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Idiap Research Institute

Rue Marconi 19, CH - 1920, Martigny, Switzerland
{anjith.george, sebastien.marcel}@idiap.ch

Abstract

Face recognition has evolved as a prominent biometric
authentication modality. However, vulnerability to presen-
tation attacks curtails its reliable deployment. Automatic
detection of presentation attacks is essential for secure use
of face recognition technology in unattended scenarios. In
this work, we introduce a Convolutional Neural Network
(CNN) based framework for presentation attack detection,
with deep pixel-wise supervision. The framework uses only
frame level information making it suitable for deployment
in smart devices with minimal computational and time over-
head. We demonstrate the effectiveness of the proposed ap-
proach in public datasets for both intra as well as cross-
dataset experiments. The proposed approach achieves an
HTER of 0% in Replay Mobile dataset and an ACER of
0.42% in Protocol-1 of OULU dataset outperforming state
of the art methods.

1. Introduction
Face recognition has evolved as a prominent biomet-

ric authentication modality. The ubiquitous nature of face
recognition can be mainly attributed to the ease of use and
non-intrusive data acquisition. Many of the recent works
have reported human level parity in face recognition [14].
While there is an increased interest in face recognition for
access control, vulnerability to presentation attacks (PA)
(also known as spoofing) curtails its reliable deployment.
Merely presenting printed images or videos to the biomet-
ric sensor could fool face recognition systems. Typical ex-
amples of presentation attacks are print, video replay, and
3D masks [7], [8]. For the reliable use of face recognition
systems, it is important to have automatic methods for de-
tection of such presentation attacks.

In literature, several authors have proposed presentation
attack detection (PAD) algorithms for counteracting the pre-
sentation attack attempts [22]. Majority of the methods rely
on the limitation of presentation attack instruments (PAI)
and the quality degradation during recapture. Handcrafted

Figure 1. Figure showing cropped face images for bonafide and
presentation attacks in in Replay-Mobile [7] (a,c), and OULU-
NPU [5]datasets (b,d).

features are specifically designed to utilize this degradation
for PAD. Most of them use features extracted from color
[4], texture [18],[6], motion [1] and other liveliness cues.

Recently several CNN based PAD algorithms have
emerged [10, 26, 23], which learns the features for PAD
without the requirement for designing handcrafted features.
Even though CNNs trained end to end with binary PAD
task achieved good intra dataset performance as compared
to handcrafted feature based methods, they fail to gener-
alize across databases and unseen attacks. Often, a lim-
ited amount of data is available to train CNNs from scratch
which results in over fitting. It is possible that the network
could learn the biases in a dataset since it learns explicitly
from the given training data, resulting in poor cross database
generalization. Some recent literature [2], [17] have shown
that the usage of auxiliary tasks such as depth supervision
can improve the performance. The network learns to syn-
thesize the depth map of the face region as an auxiliary task.
Depth supervision requires synthesis of 3D shapes for ev-
ery training sample. However, this synthesis can be avoided
as the PAD task is not directly related to the depth estima-
tion task. We show that deep pixel-wise binary supervi-
sion can be used for pixel-wise supervision obviating the
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requirement of depth synthesis.
Most of the PAD databases consists of videos (usually of

5 to 10 s duration [5],[7]). Usage of video instead of indi-
vidual frames provides additional temporal information for
PAD. However, in practical deployment scenarios such as
mobile environments, the time available for acquisition and
processing is limited. Algorithms achieving good perfor-
mance using long video sequence may not be suitable for
such deployment conditions where the decision needs to be
made quickly. Hence, frame level PAD approaches are ad-
vantageous from the usability point of view since the PAD
system can be integrated into a face recognition system with
minimal time and computational overhead.

Motivated by the discussions above, we introduce a
frame level CNN based framework for presentation attack
detection. The proposed algorithm uses deep pixel-wise bi-
nary supervision for PAD (DeepPixBiS).

We demonstrate the effectiveness of the proposed ap-
proach in two public datasets namely Replay Mobile [7]
and OULU [5] databases. Sample images of the cropped
face regions from both datasets are shown in Fig. 1. Both
intra and cross-dataset experiments are performed indicat-
ing the efficacy of the proposed method.

The main contributions of this paper are listed below,

• A frame level CNN based framework is proposed for
PAD, which is suitable for practical deployment sce-
narios since it requires only frames instead of videos.

• Pixel-wise binary supervision is proposed which sim-
plifies the problem and obviates the requirement for
video samples and synthesis of depth maps.

• We show the efficacy of the proposed approach with
the experiments in both intra as well as cross-database
testing in recent publicly available datasets.

Moreover, the results shown in this paper are fully repro-
ducible. The protocols and source code to replicate experi-
ments are made available ∗.

2. Related work
Most of the literature in PAD can be broadly categorized

as feature-based and CNN based methods.

2.1. Feature based methods

Several methods have been proposed over the years for
presentation attacks using handcrafted features. They can
be further classified to methods based on color, texture, mo-
tion, liveliness cues and so on. Histogram features using
color spaces [4], local binary pattern [18], [6] and motion

∗Source code available at: https://gitlab.idiap.ch/bob/
bob.paper.deep_pix_bis_pad.icb2019

patterns [1] have shown good performance in Replay At-
tack [6] database. Image quality measures [9], and image
distortion analysis [24] use the deterioration of the sample
quality and artifacts in the re-capture as a cue for presenta-
tion attack detection. Most of these methods treat PAD as a
binary classification problem which reduces its generaliza-
tion capability in an unseen attack scenario [19]. Nikisins
et al. [19] proposed a framework for one class classification
using one class Gaussian Mixture Models (GMM). Image
Quality Measures (IQM) were used as the features in their
work. For the experiments, they prepared an aggregated
dataset combining Replay Attack [6], Replay Mobile [7],
and MSU-MFSD [24] datasets.

Boulkenafet et al. [3] compiled the results of a public
competition to compare the generalization properties of the
PAD algorithms in mobile environments. The OULU-NPU
[5] dataset was used to benchmark the algorithms. Several
feature based methods and CNN based methods were com-
pared in this competition. The GRADIANT system, which
comprised of color, texture and motion information from
different color spaces, was ranked first. In their approach,
the dynamic information from the video is collapsed into a
frame. Also, LBP features from small grids were concate-
nated to a feature vector. Feature selection was done using
recursive feature selection, and SVM based classification is
done on each feature vector, and sum fusion is used for the
final PA score.

2.2. CNN based approaches

Recently several authors have shown that CNN based
methods achieve good performance in PAD. Gan et al. [10]
proposed a 3D-CNN based approach which combines spa-
tial and temporal features of the video for PAD. Yang et
al. [26] proposed a framework where the feature represen-
tation obtained from the trained CNN is used to train an
SVM classifier and was used for the final PAD task. Li et
al. [15] also proposed a 3D CNN architecture, where the
Maximum Mean Discrepancy (MMD) distance among dif-
ferent domains is minimized to improve the generalization
property. Shao et al. [23] proposed a deep CNN based ar-
chitecture for the detection of 3D mask attacks. In their ap-
proach, the subtle differences in facial dynamics captured
using the CNN is used for PAD task. In each channel, fea-
ture maps obtained from the convolutional layers of a pre-
trained VGG network was used to extract features. They
also estimated the optical flow in each channel and the dy-
namic texture was learned channel-wise. Their approach
achieved an AUC (Area Under Curve) score of 99.99% in
3DMAD [8] dataset. However, this method is specifically
tuned for the detection of 3D mask attacks, the performance
in case of 2D attacks was not discussed.

Li et al. [16] proposed a part-based CNN model for
PAD. In their method face region is divided into different
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parts and individual CNNs were trained for each part. Us-
age of patches increased the number of samples available
for training the network. The network architecture used was
based on VGG-face. The last layers from the models trained
for each part were concatenated and used for SVM train-
ing, which in turn was used in the prediction stage. They
obtained better results as compared to networks using the
whole face at once.

Some of the main issues with CNN based methods are
the limited amount of training data and poor generalization
in unseen attacks and cross-database settings. To reduce
these issues, some researchers have used auxiliary supervi-
sion in the training process.

Atoum et al. [2] proposed a two-stream CNN for 2D
presentation attack detection combining the outputs from a
patch-based CNN and depth map CNN. An end to end CNN
model was trained using random patches in the patch based
part. A fully Convolutional network was trained to produce
the depth map for bonafide samples. A feature vector was
computed from the depth map obtained from the depth CNN
by finding the mean values in the N × N grid and used
to train an SVM model. The final score from the system
was generated by combining the scores from the patch and
depth based systems. Though this method achieved good
performance on intra dataset experiments in Replay attack
[6], CASIA-FASD [28] and MSU-USSA [21] datasets, per-
formance in challenging cross-database testing are not re-
ported.

Liu et al. [17] proposed a CNN based approach which
uses auxiliary supervision for PAD. They used a CNN-RNN
model to compute the depth map with pixel-wise supervi-
sion as well as remote photoplethysmography (rPPG) signal
for sequence wise supervision. In the testing phase, the esti-
mated depth map and rPPG signal were used for PAD task.
They showed that the addition of auxiliary tasks improves
the generalization property. However, the higher accuracies
reported uses temporal information, which requires more
frames (hence more time). Such methods are not suitable
for practical deployment scenarios from a usability point of
view since a user would need to spend more time for au-
thentication.

2.3. Limitations

From the discussions in the previous section, it can be
seen that the PAD problem is far from solved and is very
challenging. From the recent literature, it can be seen that
CNN based methods outperform handcrafted feature-based
methods. While training CNN for PAD, one of the main
issues is the lack of availability of a sufficient amount of
data for training a network from scratch. Further, the over-
fitting in the datasets with unacceptable cross-database per-
formance is another issue. Some of the recent approaches
require the fusion of multiple systems; which makes it com-

plicated for deployment. Another limiting factor is the us-
age of video in many algorithms. In the mobile authenti-
cation scenario, the time available for the PAD decision is
very short. Hence frame based PAD methods may be ad-
vantageous from the usability point of view.

3. Proposed method

Figure 2. Figure showing the pixel-wise binary labels for bonafide
and attacks. Each pixel/patch is given a binary label depending on
whether it is a bonafide or an attack. In the testing phase, the mean
of this feature map is used as the score.

This section introduces the proposed algorithm. A frame
level CNN based framework which does not require tempo-
ral features for identifying presentation attacks is proposed
in this section. The proposed framework uses a densely con-
nected neural network trained using both binary and pixel-
wise binary supervision (DeepPixBiS).

Recent papers [2], [17] have shown that auxiliary super-
vision with depth and temporal information helps in achiev-
ing good performance in PAD task. However, using artifi-
cially synthesized depth maps as a proxy for PAD may not
be ideal especially in frame level supervision.

The depth supervision approaches try to generate the
depth map of face for the bonafide samples and a flat sur-
face for the attacks. The idea is to learn to predict the true
depth of the images presented in front of the biometric sen-
sor. After training the network with the synthesized depth
maps and flat masks, the network learns the subtle differ-
ence between bonafide and attack images so that the correct
depth map can be predicted. The predicted depth map is
either used directly with `2 norm or with a classifier after
extracting features from the depth map. It can be seen that
the prediction of the accurate depth map is not essential for
PAD task, rather predicting binary labels for pixels/patches
would be enough.

In this work, instead of using synthesized depth values
for pixel-wise supervision, we use pixel-wise binary super-
vision. Both binary and pixel-wise binary supervision is
used by adding a fully connected layer on top of the pixel-
wise map.



Figure 3. Diagram showing the proposed framework. Two outputs, i.e., a 14 × 14 feature map and a binary output are shown in the
diagram. The dense blocks consist of multiple layers with each layer connected to all other layers. The feature maps are normalized and
average pooled in the transition blocks.

This framework can be explained as follows. Consider-
ing a fully convolutional network, the output feature map
from the network can be considered as the scores gener-
ated from the patches in an image, depending on the recep-
tive fields of the convolutional filters in the network. Each
pixel/ patch is labelled as bonafide or attack as shown in Fig.
2. In a way, this framework combines the advantages of
patch-based methods and holistic CNN based methods us-
ing a single network. In the case of 2D attacks, we consider
all patches have the same label. This obviates the require-
ment to compute the depth map while training models. This
also makes it possible to extend the framework for partial
attacks by annotating the ground truth mask regions. The
advantage here is that the pixel-wise supervision forces the
network to learn features which are shared, thus minimizing
the number of learnable parameters significantly.

Further, to combine the scores from the final feature map
a fully connected layer is added on top of the final feature
map. The loss function to minimize consists of the combi-
nation of both the binary loss and pixel-wise binary loss.

The details of the different parts of the proposed frame-
work are detailed below.

3.1. Preprocessing

In the first stage, face detection is carried out in the in-
put images using MTCNN [27] framework. Further, Super-
vised Descent Method (SDM) [25] is used to localize the
facial landmark in the detected face region. The detected
face image is aligned by making the eye centers horizontal.
After alignment, the images are resized to a resolution of
224× 224.

3.2. Network architecture

The proposed network is based on the DenseNet[11] ar-
chitecture. The feature maps from multiple scales are used
efficiently for PAD in this framework.

3.2.1 DenseNet architecture

The architecture used in this work is based on the DenseNet
architecture proposed by Huang et al. [11]. The main idea
of DenseNet is to connect each layer to every other layer
(with the same feature map size) in a feed-forward fash-
ion. For each layer, feature maps from the previous lay-
ers are used as inputs. This implementation reduces the
vanishing gradient problem as the dense connections intro-
duce short paths from inputs to outputs. In each layer, fea-
ture maps are combined by concatenating previous feature
maps. There are fewer parameters to train, and there is an
improved flow of gradients to each layer. Another advan-
tage of the DenseNet model is its implicit deep supervision,
i.e., the individual layers receive supervision from the loss
function because of the shorter connections.

In our work, we reuse a pretrained model trained in the
ImageNet dataset. The general block diagram of the frame-
work is shown in Fig. 3. First eight layers of the DenseNet
[11] architecture are initialized from the pretrained weights.
The layers selected consists of two dense blocks and two
transition blocks. The dense blocks consist of dense con-
nections between every layer with the same feature map
size. The transition blocks normalize and downsample the
feature maps. The output from the eight layers is of size
14 × 14 with 384 channels. A 1 × 1 convolution layer is



added along with sigmoid activation to produce the binary
feature map. Further, a fully connected layer with sigmoid
activation is added to produce the binary output.

Binary Cross Entropy (BCE) is used as the loss function
to train the model for both pixel-wise and binary output.

The equation for BCE for the pixel-wise loss is shown
below.

Lpixel−wise−binary = −(y log(p) + (1− y) log(1− p))
(1)

where y is the ground truth, (y = 0 for attack and y = 1 for
bonafide, for all values in the 14 × 14 feature map) and p
is predicted probability. The loss is averaged over pixels in
the feature map.

Similarly Lbinary is computed from the output using
the binary label. The loss to optimize is computed as the
weighted sum of two losses:

L = λLpixel−wise−binary + (1− λ)Lbinary (2)

We use the λ value of 0.5 in the current implementation.
Even though both losses are used in training, in the evalua-
tion phase, only the pixel-wise map is used the mean value
of the map generated is used as the PA score in all the eval-
uations.

3.2.2 Implementation details

The distribution of bonafide and attacks were imbalanced
in the training set. Class balancing was done by under-
sampling the majority class. Data augmentation was per-
formed during training using random horizontal flips with a
probability of 0.5 along with random jitter in brightness,
contrast, and saturation. The multi-task loss function is
minimized using Adam Optimizer [13]. A learning rate
of 1 × 10−4 was used with a weight decay parameter of
1 × 10−5. The mini-batch size used was 32, and the net-
work was trained for 50 epochs on a GPU grid. While eval-
uating the framework, 20 frames were uniformly selected
from each video, and the scores were averaged to compute
the final PA score. The mean value of the 14× 14 was used
as the score for each frame in the video. The framework
was implemented using PyTorch [20] library.

4. Experiments
4.1. Databases and Evaluation Metrics

4.1.1 Databases

Two recent databases, namely Replay-Mobile [7] and
OULU-NPU [5] are used in the experiments. The Replay-
Mobile dataset consists of 1190 video clips of both photo
and video attacks of 40 subjects under various lighting con-
ditions. High-quality videos were recorded by iPad Mini2
and LG-G4. OULU-NPU is also a high-resolution dataset

consisting of 4950 video clips. This database includes both
video and photo attacks. The OULU-NPU dataset has four
protocols each intended to test the generalization against
variations in capturing conditions, attack devices, capturing
devices and their combinations. We perform intra as well as
cross-database testing in these two databases.

4.1.2 Metrics

In the OULU-NPU dataset, we use the recently standard-
ized ISO/IEC 30107-3 metrics [12] for our evaluation. We
use Attack Presentation Classification Error RateAPCER,
which corresponds to the worst error rate among the PAIs
(print and video here), Bona Fide Presentation Classifica-
tion Error RateBPCER, which is the error rate in classify-
ing a bonafide as an attack, and ACER, which is computed
as the mean of APCER and BPCER:

ACER =
APCER+BPCER

2
. (3)

ACER =
maxforPAI=1...C(APCERPAI) +BPCER

2
.

(4)
Where C is a PA category (print and video in OULU)

However, for cross-database testing, Half Total Error
Rate (HTER) is adopted as done in previous literature [17],
which computes the average of False Rejection Rate (FRR)
and the False Acceptance Rate (FAR):

HTER =
FRR+ FAR

2
. (5)

The decision threshold is computed from the develop-
ment set based on the equal error rate (EER) criterion.

4.2. Baseline systems

We used two reproducible baselines available as open
source in all the experiments. The first one is based on
the Image Quality Measures (IQM) [9]. Each image is pre-
processed in a similar way as explained in Subsection 3.1,
and a 139-dimensional image quality feature vector is ex-
tracted. The extracted features are fed to an SVM, and the
mean score of the frames is used as the final score. The sec-
ond baseline uses the uniform Local Binary Patterns (LBP).
After similar preprocessing, images are converted to gray-
scale and 59 dimensional LBP histogram was computed.
The resulting feature vector was used with an SVM classi-
fier. These two baseline systems are denoted as IQM-SVM
and LBP-SVM respectively. Apart from the baselines, best-
performing methods from the public competition in OULU
dataset [3] and recent methods are compared in the experi-
mental section.



4.3. Intra testing

We perform intra testing in both Replay Mobile and
OULU datasets.

4.3.1 Intra testing in Replay Mobile dataset

In the Replay Mobile dataset, intra testing is done with the
‘grandtest’ protocol. Scoring is performed video level by
averaging the frame level scores. The comparison with the
reproducible baselines is shown in Table 1.

It can be seen that the proposed DeepPixBiS method
achieves 0% HTER in the ‘grandtest’ protocol, outperform-
ing all the baselines by a large margin. The ROC curves for
the baselines and the proposed methods is shown in Fig. 4.

Method EER HTER

IQM-SVM 1.2 3.9
LBP-SVM 6.2 12.1

DeepPixBiS 0.0 0.0

Table 1. Intra testing in Replay Mobile dataset
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Figure 4. ROCs for reproducible baselines and proposed Deep-
PixBiS method in the eval set of grandtest protocol in Replay-
Mobile dataset

4.3.2 Intra testing in OULU-NPU dataset

For the OULU dataset, we follow a similar evaluation strat-
egy as [3] for all four protocols.

The comparison with the methods taken from the papers,
the proposed method, and our reproducible baselines are
shown in Table 2. From Table 2 it can be seen that the pro-
posed method outperforms all the state of the art methods
in ‘Protocol-1’. The ROC curves for the baselines and the
proposed methods for ‘Protocol-1’ is shown in Fig. 5. The
performance in ‘Protocol-4’ is the worst, which consists of
unseen PAI and unseen environments.

It was observed that for most of the cases the APCER
was worse for print attacks as compared to video attacks.

This could be because of the high quality of the prints in
the OULU dataset. Motion-based methods are useful for
improving the performance in case of print attacks. Fusion
with such methods could improve the results at the cost of
additional computational and time overhead.

Prot. Method APCER(%) BPCER(%) ACER(%)

1

CPqD 2.9 10.8 6.9
GRADIANT 1.3 12.5 6.9

FAS-BAS [17] 1.6 1.6 1.6
IQM-SVM 19.17 30.83 25
LBP-SVM 12.92 51.67 32.29

DeepPixBiS 0.83 0 0.42

2

MixedFASNet 9.7 2.5 6.1
FAS-BAS [17] 2.7 2.7 2.7
GRADIANT 3.1 1.9 2.5

IQM-SVM 12.5 16.94 14.72
LBP-SVM 30 20.28 25.14

DeepPixBiS 11.39 0.56 5.97

3

MixedFASNet 5.3±6.7 7.8±5.5 6.5±4.6
GRADIANT 2.6±3.9 5.0±5.3 3.8±2.4

FAS-BAS [17] 2.7±1.3 3.1±1.7 2.9±1.5
IQM-SVM 21.94±9.99 21.95±16.79 21.95±8.09
LBP-SVM 28.5±23.05 23.33±17.98 25.92±11.25

DeepPixBiS 11.67±19.57 10.56±14.06 11.11±9.4

4

Massy HNU 35.8±35.3 8.3±4.1 22.1±17.6
GRADIANT 5.0±4.5 15.0±7.1 10.0±5.0

FAS-BAS [17] 9.3±5.6 10.4±6.0 9.5±6.0
IQM-SVM 34.17±25.89 39.17±23.35 36.67±12.13
LBP-SVM 41.67±27.03 55.0±21.21 48.33±6.07

DeepPixBiS 36.67±29.67 13.33±16.75 25.0±12.67

Table 2. The results of intra testing on four protocols of OULU-
NPU [5].
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Figure 5. ROCs for reproducible baselines and proposed Deep-
PixBiS method in the eval set of Protocol-1 in OULU-NPU dataset

4.4. Cross database testing

To test the generalization ability of the proposed frame-
work, we perform cross-database experiments. Specifically,
we do cross-database testing with the same datasets used in
the intra testing experiments.

Many recently published papers report cross-database
testing with CASIA-MFSD [28] and Replay-Attack [6]



databases, while reporting intra-dataset performance in
OULU dataset. However, the best-performing methods in
OULU are not evaluated in cross-database testings. This re-
sults in reporting over-optimistic results in intra testing as
it is tuned for the specific dataset. To avoid this, we per-
form cross-testing with the exact same models used in the
intra testing. In this way, the generalizability of the best-
performing methods in a specific dataset can be examined
in the cross-database testing scenario.

Two experiments were performed in cross-database test-
ings. In the first one, the model trained on OULU ‘Protocol-
1’ is tested on the ‘grandtest’ protocol of Replay Mobile
dataset (OULU-RM). Conversely, in the second experiment,
the model trained on the ‘grandtest’ protocol of Replay Mo-
bile dataset is tested on the ‘Protocol-1’ of OULU dataset
(RM-OULU).

The results of the cross-database testing are shown in Ta-
ble 3. It can be seen that the model trained in OULU dataset
achieves an HTER of 12.4% in Replay Mobile dataset. The
model used is the same as the one used in the intra-testing. It
can be seen that the proposed method achieves much better
generalization properties as compared to our reproducible
baselines.

While doing the cross-database testing in the reverse
case, i.e., training on Replay Mobile and testing on OULU
(RM-OULU), the HTER achieved is 22.7%. Even though
the performance of the proposed method is much better than
the baselines, it can be seen that the generalization in RM-
OULU testing is poor in general. This can be due to the lim-
ited amount of training data available for training in Replay
Mobile dataset. Another reason could be the challenging
nature of attacks in OULU. It is to be noted that the same
model achieved nearly perfect separation in the intra testing
scenario in Replay Mobile dataset.

Method
trained on

OULU
trained on

RM
tested on
OULU

tested on
RM

tested on
RM

tested on
OULU

IQM-SVM 24.6 31.6 3.9 42.3
LBP-SVM 32.2 35.0 12.1 43.6

DeepPixBiS 0.4 12.4 0.0 22.7

Table 3. The results from the cross-database testing between
OULU-NPU (‘Protocol-1’) and Replay Mobile (‘grandtest’ pro-
tocol)databases. HTER (%) values are reported in the table.

4.5. Discussions

From the experimental section, it can be seen that the
proposed approach achieves perfect separation between
bonafide and attacks in Replay Mobile dataset and achieves
good performance in protocols of OULU dataset. It is to be
noted that the algorithm uses only frame level information

for computing the scores. The cross-dataset experiments,
especially OULU-RM shows good generalizability of the
proposed approach across databases when sufficient train-
ing data is available.

The main advantage of the proposed approach is its ease
of implementation due to the frame level processing. The
preprocessing part is simple including face detection and
alignment. The cropped face image is fed to the trained
CNN, and the output map is averaged to get the final PA
score. A single forward pass through the CNN is enough
for the PAD decision. This enables us to extend the frame-
work by fusing other sources of information easily when
computational and time overheads are not critical. Further,
it is possible to extend the framework for partial attacks by
modifying the ground truth binary masks.

In general, one crucial limitation of CNN based methods
for PAD is the limited amount of data available for training.
Availability of a large amount of training data might im-
prove the performance and generalization of the proposed
approach further.

5. Conclusions and future directions

In this work, we introduced a dense fully connected neu-
ral network architecture which was trained with pixel-wise
binary supervision. The pixel-wise binary supervision on
the output maps forces the network to learn shared represen-
tation utilizing the information from different patches. Un-
like previous methods using multiple networks and ensem-
bling of different models, here a single CNN model is used
which can compute the PA score frame-wise. The proposed
system only uses frame level information which makes it
suitable for taking a decision quickly without the need for
processing multiple frames which is useful in practical de-
ployment scenarios. Further, the software to reproduce the
system is made publicly available for fostering further ex-
tension of the work. From cross-database experiments, it
can be seen that the performance is far from perfect. Fu-
sion of multiple features has been shown to improve the
accuracy at the cost of additional computational complex-
ity. The proposed framework can be extended by adding
temporal features to improve accuracy. Availability of large
scale databases for PAD might also improve the results from
the proposed framework.
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