
PQFabric: A Permissioned Blockchain Secure from
Both Classical and Quantum Attacks

Amelia Holcomb
Computer Science

University of Waterloo
Waterloo, Canada

aholcomb@uwaterloo.ca

Geovandro Pereira
Combinatorics & Optimization

University of Waterloo
Waterloo, Canada

geovandro.pereira@uwaterloo.ca

Bhargav Das∗

Computer Science
University of Waterloo

Waterloo, Canada
bhargav19036@gmail.com

Michele Mosca
Combinatorics & Optimization

University of Waterloo
Waterloo, Canada

michele.mosca@uwaterloo.ca

Abstract—Hyperledger Fabric is a prominent and flexible so-
lution for building permissioned distributed ledger platforms.
Access control and identity management relies on a Mem-
bership Service Provider (MSP) whose cryptographic interface
only handles standard PKI methods for authentication: RSA
and ECDSA classical signatures. Also, MSP-issued credentials
may use only one signature scheme, tying the credential-
related functions to classical single-signature primitives. RSA
and ECDSA are vulnerable to quantum attacks, with an ongoing
post-quantum standardization process to identify quantum-
safe drop-in replacements. In this paper, we propose a redesign
of Fabric’s credential-management procedures and related
specifications in order to incorporate hybrid digital signatures,
protecting against both classical and quantum attacks using
one classical and one quantum-safe signature. We create
PQFabric, an implementation of Fabric with hybrid signatures
that integrates with the Open Quantum Safe (OQS) library. Our
implementation offers complete crypto-agility, with the ability
to perform live migration to a hybrid quantum-safe blockchain
and select any existing OQS signature algorithm for each node.
We perform comparative benchmarks of PQFabric with each of
the NIST candidates and alternates, revealing that long public
keys and signatures lead to an increase in hashing time that is
sometimes comparable to the time spent signing or verifying
messages itself. This is a new and potentially significant issue
in the migration of blockchains to post-quantum signatures.

Index Terms—Post-quantum cryptography, digital signatures,
Blockchain, Hyperledger Fabric

I. INTRODUCTION

In recent years, the research community has drawn ever
closer to the construction of a quantum computer, one with
the potential to break classical public key cryptography. In
advance of this threat, the National Institute of Standards
and Technology (NIST) is looking to establish standards
for cryptographic algorithms that show promise at securing
against both quantum and classical attacks. The NIST post-
quantum standardization process is in its third round of
evaluation and has narrowed down the initial 82 submission
candidates to only 15. These include six digital signature
candidates: three finalists and three alternates. Some of the
finalists are expected to be selected for standardization at

G. Pereira and M. Mosca are supported in part by NSERC, Cryp-
toWorks21, Canada First Research Excellence Fund, Public Works and
Government Services Canada, and the Royal Bank of Canada.
∗ B. Das is currently affiliated with Indian Institute of Technology

Dhanbad.

the end of Round 3, about an year from now. A fourth round
is also expected in order to select alternate candidates for
later standardization.

Open source implementations of such algorithms, for
instance those provided by the Open Quantum Safe (OQS)
project [1], continually change in order to keep up-to-
date with both progress in cryptanalysis and per-algorithm
parameter modifications and optimizations. However, de-
signing, approving, and implementing post-quantum cryp-
tographic standards is only the first step. There is also the
gargantuan task of integrating these algorithms into the
wide range of existing systems that depend on and are
highly coupled with classical public key cryptography. The
integration itself will be a new test of these algorithms,
particularly as they are integrated into high-performance
systems. Moreover, during the transition, these systems must
remain secure against classical attacks, even in the face of
potential flaws or changes to post-quantum cryptography
algorithms. This situation demands a double layer of pro-
tection against classical and quantum attacks, which can be
achieved by means of hybrid signatures, i.e., one classical
signature and one post-quantum [2], [3].

A prominent class of applications that is likely to be
an early adopter of these algorithms is the blockchain
distributed ledger. Blockchain technology is fundamentally
reliant on cryptographic primitives, especially signature
authentication, in order to 1) validate the origin of the
transactions that are to be added to the chain and 2) ensure
non-repudiation from the transaction originators. In our
work, we focus on Hyperledger Fabric [4], a permissioned
blockchain in use in production systems. As a permissioned
blockchain, Hyperledger does not require anonymous cre-
dentials, but instead uses standard digital signatures to
identify users.

In addition to the need for blockchains to make this
post-quantum transition earlier rather than later, there are
several typical features of blockchains that make them a
rigorous testbed for new cryptographic algorithms. Industry-
deployed blockchains are high-throughput, with recent re-
search in Hyperledger Fabric achieving 20,000 transactions
per second [5]. Each transaction proposal along with every
processing step in the network contains a signature, and

ar
X

iv
:2

01
0.

06
57

1v
3

 [
cs

.C
R

]
 2

3
D

ec
 2

02
0

the code path to commit each transaction includes both
signing and verification algorithms. As such, signature size
and algorithm speed both have direct and significant impact
on the performance of the system. In addition, as large
distributed systems that can neither ensure synchronous
updates nor handle extended downtime for a migration,
blockchains are among the more complex use cases for
post-quantum migration. Lessons learned maintaining per-
formance and backwards compatibility in this context can
be broadly applicable as other systems integrate with post-
quantum algorithms later on.

Contributions: This work introduces PQFabric, which is
to our knowledge the first version of the Hyperledger Fab-
ric enterprise permissioned blockchain1 whose signatures
are secure against both classical and quantum computing
threats. Our design proposal is backwards compatible for
easy migration and flexible enough to support different post-
quantum cryptographic schemes, making it future-proof to
NIST upcoming standards and updates to the OQS library.
We also:
• Highlight the inconsistencies we found between NIST

and Golang APIs if hybrid signature schemes are to
be implemented, which will need to be resolved for
smooth integration going forward.

• Provide a baseline performance comparison between
transactions that use classical and hybrid quantum-
classical cryptography. We find that, depending on the
signature algorithm used, PQFabric can achieve compa-
rable performance to classical Fabric.

• Profile PQFabric to provide insight into the practical
performance costs of post-quantum signature algo-
rithms. We show that the length of the signature and/or
public key, not just the signature algorithm execution
time, are major contributors to PQFabric slowdowns.

• Publish our code online, offering our implementation
as a testbed for future work focusing on improving
blockchain transaction throughput with post-quantum
cryptography algorithms.

II. REVIEW OF HYPERLEDGER FABRIC AND RELATED WORK

Hyperledger Fabric [4] consists of a highly flexible
and customizable framework for deploying permissioned
blockchains. Fabric achieves high performance and scala-
bility through the execute-order-validate paradigm, which
was originally proposed in the context of improving the
performance of State Machine Replication [6]. This means
that particular peers execute the transactions first for preval-
idation before they transactions get ordered. This is in
contrast with the typical approach from other blockchains
of ordering the transactions first and then requiring all
peers to execute all ordered transactions (order-execute-
validate). This modified approach allows for a number
of optimizations like avoiding all peers to execute every
transaction among many others. Moreover, operations like

1the FastFabric project [5] in particular.

execution/validation and ordering of the transactions are
decoupled and thus performed by different entities (peer-
s/endorsers and orderers, respectively). As a result, the
consensus protocol (run by the orderers) is independent of
the blockchain protocol as a whole (e.g., the chaincode),
and can be tailored per application and also updated after
the network is bootstrapped.

We now provide a set of definitions of interest used in
the context of the Fabric Blockchain.

Membership Service Provider (MSP). The network MSP
handles credential/identity management and is usually as-
sociated with one organization. It is responsible for issuing
certificates to peers, orderers and users and thus giving them
suitable authentication and authorization. The network MSP
is not to be confused with the local MSP, which is discussed
in Section IV. Each node uses a local MSP to abstract
credentials and identity management (including signatures
and their verification) from the rest of its codebase. The
local MSP is a software module only, and does not run
separately from the node.

Fabric-CA. The Fabric-CA is a certificate authority that
contains a root certificate and issues identity certificates to
each organization’s MSP. The MSP’s certificate allows it to
issue enrollment certificates to the users in its organization,
giving them access to the blockchain.

Client or User. A client or user is an actor who owns
digital access credentials to a particular blockchain network,
and can submit transaction proposals to the peers.

Peer (also called endorsing peer or endorser). The
peer’s responsibility includes verifying users’ signatures in
the transaction proposals, executing and validating the
proposal according to pre-specified policies, endorsing and
digitally signing the resulting outcome of the validated
proposal, and notifying the user of the outcome. Peers also
receive block (of ordered transactions) candidates from the
orderers, performing final validation and committing the
blocks to the ledger.

Orderer. For each set of transactions, an orderer verifies
all endorsers’ signatures and runs a consensus protocol to
order the transactions into a block candidate. Orderers sign
the block candidate and send it back to peers for final
validation and inclusion in the ledger.

Transaction. Users submit transaction proposals to the
blockchain network in order to change the state of the
ledger. A proposal includes the user’s identity, the chain-
code (smart contract) function to be executed and its
related parameters, and a transaction identifier. The user
is responsible for soliciting endorsements according to the
organization’s policies. The user assembles the proposal
and endorsements, signs everything, and submits it to the
ordering service. The submitted content is the transaction.

A. Related Work

We now briefly review other blockchain proposals in
the literature aiming for quantum-safe solutions. We recall
that the goal of this work is to provide the main Public

Key Infrastructure (PKI) functionalities with quantum-safe
protections. PKI in Fabric allows for reliable authentication
and authorization throughout the blockchain interactions.
Protecting the PKI consists of migrating classical digital
signature primitives into hybrid ones that contain a post-
quantum counterpart. Much of the related work in the
literature does not target the same goal.

A common quantum-safe proposal in the literature is to
protect the classical Confidential Transactions protocol also
named RingCT. The RingCT protocol was tailored for use
in cryptocurrency applications. Its main properties include
anonymity of the user executing transactions, concealed
transaction amounts, and provable ranges for the trans-
action amounts. This is the case in proposals like Lattice
RingCT [7], [8], Hcash [9] and MatRiCT [10]. The goal
in such proposals is to provide quantum-safe protection
for anonymous clients running on a public blockchain, i.e.,
clients who do not want to have their identity revealed
when performing transactions. Anonymous credentials can
be achieved by the means of ring signatures [11]. NIST is
far from standardizing post-quantum ring signatures as we
are still in the process of selecting a plain digital signature
in the next few years. Hyperledger Fabric, as a permissioned
blockchain, does not adopt anonymous credentials.

In 2019, Campbell [12] evaluated the use of qTesla, one
of NIST’s Round 2 post-quantum signature candidates, in
Hyperledger Fabric. Although the paper discusses the princi-
ple of hybrid signatures, it ultimately examines only a fixed
non-hybrid signature scheme (qTesla), while we implement
and analyze hybrid signatures that are configurable with any
post-quantum signature algorithm. Moreover, its analysis
uses only the published benchmarks of qTesla, and provides
no practical impact evaluation of integrating hybrid post-
quantum signatures into Fabric nor design recommenda-
tions for the more subtle elements of the integration.

III. SOLUTION PROPOSAL

A. Signature Requirements

When designing a hybrid quantum-classical signature for
use in Hyperledger Fabric, we have two key requirements.

1) In the future quantum computing world, the system
must be as protected as the strongest currently devel-
oped post-quantum cryptography standards will allow.

2) In the current classical computing world, the system
must be no less protected than current cryptography
standards.

To satisfy the first requirement, it would be straightforward
to use a post-quantum algorithm directly. Previous work
[12] deemed the qTesla signature algorithm [13] alone
sufficient to meet both requirements, because all qTesla
parameters were at the time believed to be theoretically
secure against both quantum and classical attacks. However,
we argue that this is not sufficient, even if qTesla was
theoretically secure. A cryptographic algorithm is only as
secure as its implementation, and these new implementa-
tions are relatively untested and unproven. If a flaw is found

in the implementation of a post-quantum algorithm, we
must still have the classical signature. Otherwise, a revealed
vulnerability in the post-quantum implementation would
violate our second requirement.

B. System Requirements

In designing PQFabric, we have two system requirements.

1) Backwards compatibility: Fabric is a large distributed
system whose nodes and clients cannot upgrade si-
multaneously. In addition, we do not expect that or-
ganizations running fabric will retire their existing
blockchain and start a new one from a genesis block
in order to migrate to post-quantum cryptography. As
a result, our solution must be backwards-compatible.
The blockchain must be able to gradually migrate from
classical cryptography to post-quantum cryptography
without unreasonable or synchronous downtime, and
client software running classical cryptography must be
able to coexist with PQFabric.

2) Cryptoagility: Our solution must be flexible to ongoing
changes in post-quantum cryptographic standards, as
NIST continues to finalize the list of post-quantum
signature algorithms. It must be compatible with all the
remaining candidates and agnostic to which algorithm
is eventually chosen. Selecting any of them must be a
straightforward configuration change.

C. Transaction Signature Proposal

We propose a hybrid quantum-classical signature scheme
for transactions, using both post-quantum and classical
cryptography. Each node in Fabric has two private keys,
one classical and one post-quantum. Nodes sign transactions
once with each key and concatenate the two signatures.
Both signatures must be verified.

D. Identity Proposal

Hyperledger Fabric passes public key identities as X.509
certificates. We follow the proposal in [14] to create hybrid
X.509 certificates, adding three non-critical Extensions:

• Subject-Alt-Public-Key-Info: The post-quantum public
key for the certificate, which may be nil.

• Alt-Signature-Value: The signed classical and post-
quantum public key material of the certificate, signed
by the issuer’s post-quantum key.

• Alt-Signature-Algorithm: The post-quantum algorithm
used to sign the certificate key material.

The issuer still signs the entire certificate with a classical-
only signature. Because the extensions containing the post-
quantum material can be ignored by classical verifiers, the
hybrid certificates are backwards compatible.

E. Security analysis of the proposal

1) Hybrid Signatures: There are different combiners for
building hybrid post-quantum + classical signatures, whose

security is generally analyzed under the Existential Unforge-
ability under Chosen Message Attack (EUF-CMA). We con-
sider the EUF-CMA security of both the certificate signatures
and the transaction signatures.

A dual message combiner with nesting is suitable for dual
messages (m1, m2) like those in hybrid X.509 certificates2.
In particular, the dual combiner signs as follows:

σ1← Σ1.Sign(m1)
σ2← Σ2.Sign(m1,σ1, m2)
σ← (σ1,σ2)

where Σi refers to the respective classical or post-quantum
algorithm, and the combined signature is σ. According to
[2], if Σ1 is EUF-CMA secure then the combined signature
is EUF-CMA secure only with respect to its first component
σ1. Moreover, if Σ2 is EUF-CMA secure then the overall σ
is also EUF-CMA-secure, i.e., the outer signature guarantees
the unforgeability of both messages (m1, m2). We follow
the above construction for certificate signatures. Σ1 is a
post-quantum algorithm; Σ2 is a classical algorithm; m1 is
the post-quantum public key material; m2 is the classical
certificate information that is signed classically by the issuer
along with Extensions containing m1 and σ1.

The dual message combiner is backwards-compatible with
legacy signers and verifiers. If a node cannot use the
post-quantum layer, σ1, m1 ← Null reverts to classical-
only authentication. This approach also resists downgrade
(to classical-only) attacks, since an attacker cannot detach
the pure classical signature component from σ as long
as the classical signature is still secure. Formally, they
cannot retrieve σ′2 = Σ2.Sign(m2) from the dual signature
σ2 = Σ2.Sign(m1,σ1, m2). Note the separation would be
easy if a concatenation combiner3 was used.

Next, we consider the security of the transaction sig-
nature. The EUF-CMA security of a combiner is given by
the maximum EUF-CMA security offered between the two
signatures [2] if single messages are to be signed. In the case
of the hybrid signatures generated by Fabric peers, orderers,
and clients, a concatenation combiner is sufficient. Fabric
uses provided identities, in the form of X.509 certificates,
to verify signatures, and stores these identities with each
signature in committed blocks. Keeping with the conven-
tions of existing Fabric, we use the X.509 certificate, not
the signature itself, to decide whether the signature should
be interpreted as hybrid or classical-only. Thus, downgrade
attacks on the concatenated signature do not apply, because
it is protected by a nested signature (the certificate).

We also emphasize that nested signatures at the trans-
action level would add significantly to transaction times,
because they require hashing potentially huge messages
(recall that the post-quantum signature σ1 is appended to
the message). For example, Picnic signatures are 34–61KiB.

2m1 is a non-critical X.509 Extension
3σ = (Σ1.Sign(m1)||Σ2.Sign(m2))

2) Hashing: Hashing was not the primary focus of our
work; however it does have implications for post-quantum
security. Cryptographic hashes are not broken by quantum
computers, but their preimage-resistance security is reduced
by half and collision-resistance is reduced from N/2-bit
security to about N/3 bits for an N -bit output hash [15],
[16]. For this reason, N ≥ 384 is recommended for collision-
resistant post-quantum hashing. We upgraded signature
hashes to SHA-384 in PQFabric, but Fabric does not yet offer
pluggable hash functions for the block hashes forming the
ledger. This is under development by the Hyperledger team.

IV. IMPLEMENTATION

In a 2018 guide for businesses using Hyperledger Fab-
ric, IBM researchers wrote in a brief section on quantum
cryptography that “Hyperledger Fabric provides a pluggable
cryptographic provider, which allows replacing these [ex-
isting] algorithms for digital signatures with others.” [17]
However, the process is not that simple. In this section,
we will describe the basic structure of our implementation
followed by the challenges we faced implementing hybrid
quantum-classical scheme.

A. Core Structure

In our implementation,4 we built off of Hyperledger Fab-
ric 1.4. We used LibOQS 0.4.0 [18] for the implementations
of post-quantum cryptographic signature algorithms, which
was the most recent version at the time of writing, but
our code is compatible with all versions of LibOQS. LibOQS
is written in C while Hyperledger Fabric is written in Go,
so we wrote a CGO wrapper around LibOQS.5 Eventually,
we assume that these quantum-safe cryptographic functions
would be built into the Go core library, so we followed the
API conventions used in Go’s ECDSA implementation.

We introduced a SecretKey, a PublicKey, and an
OQSSigInfo struct attached to each containing the OQS
algorithm name. The algorithm may be set by configuration
and is not expected to change over the lifetime of the
blockchain except by careful migration (see Appendix A).6

The Go representation of the LibOQS library and Sig
objects are loaded together and maintain pointers to LibOQS
C functions. In our implementation, post-quantum cryptog-
raphy is only used for signing and verifying messages, so the
wrapper only includes KeyPair, Sign, and Verify.

We modified three main areas of the Hyperledger Fabric
codebase to allow hybrid quantum signatures.

1) Blockchain Cryptographic Service Provider (BCCSP):
The BCCSP module is designed to provide a uniform
cryptography interface to the core Fabric that is not
dependent on a particular cryptographic algorithm or

4Code at https://github.com/ameliaholcomb/fastfabric1.4-oqs
5Recently, libOQS has published its own Go wrapper, which can be found

at https://github.com/open-quantum-safe/liboqs-go.
6That said, any node can verify any post-quantum signature for which it

has the appropriate algorithm implementation, even if it is not configured
to sign with that algorithm itself.

https://github.com/ameliaholcomb/fastfabric1.4-oqs
https://github.com/open-quantum-safe/liboqs-go

implementation. It is a specific implementation of the
more general Cryptographic Service Provider (CSP).
The bulk of our modifications here were to add a new
key type and associated interface with KeyImport,
KeyPair, Sign, Verify, and so on. We also made
changes to the Signer module shared by all BCCSP
keys; for more details, see section IV-B.

2) Local Membership Service Provider (MSP): In theory,
the BCCSP modifications should be all that is nec-
essary. However, as discussed in section IV-C1, hy-
brid quantum-classical cryptography requires two keys,
which is not a transparent change for the MSP module.7

3) Cryptogen: This binary is not an officially supported
part of Hyperledger Fabric, but it provides a template
for generating the cryptographic material required to
run Fabric from its configuration files. Organizations
running Fabric may generate this material however
they choose, but any equivalent of the “cryptogen”
binary would need similar modification in order to gen-
erate post-quantum key material and X.509 certificates.

One might also modify the client to use quantum-safe
cryptography. Since we were primarily concerned with the
integrity of the blockchain as a whole, rather than transac-
tions submitted by a single client, we did not include this
in the scope of our work. Moreover, as the client code is
written in Javascript and makes no use of the MSP or BCCSP
common packages, it is a large disjoint refactoring project
with limited interest to the research community.

B. Signature Structure

The Go crypto library Signer interface [19] has methods

Public() PublicKey
Sign(rand io.Reader, digest []byte, opts

SignerOpts) (signature []byte, err
error)

Hyperledger Fabric’s BCCSP module offers an implemen-
tation of the above crypto.Signer interface that calls
the appropriate signature algorithm based on the key type
used in Signer creation. We modified the BCCSP Signer to
implement hybrid signatures.

We added an optional post-quantum key field to the
bccsp.Signer struct, filled out at Signer creation. The
very careful reader may notice that this modification will
not quite match the interface of Go’s crypto.Signer.
First, the crypto library explicitly assumes that there is
only a single public key, and enforces this assumption in
the type signature of the Public() method. We discuss
this problem, as it appeared here and elsewhere, in IV-C1.
Second, there is a subtle incompatibility between the crypto
library and LibOQS: while crypto.Signer.Sign()

7The MSP also needed to be modified because, while signing functional-
ity is fully factored out into a shared Signer in the BCCSP module, the
corresponding verify functions are not. Presumably this is an oversight; it
would not be difficult to add a Verifier in the BCCSP.

requires a digest, LibOQS’s Sign() functions expect an
unhashed message. We discuss this issue further in IV-C2.

Setting aside these discrepancies, we describe the hybrid
signature scheme used. We use concatenation as follows:

if qKey {
s1 = Sign(qKey, digest)

}
s2 = Sign(cKey, digest)
if qKey {

return asn1.Marshal(s1, s2)
}
return s2

We make the corresponding modifications to verification.
We first parse and verify the provided X.509 identity, check-
ing the alternate public key extensions to decide whether
or not the identity is post-quantum. If the X.509 certificate
contains an alternate public key, we unmarshal the signature
and verify the quantum and classical parts separately. Both
must match for the signature to be accepted. If there is
a post-quantum certifying authority, the X.509 certificate
must contain post-quantum extensions even if the client
is classical-only, with a quantum signature certifying the
absence of a post-quantum public key. In this case, the client
is considered “legacy” and the node accepts a classical-only
signature. If the certifying authority has only a classical key,
then PQFabric behaves just like Fabric.

C. Integration Challenges

Overall, the main Hyperledger Fabric codebase did a re-
markably good job of encapsulating its cryptographic inter-
face in the BCCSP and making few assumptions about key or
algorithm type. We suspect integrating other codebases with
quantum-safe cryptography may be more of a refactoring
effort. (For example, moving outside of the well-structured
Fabric code to the auxiliary Cryptogen binary code, we
quickly encountered functions like GetECPublicKey,
which can return only an ECDSA public key.) However,
there were a few challenges in the integration that may
help reveal the complex code assumptions that will change
under a hybrid quantum-classical cryptography scheme.

1) Two Keys: The hybrid quantum-classical cryptography
scheme necessitated by the requirements in III-A implies
that two private (and public) keys are needed. One might
envision creating a HybridKey type that encapsulates two
lower-level keys. However, Sign() is a method on a
Signer or other higher level object, and hybridization is
fundamentally a change to signatures, not to keys. Thus,
we implemented a hybrid Signer type instead. The hybrid
Signer conflicted with assumptions at both the higher MSP
layer and the lower Go crypto library layer.

First, placing an additional key in the Signer broke
the encapsulation between the BCCSP and MSP modules,
because the MSP:

• Extracts cryptographic keys from an X.509 certificate.
It does this both on initialization (extracting public

keys from its own X.509 certificate and importing
the corresponding private key from its keystore) and
during signature verification (deserializing the public
keys from another node’s identity proto).

• Stores the public and private keys for the node directly
in an internal proto structure called an Identity.

• Provides its own stored keys to the BCCSP when signing
a message.

In these three areas, the MSP had to be modified to extract,
store, and use a second key.

Second, placing an additional key in the Signer conflicted
with the Golang library because its crypto.Signer
has an interface method Public(), which returns a
single public key. In the case of Hyperledger Fabric, the
Public() function is never used, and so we were able
to sidestep the issue entirely. However, it is important to
highlight that the Golang crypto.Signer interface is
not currently compatible with hybrid Signers.

2) Hashing: Our PQFabric integration also revealed in-
consistencies between the NIST standard specifications and
the core Golang crypto library. Specifically, the NIST Sign
API takes an unhashed message [20], while the Go crypto
library uses a Signer interface that expects the actual digest
[19]. Unfortunately, these divergent API decisions are both
used as features. Several finalist algorithms have taken ad-
vantage of NIST’s API to select an appropriate hash function
internally based on the security parameters specified, or
to provide optimizations when the same hash is required
twice. Hyperledger Fabric, meanwhile, makes use of the
Go library’s flexibility in their first stages of implementing
pluggable hash functions.

In our implementation, we simply allowed LibOQS to
internally re-hash a hashed message. This may have a small
performance cost but does not impact security (it provides
as much security as the less secure hash). We could have
removed the hashing step on the Hyperledger Fabric side,
but it would have taken heavy contortions to do this while
still maintaining code compatibility with a purely classical
Fabric. Unless Golang and NIST’s APIs agree, this is likely
to be a problem for future integrations as well.

3) Backwards Compatibility: Our scheme is backwards
compatible in the sense that no individual node or client
has to use post-quantum keys: every node checks whether
the signing identity contains a post-quantum key before
deciding whether a hybrid signature verification is required.
This allows, for example, all the peers and orderers to use
quantum-safe cryptography while the client still has not
been upgraded (as we did). However, every node on the
blockchain must at least have a software update that allows
it to verify post-quantum hybrid signatures before any one
node can use them. A vanilla fabric node will not know how
to unpack or verify a hybrid signature, and we do not offer
a classical-only component for partial verification.

For an explicit proposal of how to perform a live migration
to hybrid post-quantum cryptography, see Appendix A.

4) Cryptoagility: In the existing code base, developers
must add a new key type and implement its interface
functions in the BCCSP package for each new algorithm. In
order to use LibOQS algorithm implementations and keep
up-to-date with changes to the NIST finalists at each stage,
we needed to be algorithm-agnostic, without a separate key
type for each post-quantum signature algorithm.

This presented some challenges for code integration be-
cause, unlike with other keys, the Go data type did not
uniquely determine the algorithm to be used. We introduced
the OQSSigInfo struct, a member of an OQS PublicKey,
so that Go operations requiring an algorithm identifier,
such as marshalling/unmarshalling keys or creating an Alt-
Signature-Algorithm X.509 extension (see section III-D),
could obtain a key algorithm.

This challenge will not be an issue for developers who
wait for complete standardization and a per-language im-
plementation of post-quantum cryptography. However, in
the meantime, while NIST solicits feedback on integration
of these non-standard algorithms into production systems,
maintaining cryptoagility is an additional consideration.

V. EVALUATION AND RESULTS

We evaluated our implementation on a network consisting
of one orderer and two peers, each running on a different
machine. The client (itself on a fourth machine) sent all
transactions to a single peer, while the second peer was
also available as an endorser. Each machine was equipped
with Intel®Xeon®CPU E5-2620 v2 processors at 2.1 GHz,
with 24 hardware threads, 64GB RAM, and an SSD.

We use the chaincode from [5], which provides simple
balance accounts and allows transferring value from one
account to another. A single transaction thus touches ex-
actly two accounts. Our experimental setup includes 20,000
accounts, and each benchmark runs 10,000 transactions,
batched into blocks of size 100, with 100 blocks sent from
each of 10 parallel threads. The transactions were created
to ensure that no two touched the same accounts, so that
database contention would not be a factor. The endorsement
policy required only one peer to endorse a transaction.
The benchmark measured wall time on the peer between
receiving a block of transactions and committing that block.
For each round of benchmarks, we trimmed off the first and
last few blocks in our analysis for ramp up and ramp down.

Our baseline cryptographic setup signs transactions only
with ECDSA defined over the NIST curve P-256 (as specified
by FIPS 186-3) and offers 128-bit classical security. We
then compared this to the same benchmark run with nodes
configured to sign and verify using hybrid schemes pairing
ECDSA8 with each remaining NIST round three finalist and
some of the alternates, as implemented in libOQS 0.4.0.
We used various post-quantum parameter sets targeting
NIST security category I. Not all of these signature schemes

8Throughout the paper, we refer to the hybrid schemes by their post-
quantum algorithm only.

TABLE I
TESTED ALGORITHMS, SORTED BY CERTIFICATE SIZE IN BYTES. ALGORITHMS

WITH TOO LARGE A CERTIFICATE CAUSED THE PQFABRIC PEER TO CRASH
DURING THE BENCHMARK.

Algorithm Cert Size (bytes) Success

ECDSA 818 3
Falcon-512 2,988 3
Falcon-1024 5,051 3
Dilithium-2 5,263 3
Dilithium-3 6,542 3
Dilithium-4 7,830 3
qTesla-p-I 24,551 3
Picnic-L1-FS 45,319 7
Rainbow-Ia-Cyclic-Compressed 79,708 7
Rainbow-Ia-Classic 202,741 7

25 50 75 100 125 150 175 200
Block latency (ms)

EC
DS

A

Fa
lco

n-
51

2

Fa
lco

n-
10

24

Di
lith

ium
-2

Di
lith

ium
-3

Di
lith

ium
-4

qT
es

la-
p-

I

Latency Range

Fig. 1. Per-block commit latency range for different signature algorithms
and security parameters. Note that hybrid signatures are referred to by
their post-quantum algorithm specification only.

were able to run successfully with Hyperledger Fabric. In
particular, large certificate sizes caused various symptoms,
including peer node crashes and stuckness in the endorser.
We did not attempt to debug these issues, and instead report
only on the performance of the post-quantum hybrids that
ran successfully without modification (see Table I).

Finally, though qTesla is no longer in the running for
NIST, we still decided to evaluate its performance. We did
this because it was specifically considered in recent work
on post-quantum Hyperledger Fabric [12], and because it
has interesting performance characteristics with a large
certificate that is not quite of sufficient size to cause crashes.

As shown in Figure 1, ECDSA alone has the lowest block
latency (median 49 ms), followed by the Falcon hybrids
(median 60 ms and 64 ms), the Dilithium hybrids (median
68 ms, 76 ms, and 85 ms), and finally ECDSA+qTesla
I (median 102 ms). Their average throughput, shown in
Figure 2, follows the opposite pattern, with throughputs of
2084, 1788, 1664, 1545, 1391, 1268, and 1035 transactions
per second, respectively. We further investigated the source

0 250 500 750 1000 1250 1500 1750 2000
Transactions per second

EC
DS

A

Fa
lco

n-
51

2

Fa
lco

n-
10

24

Di
lith

ium
-2

Di
lith

ium
-3

Di
lith

ium
-4

qT
es

la-
p-

I

Average Throughput

Fig. 2. Average throughput, in transactions per second, of different
signature algorithms and security parameters. Note that hybrid signatures
are referred to by their post-quantum algorithm specification only.

of the slowdown by examining representative CPU profiles
of the peer node below.

VI. DISCUSSION

A. Performance

Overall, we found that PQFabric, while having a higher
block latency and lower throughput than classical Fabric,
does not experience severe performance degradation, de-
pending on the post-quantum signature algorithm used.
The hybrid Falcon-512 scheme saw only a 14% decrease
in throughput, on average, compared to the pure ECDSA
scheme. Indeed, the time spent in Falcon-512 Sign and Ver-
ify alone is faster than the corresponding ECDSA functions;
much of the slowdown comes from having to sign and verify
twice. This is significant and surprising: we expected hybrid
signatures might severely slow down transactions, but a
hybrid ECDSA+Falcon-512 scheme seems usable as-is with
no further performance optimizations.

We now examine representative CPU profiles for bench-
marks of each signature scheme. The functions with the
greatest increase in CPU share for the hybrid schemes
are oqs.{Sign|Verify} and sw.Hash. The first is
expected; this is the additional execution time required to
perform the post-quantum signature algorithm, on top of
the ECDSA algorithm. The time spent in Hash is more
surprising. Some of the slowdown may be accounted to
the SHA-384 hash required by post-quantum signatures,
however that does not explain the variation between post-
quantum algorithms. There are two main callers of Hash
that contribute to its CPU time. The first is from signature
verification in the MSP. The hash function is called on the
received message. The second caller is VerifyBlock, usually
from the gossip service. In this case, the hash function is
called on the entire block. This block contains the identity

TABLE II
ALGORITHM SIGNATURE + PUBLIC KEY SIZE, VERSUS BENCHMARK DATA.

Algorithm Pk+Sig Size LibOQS Time∗ Hashing Time∗ Block Latency
(bytes) (ms) (ms) (ms)

ECDSA 96 – 4 52
Falcon-512 1563 13 5 60
Falcon-1024 3073 22 6 65
Dilithium-2 3228 4 14 70
Dilithium-3 4173 5 16 77
Dilithium-4 5126 7 18 85
qTesla-p-I 17472 8 29 104
∗ The LibOQS time and Hashing time should be taken as rough approxima-
tions only. They were calculated by multiplying the mean block latency by
the percent of time spent in LibOQS and Hash, as measured by a sample
CPU profile of the entire benchmark. The sample profile includes setup
blocks, warm-up, and warm-down.

certificates, including a public key and certificate signature,
as well as message signatures for all of the endorsements
received. For post-quantum signatures these may be quite
large, dramatically increasing the CPU time spent on hash-
ing. Table II estimates the time each signature scheme spent
on hashing and in LibOQS functions (Sign and Verify) for
each block, compared to the public key plus signature size
of the scheme.

Notably, signature algorithm speed is only one of the
factors impacting performance in schemes with larger key
and signature sizes. For Hyperledger Fabric, the signature
and public key size have an added performance cost even
for fast signature algorithms, because the signatures and
keys must be hashed in each block. In fact, while the Falcon-
512 benchmark spent more absolute time in Sign() than
either Dilithium-2 or qTesla-p-I, the latter two had lower
throughput, with notable time spent hashing. Moreover,
hashing time is not the only effect of large key and signature
sizes; it is only the easiest to measure. The CPU profiles
also showed increases in memcpy, proto marshalling, and
memory garbage collection during the PQFabric bench-
marks. There are many calling functions contributing to
these increases, but one natural hypothesis is that signifi-
cantly increased signature, public key, and certificate sizes
increased the CPU time spent on memory management.

Overall, it seems that maintaining a small key and sig-
nature size, even sometimes at the expense of a slower
post-quantum algorithm, impacts the performance of Hyper-
ledger Fabric. Notably, prior work [12] examined the hypo-
thetical slowdown to Hyperledger Fabric from post-quantum
cryptography, based on the benchmarks published by NIST.
The paper focused on qTesla-p-I, a reasonable choice given
only the performance characteristics of Sign and Verify,
but our work finds qTesla-p-I to be the worst performing
of the algorithms we tested. Our work demonstrates that
the CPU cycle benchmarks alone do not provide enough
information to anticipate the performance impact of post-
quantum cryptography in the Hyperledger Fabric production
system, because of the complex performance implications of
signature and public key size.

One other interesting performance difference between the

signature schemes is the range of block latencies. While
ECDSA, Falcon, and Dilithium variants had relatively con-
sistent performance across blocks (10.0< σ < 16.1), qTesla
block commit latencies varied widely (σ = 33.0). We were
unable to determine the cause of this variation.

B. Future Work

In our paper, we evaluated PQFabric with a simple one-
signature endorsement policy. Changing this will affect block
size by requiring more signatures per block, and it will also
increase the time spent signing and verifying. Testing other
policies can help establish a clearer relationship between
signature and public key size versus algorithmic efficiency.

In addition, we expect future work to focus on the hashing
bottleneck we have highlighted in this paper. If public keys
and signatures can be more efficiently encoded into blocks
or saved elsewhere, while still preserving security proper-
ties, it may allow significant speedups for post-quantum
algorithms with large public keys and signatures. Alterna-
tively, researchers may wish to tackle the expensive block
hashing by replacing Fabric’s SHA2 with a hash algorithm
that allows for parallel hash computations such as the
ParallelHash scheme standardized along with SHA3 [21].

We have published our code on Github, and offer it to the
research community at large as a testbed for experimenting
with these and other optimizations. Groups proposing new
hybrid signature schemes or post-quantum X.509 certificate
standards may also be interested in testing their work on a
high-throughput permissioned blockchain like PQFabric.

VII. CONCLUSION

In this work, we built PQFabric, which is to our knowl-
edge the first version of Hyperledger Fabric whose sig-
natures are secure against both quantum and classical
computing threats. Our implementation meets practical pro-
duction system requirements for backwards compatibility
and cryptoagility without sacrificing its security. Through
our implementation, we offer insight into incompatibilities
and integration challenges that production systems are
likely to face in their own quantum-safe transition. We
provide benchmarks showing that, depending on the post-
quantum cryptographic algorithm selected, PQFabric can
achieve comparable latency and throughput performance to
classical-only Fabric. Finally, we offer CPU profile analysis
of our software to identify the cause of latency increases, al-
lowing us to suggest target areas for performance improve-
ments. We believe that our work substantially contributes
to the discussion on post-quantum cryptographic standards
and post-quantum blockchain integration, and hope that it
will be useful both to those developing standards and those
seeking to implement them.

REFERENCES

[1] D. Stebila and M. Mosca, “Post-quantum key exchange for the inter-
net and the open quantum safe project,” in International Conference
on Selected Areas in Cryptography. Springer, 2016, pp. 14–37,
https://openquantumsafe.org.

https://openquantumsafe.org

[2] N. Bindel, U. Herath, M. McKague, and D. Stebila, “Transitioning
to a quantum-resistant public key infrastructure,” in International
Workshop on Post-Quantum Cryptography. Springer, 2017, pp. 384–
405.

[3] E. Crockett, C. Paquin, and D. Stebila, “Prototyping post-quantum
and hybrid key exchange and authentication in TLS and SSH.” IACR
Cryptol. ePrint Arch., vol. 2019, p. 858, 2019.

[4] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich et al.,
“Hyperledger fabric: a distributed operating system for permissioned
blockchains,” in Proceedings of the thirteenth EuroSys conference,
2018, pp. 1–15.

[5] C. Gorenflo, S. Lee, L. Golab, and S. Keshav,
“FastFabric: Scaling hyperledger fabric to 20 000 trans-
actions per second,” International Journal of Network
Management, vol. 30, no. 5, p. e2099, 2020, _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nem.2099. [On-
line]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/
nem.2099

[6] M. Kapritsos, Y. Wang, V. Quema, A. Clement, L. Alvisi, and M. Dahlin,
“All about eve: execute-verify replication for multi-core servers,” in
Presented as part of the 10th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 12), 2012, pp. 237–250.

[7] S.-F. Sun, M. H. Au, J. K. Liu, and T. H. Yuen, “Ringct 2.0: A compact
accumulator-based (linkable ring signature) protocol for blockchain
cryptocurrency monero,” in European Symposium on Research in
Computer Security. Springer, 2017, pp. 456–474.

[8] W. A. A. Torres, R. Steinfeld, A. Sakzad, J. K. Liu, V. Kuchta,
N. Bhattacharjee, M. H. Au, and J. Cheng, “Post-quantum one-
time linkable ring signature and application to ring confidential
transactions in blockchain (lattice ringct v1. 0),” in Australasian
Conference on Information Security and Privacy. Springer, 2018, pp.
558–576.

[9] Hcash, “Hcash a new standard of value – featuring post-quantum
signature technology,” 2020, https://h.cash/#section0.

[10] M. F. Esgin, R. K. Zhao, R. Steinfeld, J. K. Liu, and D. Liu, “Matrict:
efficient, scalable and post-quantum blockchain confidential transac-
tions protocol,” in Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, 2019, pp. 567–584.

[11] R. L. Rivest, A. Shamir, and Y. Tauman, “How to leak a secret,” in
International Conference on the Theory and Application of Cryptology
and Information Security. Springer, 2001, pp. 552–565.

[12] R. Campbell, “Transitioning to a Hyperledger Fabric Quantum-
Resistant Classical Hybrid Public Key Infrastructure,” The Journal of
The British Blockchain Association, p. 9902, Jul. 2019, publisher: The
British Blockchain Association.

[13] N. Bindel, S. Akleylek, E. Alkim, P. Barreto, J. Buchmann, E. Eaton,
G. Gutoski, J. Kramer, P. Longa, H. Polat, J. E. Ricardini, and
G. Zanon, “Submission to NIST’s post-quantum project: lattice-
based digital signature scheme qTESLA,” 2018. [Online]. Available:
https://qtesla.org/

[14] P. Kampanakis, P. Panburana, E. Daw, and D. V. Geest, “The Viability
of Post-quantum X.509 Certificates,” Tech. Rep. 063, 2018. [Online].
Available: https://eprint.iacr.org/2018/063

[15] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” in Proceedings of the twenty-eighth annual ACM symposium
on Theory of computing, 1996, pp. 212–219.

[16] C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, “Strengths
and weaknesses of quantum computing,” SIAM journal on Computing,
vol. 26, no. 5, pp. 1510–1523, 1997.

[17] N. Gaur, L. Desrosiers, V. Ramakrishna, P. Novotny, S. A. Baset, and
A. O’Dowd, Hands-On Blockchain with Hyperledger: Building decen-
tralized applications with Hyperledger Fabric and Composer. Packt
Publishing Ltd, Jun. 2018, google-Books-ID: wKdhDwAAQBAJ.

[18] D. Stebila and M. Mosca, Post-quantum Key Exchange for the Internet
and the Open Quantum Safe Project, Oct. 2017, pages: 37.

[19] “crypto - The Go Programming Language.” [Online]. Available:
https://golang.org/pkg/crypto/#Signer

[20] I. T. L. Computer Security Division, “Example Files - Post-Quantum
Cryptography | CSRC | CSRC,” Jan. 2017. [Online]. Available: https:
//content.csrc.e1a.nist.gov/Projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/Example-Files

[21] J. Kelsey, S.-j. Chang, and R. Perlner, “Sha-3 derived functions:
cshake, kmac, tuplehash, and parallelhash,” National Institute of
Standards and Technology, Tech. Rep., 2016.

APPENDIX

A. Live Migration

Large distributed systems like blockchains require special
consideration when transitioning to quantum-safe cryptog-
raphy because universal downtime and a synchronous up-
date for all nodes may not be possible. Software migrations
like this one require not only assurance of comparable
performance post-update, but also a careful story around
backwards compatibility, gradual rollouts, and rollbacks.
Though we did not attempt a live migration of a classical-
crypto blockchain, our PQFabric implementation allows for
a live migration with the following steps:

1) Slow rollout of PQFabric software to all core blockchain
nodes (orderers, peers, and endorsers). Clients do
not yet need to upgrade. PQFabric is backwards-
compatible, so nodes will continue signing classically
until their configuration changes to hybrid mode, and
verifying signatures classically until the identity pro-
vided with the signature changes to a hybrid one.
They will also continue to validate X.509 certificates
classically. This is intended to be a no-op update and,
until step 4, can be rolled back at any time. PQFabric
and vanilla fabric nodes can coexist until step 4.

2) Certifying authority update. The certifying authority is
given a post-quantum key and re-issues node certifi-
cates following a typical key rollover procedure. At this
point, all node certificates contain an Alt-Signature-
Value field, but no Alt-Subject-Public-Key-Info, because
the nodes themselves do not have post-quantum keys.
The nodes still do not verify the alternate signature
when receiving certificates.

3) Second node rollout for PQFabric software to read and
verify alternate signature fields in X.509 certificates.
This could either happen through a software update
(this is the way we implemented it) or the change
could be incorporated into a policy update to the
transaction validation system chaincode. At this point,
the nodes still do not sign their own messages with
hybrid signatures, but they do verify the alternate
signature field, when present, in X.509 certificates.

4) Slow rollout of post-quantum keys to nodes, by gen-
erating a post-quantum keypair, updating the node’s
configuration files (including X.509 certificate), and
then restarting the node. On startup, the node’s MSP
will read its own X.509 certificate to determine its pub-
lic/private keys. It will load the post-quantum key from
the certificate and begin signing with hybrid signatures.
All other nodes are running PQFabric software and will
verify the hybrid signature, even while they continue
to sign with classical signatures.

5) Eventual rollout of post-quantum keys and software to
clients, as client integration becomes available.

https://onlinelibrary.wiley.com/doi/abs/10.1002/nem.2099
https://onlinelibrary.wiley.com/doi/abs/10.1002/nem.2099
https://h.cash/#section0
https://qtesla.org/
https://eprint.iacr.org/2018/063
https://golang.org/pkg/crypto/#Signer
https://content.csrc.e1a.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/Example-Files
https://content.csrc.e1a.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/Example-Files
https://content.csrc.e1a.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/Example-Files

	I Introduction
	II Review of Hyperledger Fabric and Related Work
	II-A Related Work

	III Solution Proposal
	III-A Signature Requirements
	III-B System Requirements
	III-C Transaction Signature Proposal
	III-D Identity Proposal
	III-E Security analysis of the proposal
	III-E1 Hybrid Signatures
	III-E2 Hashing

	IV Implementation
	IV-A Core Structure
	IV-B Signature Structure
	IV-C Integration Challenges
	IV-C1 Two Keys
	IV-C2 Hashing
	IV-C3 Backwards Compatibility
	IV-C4 Cryptoagility

	V Evaluation and Results
	VI Discussion
	VI-A Performance
	VI-B Future Work

	VII Conclusion
	References
	Appendix
	A Live Migration

