Abstract:
Face recognition, which is security-critical, has been widely deployed in our daily life. However, traditional face recognition technologies in practice can be spoofed ea...Show MoreMetadata
Abstract:
Face recognition, which is security-critical, has been widely deployed in our daily life. However, traditional face recognition technologies in practice can be spoofed easily, for example, by using a simple printed photo. In this paper, we propose a novel face liveness detection approach to counter spoofing attacks by recovering sparse 3D facial structure. Given a face video or several images captured from more than two viewpoints, we detect facial landmarks and select key frames. Then, the sparse 3D facial structure can be recoveredfrom the selected key frames. Finally, an Support Vector Machine (SVM) classifier is trained to distinguish the genuine and fake faces. Compared with the previous works, the proposed method has the following advantages. First, it gives perfect liveness detection results, which meets the security requirement of face biometric systems. Second, it is independent on cameras or systems, which works well on different devices. Experiments with genuine faces versus planar photo faces and warped photo faces demonstrate the superiority of the proposed method over the state-of-the-art liveness detection methods.
Published in: 2013 International Conference on Biometrics (ICB)
Date of Conference: 04-07 June 2013
Date Added to IEEE Xplore: 30 September 2013
Electronic ISBN:978-1-4799-0310-8
Print ISSN: 2376-4201