degree when the signal contains
missing values. In order to estimate the unknown facial data
by the Gappy PCA method, locations of the missing compo-
nents are required. Prior to estimation, Gappy PCA method
constructs a general model of facial data using a training
set of non-occluded images. The basis vectors are deter-
mined using a training set of N non-occluded face images,
{x1, . . . ,xN} ⊂ Rn. A face image x can be estimated
using a subset (M < N ) of these basis vectors:

x = µ+

M∑
i=1

αivi (8)

where the vector µ defines the mean, and vi is an eigen-
vector whose coefficient is αi. The eigenvector coefficients
are obtained by the inner product of the input vector and the
corresponding eigenvector. Suppose there is an incomplete
version of x, namely y, whose missing components are en-
coded in the occlusion mask. In Gappy PCA, the aim is to
find a similar expression that approximates the incomplete
data as in (8):

y ' ỹ = µ+

M∑
i=1

βivi (9)

However the βi coefficients cannot be computed by the sim-
ple inner product method. Instead, the coefficients mini-
mizing the squared reconstruction error should be sought.
A basic definition of the squared reconstruction error would
be given as E = ||y − ỹ||2.

To improve the error term, only the available informa-
tion should be involved in the calculations. To discard the
missing components, the gappy norm must be used, where
the information about the missing components is encoded
in the mask m. The gappy norm for a vector u with the
mask m can be defined as ||u|| =

√
(u,u)m where

(u,u)m =

n∑
i=1

uiuimi. (10)

Using the gappy norm, the reconstruction error term can be
redefined as: Em = ||y − ỹ||2m. If we rewrite the error
term by opening the squared terms and differentiating with
respect to each βi coefficient, we obtain a linear system of
M equations:

∂E

∂βi
= −zi +

M∑
j=1

βjAij = 0. (11)

where zi = (y,vi)m and Aij = (vi,vj)m. The linear
system can be rewritten as Aβ = z and the coefficients can
be computed as follows: β = A−1z.

After the coefficients are computed, the incomplete im-
age can be reconstructed by Equation 9. As opposed to the
previous works that employ the Gappy PCA method for re-
construction [6], [7], we propose to use the reconstructed
data only for the missing components and the original data
for the non-occluded facial regions. We refer to this method
as partial Gappy PCA (pGPCA).

6. Regional Classification
In the classification stage, we propose to consider the

3D surface as a combination of several local regions. If the
facial area is partially occluded by external objects, infor-
mation regarding the covered regions will not be available.
Therefore it will be beneficial to incorporate separate local
classifiers and then to fuse the regional results. In this work,
we utilized the regional division scheme used in [20] and
constructed a total of 30 overlapping regions as visualized
in Figure 3.

Figure 3. 30 regions used in regional classification system (in red).

For classification, we have applied Linear Discriminant
Analysis (LDA) method to point set features independently
for each region. The model based registration enables the
use of LDA, since 3D faces are represented by ordered vec-
tors of same the length after the alignment process. Since
the facial surfaces are considered as a combination of sev-
eral regions, separate LDA spaces are trained for each facial
region. The LDA transformation matrix is computed on



a separate face database in order to carry out independent
evaluation of our face recognition system. The dissimilarity
between corresponding regions of two facial surfaces can
be measured by the angular cosine distance. The regional
classifiers are then fused at the score-level by the product
rule.

7. Experimental Results

7.1. Face Database

For the recognition experiments, we have used the
Bosphorus 3D Face Database [19], which includes expres-
sion, pose, and occlusion variations. The database is ac-
quired from a total of 105 subjects, 61 males and 44 fe-
males. The set consists of a total of 4666 scans, where each
subject has approximately 34 expression, 13 pose, and 4 oc-
clusion variations. Since we address the occlusion problem
in this work, images containing expression and pose vari-
ations are discarded. Neutral images are used to construct
the gallery set, which includes 1-4 scans per subject and has
a total of 299 scans. The acquisitions that contain occlusion
variations form the probe set, which consists of 381 images
of four different types of occlusions. In Figure 4, the four
types of occlusions are shown: (1) occlusion of the eye area
by eyeglasses, (2) occlusion of the eye area by a hand, (3)
occlusion of the mouth area by a hand, (4) occlusion caused
by hair. For the classification scenario, we have constructed
an experimental setup where all neutral images constitute
the gallery set, whereas the occlusion scans form the probe
set. The gallery and probe sets contain a total of 299 and
381 scans, respectively.

Figure 4. Four occlusion types in the Bosphorus database.

For the construction of the average face & nose mod-
els and for the training of the LDA method, we have uti-
lized a separate dataset: The Face Recognition Grand Chal-
lenge version 2 (FRGCv2) [16]. FRGCv2 database con-
sists of 4007 scans collected from 466 subjects. The scans
are mostly frontal and contain facial expression variations.
However, since the aim of this work is occlusion handling,
we have utilized neutral subset of the FRGCv2 database.
This subset consists of 2365 neutrals scans of 466 subjects.

7.2. Nose Detection Performance

We have located nose regions automatically in the
gallery and probe set images of the Bosphorus 3D face
database. By visual inspection of the detected regions, we
see that all nose regions in the gallery images (without any
occlusions) are successfully found. In the probe set that
contains occlusions, six images out of 381 scans produced
erroneous detections. In Figure 5, detection examples are il-
lustrated on WSI maps: In the first row, some examples of
challenging occluded scans are given where the nose region
is accurately detected. As can be seen from these difficult
examples, even though occluding objects such as hands and
hair cover the borders of nose structure, it can still be local-
ized sufficiently well. In the second row, all the erroneous
detections are shown. As the erroneous examples show, the
nose detection fails when the fork-shaped structure is not
completely visible or the whole nose is covered by the oc-
cluding objects. We have also applied the nose detection
algorithm to the FRGCv2 neutral subset which is required
to train LDA classifiers. In the FRGCv2 database, only 2
out of 2365 scans have problematic detections, as illustrated
in the last row of Figure 5. It can be seen that these errors
are due to scale variations and acquisition errors, causing
problematic detection of the nose area. Nevertheless, these
problematic detections are not severe and can be corrected
by the ICP method in the fine registration phase.

Figure 5. Nose detection results. (1) First row, correct detections
on the Bosphorus database; (2) second row, erroneous detections
on the Bosphorus database; and (3) third row, problematic detec-
tions on the FRGCv2.

7.3. Registration Performance

The second step of our registration approach is to per-
form ICP-based fine registration after coarse nose localiza-
tion. To evaluate the performance of our automatic regis-
tration system, we have also constructed manual registra-
tion experiments where ground truth landmark locations are
used for ICP initialization. In manual registration experi-



ments, initial alignment is handled by the Procrustes Anal-
ysis [9] of five manually labeled landmark points around the
nose area. The utilized landmark points are the nose tip, in-
ner eye corners, and nose corners. However, some of these
landmark points are not present in the ground truth set due
to occlusions. In order to deal with the missing landmark
problem, we employ pGPCA to estimate the unknown land-
mark positions, where pGPCA model of landmark coordi-
nates is estimated from manual landmark positions of the
FRGCv2 neutral subset. Using this approach, we are able
to estimate the locations of one or two missing landmark
points from known landmark coordinates.

In Figure 6, the first image illustrates the average face
model together with the five landmark points. The last four
images visualize the results of missing landmark estima-
tion: the ground truth landmarks are visualized with green
labels, whereas the estimated ones are shown in red.

Figure 6. Manual landmark points: First image shows the average
face model with five landmark points. The last four images are
landmark estimation examples (ground truth and estimated points
are shown with green and red labels, respectively).

For the performance evaluation of the proposed pGPCA-
based landmark estimator, we have constructed landmark
estimation experiments on the Bosphorus gallery set, which
consists of 299 neutral scans with complete manual land-
marks2. The gallery set is divided into two random groups,
where 250 scans constitute the training set to train the PCA
space and the remaining 49 scans form the test set. For each
scan of the test set, we randomly selected a maximum num-
ber of two landmark points as missing and estimated them
using pGPCA. Then, the Euclidean error between the esti-
mated and the original landmarks are computed in 3D. For
performance evaluation, four experimental setups are con-
sidered: Either one or two landmarks can be missing, and
the nose tip point can appear in the missing set or not. Each
of the four experiments are performed in 10 folds, where for
each fold, the gallery is separated into training and test sets
randomly. In Table 1, the mean Euclidean error values are
provided. The ratio of the mean Euclidean distance to the
average interocular distance (71.88mm) is also provided in
the last column. As these results indicate, the missing land-
marks can be estimated with sufficient accuracy. If the nose
tip is visible, missing landmarks are estimated more accu-

2It should be noted that we use Bosphorus database here only for per-
formance evaluation. In our actual system where we perform recognition
experiments, FRGCv2 database is used to learn pGPCA model for land-
mark estimation

rately. Furthermore, the estimation performance is higher if
fewer landmarks are missing.

Table 1. pGPCA-based landmark estimation performance
Missing Landmark Nose Tip Average Euclidean Error

Count Missing or Not Error (mm) Ratio
1 Visible 5.56 7.73%
1 Missing 6.48 9.01%
2 Visible 6.85 9.52%
2 Missing 7.24 10.07%

To evaluate the performance of nose-based registration,
we have constructed two experiments: (1) ICP-based reg-
istration with nose AvRM, (2) ICP-based registration with
an average face model. In both of these experiments, man-
ual landmark points are employed during the initial regis-
tration. The first experiment is constructed to evaluate the
performance of the automatic nose detection. The second
experiment provides a comparison between the use of a
nose model in fine tuning, as opposed to using the whole
facial surface. The experimental results for (1) automatic
nose AvRM-based ICP, (2) manual nose AvRM-based ICP,
and (3) manual average face model-based ICP are given
in Table 2. In the classification phase, global depth-based
1−nearest neighbor classifiers are employed. The average
absolute distance (l1-norm) between z coordinates is used
as the dissimilarity measure in classification. In these ex-
periments, identification is performed on occluded facial
surfaces without any restoration or elimination.

Table 2. Comparison of identification results obtained for (1) auto-
matic nose AvRM-based ICP, (2) manual nose AvRM-based ICP,
and (3) manual average face model-based ICP.

Initialization ICP Model Recognition Rate (%)
Automatic Nose 76.12
Manual Nose 76.90
Manual Whole Face 56.17

Comparing global versus nose-based registration, we see
that nose-based ICP registration is superior to using the
whole facial surface under occlusions: recognition rate im-
proves from 56.12% to 76.90% with manual ICP initializa-
tion. This result validates the benefit of using nose region
during the registration of occluded facial images. The sec-
ond observation is related to the use of manual and auto-
matic landmarking on the identification performance: We
see that the performance decrease is quite small if land-
marks are found automatically. With automatic landmark-
ing, identification accuracy drops from 76.90% to 76.12%.

7.4. Impact of Occlusion Detection on Recognition

For the occlusion detection phase, we have utilized
thresholding over the difference map between the original
probe image and the mean face template. For compari-
son, we have manually labeled ground truth masks for the



occluded areas. Identification results using depth image-
based classifiers are given in Table 3, where the automat-
ically detected and manually labeled occlusion masks are
used to discard the regions respectively. Recognition per-
formance of the original occluded faces using the global
depth image-based classifier is also given for comparative
purposes. Recognition rates are reported both for manual
and automatic nose-based registration approaches.

As expected, occlusion-free faces where extraneous re-
gions are manually removed (Table 3, Manual Masking) re-
sult in higher identification accuracy: rank-1 identification
accuracy for depth-image based classifier with manually
initialized registration improves from 76.90% to 83.73%.
Similar improvement is also present for fully automatic reg-
istration. If we look at the identification accuracies obtained
by automatic occlusion detection method (Table 3, Manual
Masking), we see that they are very similar to the ones pro-
duced by manually labeled occlusion regions. For instance,
with automatically registered facial surfaces, identification
accuracy drops from 83.99% to 83.73% if occlusions are
detected automatically. This finding reveals that our auto-
matic occlusion detection method performs efficiently.

Table 3. Comparison of identification results (%) obtained by uti-
lizing occlusion masks to discard occluded regions.

Manual Automatic
Registration Registration

Occluded Face (No Masking) 76.90 76.12
Manual Masking (Ground Truth) 83.73 83.99
Automatic Masking 83.46 83.73

7.5. Impact of Restoration on Recognition

Here we provide the results of identification experiments
where missing regions of the occlusion-free faces are re-
stored using the pGPCA approach. For comparative pur-
poses, we also provide the recognition performances of
occlusion-free faces. In these experiments, the manually
labeled occlusion masks are employed during the restora-
tion process. In Table 4, identification results are given,
where the surfaces are compared using the both global and
local depth image-based classifiers. There are, in total, 30
local depth image-based classifiers, corresponding the re-
gions shown in Figure 3. Their outputs are fused by the
product rule.

If we look at the global classifier results in Table 4, we
see that restoring missing regions actually decreases the
identification rates for depth image-based classifiers. Sim-
ilarly, although local classifiers are in general better than
the global classifier, they achieve same identification ac-
curacies for occlusion-free and restored faces. This means
that occlusion-free faces contain more discriminatory infor-
mation than faces with restored regions. In other words,
restoration of missing regions might not always lead to an
increase in person-specific surface characteristics. These

results indicate that occlusion removal without restoration
could also be a viable alternative for depth-based classi-
fiers. However it should be emphasized that the more com-
plex statistical classifiers such as LDA rely on restoration of
occluded parts since they assume complete feature vectors.
Identification results obtained by local LDA classifiers are
given in the next section (Section 7.6).

Table 4. Identification accuracies with or without restoration for
global and local depth image-based classifiers.

Global Local
Classifier Classifier Fusion

Occlusion-free faces (no restoration) 83.99 85.04
With Restoration 81.63 85.04

7.6. Overall Face Recognition Performance:
Fusion of Regional LDA Classifiers

Up to now, we have studied the effects of different reg-
istration, occlusion detection and restoration methods using
depth image-based classifiers. In this section, we provide
the comparative analysis of depth image-based classifiers
and statistical classifiers that are based on LDA. To train the
LDA based classifiers, a separate data set (FRGC v2 neutral
subset) was used in order to get unbiased results. LDA pro-
jections are obtained on the restored surfaces. In Table 5,
fusion results of both depth image-based and LDA classi-
fiers are given where 30 local classifiers are fused by the
product rule. For both of these classification methods, we
provide identification results where the restoration is carried
out using i) manually and ii) automatically found occlusion
regions.
Table 5. Fusion performances (%) of depth image-based and LDA-
based classifiers.

Occlusion Masks
Classifier Ground Truth Automatic
Depth Image-based 85.04 83.20
LDA-based 95.01 94.23

As the results presented in Table 5 show, using LDA-
based classifiers improves the identification performance
significantly. When ground truth masks are used to ob-
tain the restored faces, this increase is from 85.04% to
95.01%. Similarly, with automatically detected occluded
regions, performance boost is substantial: Our proposed
scheme with automatic registration, occlusion detection
and restoration modules, and fusion of LDA-based local
classifiers achieves 94.23% rank-1 identification accuracy.
Face recognition experiments were held on a 64-bit Core
i7 2.67GHz PC with 12GB RAM. The timing details for
processing a single test face using unoptimized MATLAB
codes are as follows: Detecting nose takes approximately
10 seconds, whereas registration to the nose model takes
about 8 seconds. Rest of the methods (occlusion detection,



restoration and classification) are quite fast i.e., on the order
of milliseconds.

8. Conclusion
In this work, we have proposed a 3D face recognition

system which is robust to occlusions. For each aspect of the
proposed system, namely occlusion resistant registration,
occluded area detection, restoration of original facial struc-
tures and the use of statistical regional classifiers, we pre-
sented a detailed comparative analysis and measured their
influence on the final recognition performance. To be able
to reach valid conclusions that reflect real-world behavior
of a 3D face recognizer, we have experimented on a 3D
face database that contains realistic facial occlusions. We
have shown that, with extreme occlusions covering signifi-
cant amount of a facial surface, a specialized facial registra-
tion scheme should be employed. A popular 3D facial reg-
istration method, holistic ICP method, has limitations and
can not handle erroneous regions during alignment. There-
fore, we proposed to use regional nose-based alignment
that is robust to outlier regions and achieve similar regis-
tration performance when compared to manual registration.
We have also studied two possible scenarios after detecting
the occlusions: 1) discarding extraneous regions to obtain
occlusion-free faces and use them directly in classification,
or 2) perform restoration on occlusion-free faces to estimate
original facial structure. Our experiments reveal that classi-
fiers that can operate on incomplete/missing facial features
(i.e., depth image-based classifiers) attain better identifica-
tion accuracies on occlusion-free faces. This finding reveals
that restoration via a PCA-like model does not add discrim-
inatory information useful for classification. However, with
a complex statistical classifier (i.e., LDA) that requires com-
plete feature vectors, reconstruction proves to be very bene-
ficial. Therefore, we conclude that depending on the choice
of classifier, you can choose to use occlusion-free or recon-
structed faces.
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