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Abstract

Fingerprint minutiae are the most important features
used by latent fingerprint examiners, as well as in
automated fingerprint recognition systems. Hence, under-
standing the statistical distribution of minutiae is essential
in many fingerprint recognition related problems, such as
fingerprint individuality and fingerprint synthesis. Prior
work considers the occurrence of a minutia as a random
event, and mostly assumes that individual minutiae are
independent of each other. Some studies also considered
the clustering tendency of minutiae and the minutiae neigh-
borhood structures. Yet, it remains unclear whether the
ridge orientation field has an impact on the minutiae occur-
rence. This paper investigates the correlation between ridge
orientation field and minutiae. Assuming that minutiae
are distributed conditionally on the variation in local
ridge orientation, a new generative model is proposed for
fingerprint minutiae. To evaluate the proposed model,
we train the model using fingerprint images in the NIST
SD14 database, and simulate the minutiae in the finger-
prints in the NIST SD4 database with the trained model.
The experimental results show that by exploiting both the
local ridge orientation variation and the neighborhood
minutiae structure, the proposed model can better simulate
the minutiae extracted from fingerprints than other models
available in the literature.

1. Introduction

Fingerprints are widely used for personal identification
based on their distinctive features. These features can be
roughly divided into three levels. Level-1 features refer to
the global characteristics of fingerprints, such as fingerprint
class, singular points, and ridge orientation field. Level-
2 features are defined as individual ridge events, such as
minutiae; two major types of minutiae are ridge endings
and bifurcations. Level-3 features are fine details in ridges,
such as pores and ridge contours. Among these features,
minutiae are routinely utilized by fingerprint examiners and
automated fingerprint recognition systems because they are
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Figure 1. Correlation between minutiae occurrence and the ridge
orientation field. (a) a whorl fingerprint and its ridge orientation
field. (b) minutiae in (a) overlaid on the local ridge orientation
deviation map. The local ridge orientation deviation (refer to Eq.
(1)) indicates the variation or smoothness of the ridge orientation
field in a local region. The greater the deviation of the localridge
orientation, the lower will be its smoothness.

not only discriminative but also very stable [10].
Understanding the characteristics of fingerprint features

is a fundamental issue in the design, development, and
deployment of fingerprint-based personal identification
techniques. It is also very useful for many other problems
related to fingerprint recognition, such as assessment of
fingerprint individuality [11], evaluation of fingerprint
recognition systems [5, 22], fingerprint feature extraction
[20], indexing and matching [19], and so forth. Accurate
fingerprint feature models thus are highly needed in
addressing these problems.

During the past two decades, a number of models have
been proposed for various fingerprint features, including
singular points [6], ridge orientation field [23, 20, 19, 22],
minutiae [11, 24, 7], and pores [13]. In this paper, our
focus is on the statistical models for minutiae, particu-
larly, ridge endings and bifurcations. While a number of
minutiae models have been published in the literature, they
do not consider the possible correlation between minutiae
and ridge orientation field (see Fig. 1). Our goal in this
paper is twofold: (i) to investigate the correlation between
minutiae and ridge orientation field, and (ii) to incorporate
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Figure 2. Estimation of fingerprint ridge orientation field.(a) a fingerprint image and its delta and core points. (b) and (c) initial and
regularized ridge orientation fields of image in (a), respectively.

such correlation into the generative model of minutiae so
that the model can better synthesize minutiae extracted from
fingerprints.

The rest of this paper is organized as follows. In Section
2, we review some typical minutiae models proposed in
the literature. In Section 3, we study the correlation
between minutiae occurrence and the ridge orientation field
using fingerprints in the NIST SD14 database. Section 4
introduces the proposed generative model for fingerprint
minutiae, followed by the experimental results in Section
5. Finally, Section 6 concludes the paper.

2. Background

Constructing statistical models of fingerprint minutiae
has been a topic of significant interest in fingerprint research
community. Some of the early studies on minutiae models
focused on the problem of fingerprint individuality [15].
The models were used to compute the probability of random
correspondence between fingerprints. However, these
models could not serve as generative models for minutiae.
Over the past ten years, several generative minutiae models
have been proposed. Pankanti et al. [11] devised a minutiae
model which assumes that (i) the occurrence of a minutia
is a random event, (ii) individual minutiae are independent
of each other, and (iii) the minutiae in a fingerprint are
uniformly distributed. Zhu et al. [24] showed that minutiae,
instead of being uniformly distributed, tend to cluster in
the regions where ridge orientation changes abruptly (e.g.,
around delta and core points). Based on this observation,
they proposed to first partition the minutiae into several
clusters and then model the minutiae distributions in each
cluster by using a mixture of Gaussians. The drawback
of this model is that it is finger-specific; in other words,

a mixture of Gaussians is learned for each finger, which
makes it tedious and computationally expensive. Chen et
al. [7] further improved the model of [24] by deriving a
mixture of Gaussians for the fingerprints in each of the five
major fingerprint classes (i.e., arch, tented arch, left loop,
right loop and whorl).

Neighborhood minutiae structures were investigated by
Hsu and Martin [9]. Given a central minutia, a reference
local polar coordinate system is established, whose origin
is at the central minutia and whose polar axis points
along the direction of the central minutia. The neigh-
borhood minutiae are represented by their positions with
respect to the reference coordinate system, and the differ-
ences between their directions and the direction of the
central minutia. With this representation of neighborhood
minutiae, the distributions of thek-nearest minutiae are
summarized as histograms or probability maps.

These available minutiae models either assume indepen-
dence between individual minutiae or consider only the
relationship among neighboring minutiae. However, they
do not consider the possible correlation between minutiae
and other fingerprint features. Consequently, it remains
unclear whether the occurrence of minutiae (as level-2
features) are affected by level-1 features, in particular,ridge
orientation field (see Fig. 1). In the next section, we
will investigate the correlation between minutiae and ridge
orientation field.

3. Statistical Analysis of Minutiae Occurrence

3.1. Database and Feature Extraction

To analyze the minutiae occurrence, we chose a subset
of the first session fingerprint images in the NIST SD14
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Figure 3. Occurrence probability map of individual minutiae with
respect to the local ridge orientation deviation computed from the
fingerprints in NIST SD14 [1].

database [1] whose NFIQ [17] values are between 1 and 3
(NFIQ = 1 means the best quality fingerprint and NFIQ = 5
the worst quality fingerprint) as the training database. This
procedure resulted in a training set consisting of 866 arch
fingerprints, 302 tented arch fingerprints, 1,992 left loop
fingerprints, 2,066 right loop fingerprints, and 1,434 whorl
fingerprints. The foreground fingerprint region, the finger-
print type or class, and the cores and deltas in these images
were manually marked by us. The minutiae were extracted
by using a commercial off the shelf (COTS) fingerprint
matcher, VeriFinger SDK 6.5 [2]1; minutiae outside the
foreground regions were discarded. The ridge orientation
field was initially estimated by using the gradient based
method in [8], and then regularized by using the method
described below.

Let the initial ridge orientation field be denoted asΘ.
As in [21], Θ is divided into singular,Θs, and continuous
(or residual),Θr, components:Θ = Θs + Θr. These
two components are regularized separately. The singular
component is determined by the singular points (if any)
according to the Zero-Pole model [14], while the residual
component is regularized by using the 2D Fourier expansion
based model (FOMFE) [20]. If there are no singular points,
the initial ridge orientation field is directly approximated
by using the FOMFE model. The regularized ridge orien-
tation field is able to remove most of the noise in the finger-
print (see Fig. 2). Note that the ridge orientation field is
computed block-wise and the block size is8× 8 pixels2.

To characterize the ridge orientation in a local regionΩl,

1Mention of any product or company does not imply endorsement
or recommendation of this product or company by the authors,Sichuan
University, Michigan State University, or the National Institute of
Standards and Technology.

2Note that the fingerprint images used in this paper are at 500 ppi
(pixels per inch) resolution. If fingerprint images at different resolutions
are used, the block size as well as the neighborhood size should be tuned
accordingly.

we compute its deviation,dθ, in the local region by

dθ =
1

|Ωl|

∑

(x,y)∈Ωl

sin |θ(x, y) − θ̄|, (1)

where |Ωl| is the area of the local region, and̄θ is the
average ridge orientation inΩl. In this paper, the local
ridge orientation deviation at a block is computed based on
its 9 × 9 neighboring blocks. The local ridge orientation
deviation ranges from 0 to 1 with higher values denoting
larger variations (or lower smoothness). See Fig. 1.

The ridge orientation in the neighborhood of a minutia
is characterized by the local ridge orientation deviation at
the location of the minutia and the average deviation in the
neighborhood, i.e.,(dcθ, d̄θ). In this paper, we consider a
circular neighborhood centered at the minutia whose radius
is 64 pixels.

To study the distribution of minutiae neighboring to a
central minutia, we represent the neighboring minutia in a
local polar coordinate system as in [9] by its distance to
the central minutia and the angle between the polar axis and
the line connecting the neighboring minutiae and the central
minutia, i.e.,(ρ, φ).

It is worth mentioning that ideally, real minutiae and
ridge orientation field in fingerprints should be used in
analyzing and modeling the minutiae occurrence. In
forensics, minutiae in latent fingerprints are manually
marked by latent examiners. However, different examiners
may not always mark the same minutiae in a fingerprint
[18]. Moreover, it is expensive, tedious, and error-prone
to manually mark minutiae and ridge orientation field in a
large number of rolled or slap fingerprints. On the other
hand, state of the art automated matchers, based on NIST’s
evaluations [4], perform almost as well as human experts
in matching good quality fingerprints. This suggests that
features extracted by the automated matchers are robust and
reliable for good quality rolled fingerprints. In this paper,
we thus choose good quality fingerprints, and automatically
extract ridge orientation field and minutiae in these finger-
prints to train the minutiae models. Note that the following
analysis and the proposed model are also applicable if
features from other sources are available (e.g., manually
marked features, or features extracted by other automated
methods).

3.2. Occurrence Probability of Individual Minutiae

We study the minutiae occurrence for each of the five
major fingerprint classes separately by constructing the
histograms of minutiae with respect to the local ridge
deviation. To this end, we discretize the local ridge orien-
tation deviation into 201 uniform bins between 0 and 1 with
an interval of 0.005, and set up two accumulators for each
fingerprint class. Both accumulators consist of the 201 bins



(a) (b) (c)

(d) (e) (f)

Figure 4. Occurrence probability maps of the nearest neighboring minutiae in fingerprints of type (a) arch, (b) tented arch, (c) left loop,
(d) right loop, and (e) whorl computed from the fingerprints in NIST SD14 [1]. Each block corresponds to a type of neighborhood region
defined by(dcθ, d̄θ). The histogram in each block gives the occurrence probability of the nearest neighboring minutiae (in terms of their
positions in the local polar coordinate system) in the corresponding type of neighborhood region. (f) distribution of the nearest neighboring
minutiae in the neighborhood(dcθ = 0.1, d̄θ = 0.1) for arch, tented arch, left loop, right loop, and whorl fingerprints (from top to bottom).

of local ridge orientation deviation. The first accumulator
counts the local blocks according to the local ridge orien-
tation deviation in the blocks, and the second accumulator
counts the minutiae according to the local ridge orientation
deviation at the locations of the minutiae. The occurrence
probability map of individual minutiae with respect to the
local ridge orientation deviation is obtained by taking the
bin-to-bin quotient between the second and first accumu-
lators. Each bin in the resulting probability map denotes
the probability of a minutia appearing in a block which
has the corresponding local ridge orientation deviation.
Figure 3 shows the occurrence probability map of individual
minutiae. We can observe that (i) minutiae appear in the
blocks of different local ridge orientation deviations with
different probabilities, and (ii) minutiae occurrence proba-
bilities vary between different fingerprint classes.

3.3. Distribution of Neighboring Minutiae

In this paper, we assume that the distribution of
neighboring minutiae also depends on the ridge orien-
tation field in the neighborhood. To analyze this depen-
dency, we characterize the ridge orientation field in the
minutiae neighborhood by using two attributes(dcθ, d̄θ), and

discretize both of these attributes into 11 bins, i.e., from
0 to 1 with an interval of0.1. As a result, there are 121
(11 × 11) different types of neighborhood regions. For
each region, we construct a histogram of the nearest neigh-
boring minutiae in terms of their positions in the local polar
coordinate system. Specifically, we divide the radius (ρ)
into 9 uniform bins (i.e., from 0 to 64 with an interval
of 8 pixels, where 64 is the neighborhood radius)3, and
the polar angle (φ) into 37 uniform bins (i.e., from 0 to
359 degrees with an interval of 10 degrees). Note that the
bin (ρ, φ) = (0, 0) indicates that there is no minutia in
the neighborhood of the central minutia (in this paper, the
radius of the circular neighborhood is 64 pixels).

Again, the neighboring minutiae distribution is investi-
gated for each fingerprint class separately. The histograms
of different types of neighborhood regions are computed
for each fingerprint class based on the available training set
of fingerprints of that class: given a minutia in a training
fingerprint, (i) the type of its neighborhood is first deter-
mined according to the local ridge orientation field, (ii) its

3Note that we use an interval of 8 pixels (i.e., the local blocksize). In
this way, we reduce the number of parameters to be estimated,but at the
cost of lower resolution. This is a compromise between high accuracy and
the limited number of available training samples.



nearest minutia is then located and represented in the form
of (ρ, φ), and finally, (iii) it is assigned to the corresponding
nearest neighboring minutiae histogram bin of the corre-
sponding type of neighborhood. If no minutia is found in its
neighborhood, the bin(ρ, φ) = (0, 0) is increased by one.
Figure 4 shows the resulting occurrence probability maps
of the nearest neighboring minutiae for five types of finger-
prints (arch, tented arch, left loop, right loop, and whorl).

Algorithm 1 Orientation Field based Minutiae Generation

Input: t: Fingerprint type;P t
I , P

t
N : Minutiae occurrence

probability maps;Θ: Ridge orientation field;Ω0:
Foreground region;R: Neighborhood radius

Output: M : A set of minutiae
1: Compute the local ridge orientation deviation according

to Eq. (1):dΘ
2: Initialize candidate region for generating minutiaeΩ←

Ω0, M ← NULL, m← NULL, r ← R

3: while Ω 6= NULL do
4: if m = NULL then
5: Generate a minutia inΩ according toP t

I : m ←
(mx,my)

6: end if
7: M ←M ∪ {m}, Ω← Ω \ {(mx,my)}
8: Compute(dcθ, d̄θ) in Ωm (the neighborhood ofm)
9: Generatemn: the nearest neighboring minutia ofm

according to the corresponding probability map in
P t
N

10: if mn = NULL then
11: Ω ← Ω \ {Circular region centered atm whose

radius isr}
12: r ← R

13: else
14: r ← |mn −m|
15: M ← M ∪ {mn}, Ω ← Ω \ {Circular region

centered atm whose radius isr}
16: end if
17: m← mn

18: end while

4. Proposed Generative Model

In the previous section, we constructed the occurrence
probability maps for individual minutiae and nearest neigh-
boring minutiae. Let us denote them asP t

I andP t
N , respec-

tively. Here t ∈ {A, T, L,R,W} corresponding to arch,
tented arch, left loop, right loop, and whorl fingerprints. In
this section, we present the proposed generative model for
minutiae, which randomly samples a set of minutiae from
a given ridge orientation field based on the minutiae occur-
rence probability maps.

Given a block-wise ridge orientation field of a particular
type of fingerprint (i.e., one of the five major fingerprint

classes), the corresponding image area is initialized with
an empty set of minutiae, and the local ridge orientation
deviation in each block is computed. Then, the first minutia
of the fingerprint is randomly generated according toP t

I ,
and its nearest neighboring minutia is randomly generated
according toP t

N . More minutiae are gradually added by
generating the nearest neighboring minutia of the previous
minutia or generating a new individual minutia (if no
neighboring minutia is generated for the previous minutia).
This minutiae sampling process is iterated until the entire
fingerprint image area has been considered. Algorithm 1
summarizes the process of sampling minutiae based on the
proposed model, and Fig. 5 shows an example4.

5. Experiments

In this section, we compare the proposed minutiae
model with the uniform model in [11], the pattern specific
Gaussian mixtures based model in [7], and the SFinGe
method [5]. The minutiae generated by these models
and SFinGe are compared with the minutiae in the finger-
prints in the NIST SD4 database [3] in terms of spatial
statistics [12]. Specifically, we chose only the fingerprint
images in the first session and whose NFIQ values are
between 1 and 3. The empirical statistics are computed
based on the minutiae extracted by VeriFinger SDK 6.5
from these fingerprints (the minutiae outside the manually
marked foreground regions are discarded). Minutiae are
also randomly sampled by using the generative models
for the same number of fingerprints, based on which the
statistics of the generative models are calculated. The ridge
orientation field required by the proposed model is the ridge
orientation field of the chosen fingerprints in NIST SD4
extracted by using the method introduced in Section 3. As
for SFinGe, images of 1,000 fingerprints including all the
five major types are generated, based on which the minutiae
spatial statistics are computed. Note that since SFinGe itself
does not provide the minutiae locations in the synthetic
fingerprints, we apply VeriFinger to extract the minutiae
from the synthetic fingerprint images5.

Figure 6 shows the minutiae generated by the three
different models for a given ridge orientation field of a
whorl fingerprint. To quantitatively evaluate the models,
fingerprints are divided into non-overlapping blocks, and
the number of minutiae in each block is counted. The
histogram of blocks is computed in terms of the number of
minutiae in the blocks. The distance between the histogram

4The direction of minutiae in the proposed model can be easilydeter-
mined according to the ridge orientation field and the minutiae type. The
direction of ridge bifurcation is equal to the local ridge orientation at its
location, while the direction of ridge ending is opposite tothe local ridge
orientation at its location. In this paper, we focus on the spatial distribution
of minutiae, i.e., we consider only the minutiae locations.

5Master fingerprint images are used because they are free fromnoise.
See [5] for more details of master fingerprint images generated by SFinGe.
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Figure 5. Sampling minutiae by using the proposed generative model. (a) a given ridge orientation field. (b) the corresponding local
ridge orientation deviation map. (c)-(e) generation of thefirst, second, and third minutiae. The black regions denote the regions already
considered, so no new minutiae can be added in them. (f) the final set of generated minutiae. Note that while the results in (b)-(e) are
block-based (block size is8× 8 pixels), they are resized to the original image size for display purpose.

(a) (b) (c)

Figure 6. Given a ridge orientation field of a whorl fingerprint, the minutiae generated by (a) the proposed model, (b) the Gaussian mixtures
based model [7], and (c) the uniform model [11].
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Figure 7. Comparison of the proposed model with the uniform model [11], the Gaussian mixtures based model [7], and SFinGe[5]. (a) and
(b), respectively, show the histograms of16× 16 and32× 32 non-overlapping local blocks in terms of the number of minutiae appearing
in the blocks.

Block Chi-Square Distance
Size Proposed GM Based Uniform SFinGe

16× 16 0.0005 0.0014 0.0032 0.0028
32× 32 0.0028 0.0043 0.0123 0.0131

Table 1. Chi-square distances between the empirical histograms
(based on the fingerprints in NIST SD4) and the histograms
obtained by the proposed model, the Gaussian mixtures (GM)
based model [7], the uniform model [11], and SFinGe [5].

obtained from the minutiae generated by a model and the
empirical histogram computed from the minutiae in the
fingerprints in NIST SD4 indicates how well the model
describes the minutiae distribution extracted from finger-
prints. In our experiments, we compare different minutiae
models based on the Chi-square distances between the
empirical histogram and the histograms computed from the
minutiae generated by these models.

Figure 7 shows the empirical histograms and the
histograms obtained by different models and SFinGe. As
can be seen, the histograms generated by the proposed
model are more similar to the empirical ones. The
Chi-square distances between these histograms are given
in Table 1. The proposed model achieves the smallest
distances among the three models and SFinGe. This
suggests that the proposed model better captures the
minutiae distribution extracted from fingerprints.

6. Conclusions

While minutiae are routinely used in fingerprint
matching, understanding their spatial distribution is still an
open problem. Previous studies on this topic have some
deficiency in that they did not consider the correlation
between minutiae (as a type of level-2 feature) and the ridge
orientation field (as a type of level-1 feature). In this paper,
we have analyzed the correlation between minutiae occur-

rence and ridge orientation field, and explicitly incorporated
such correlation into the minutiae distribution modelling.
We proposed a generative model for minutiae. We have
compared the proposed model with two typical models
previously proposed in the literature; our experimental
results show that the proposed model generates minutiae
whose spatial distribution better resembles the minutiae
distribution extracted from fingerprints.

We are currently improving the proposed model along
three directions. (i) Using a larger training set and evalu-
ating the stability of the model with respect to the training
data size. The number of training fingerprints used in this
paper is still relatively small, especially for arch and tented
arch fingerprints. (ii) Applying the proposed model to
other sources of fingerprint data, including both manually
marked fingerprint features and the features extracted by
additional automated matchers. Currently, the training and
testing minutiae are both extracted by one single matcher,
VeriFinger. Moreover, the minutiae extracted in singularity
area (i.e., the area surrounding cores and deltas) often have
low reliability. Researchers have typically avoided usingthe
singularity area in studying the statistics of minutiae even
when the minutiae are manually marked [16]. Therefore,
we will also assess the impact of singularity area on the
trained minutiae models. (iii) Using the minutiae density
in local neighborhood to guide the generation of minutiae.
In this paper, we consider only the first nearest minutiae.
Considering more neighboring minutiae, we believe, will
further improve the model fit.
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