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Abstract—This paper presents a layer-2 micropayment pool
design which supports high-throughput blockchain off-chain
payment, designed specifically for the use case of rewarding users
who share redundant bandwidth to assist video stream delivery.
We analyze the validity and effectiveness of the proposed micro-
payment pool. Our analysis results demonstrate that the proposed
micropayment pool design is better suited for the bandwidth
reward use case compared to existing off-chain payment channel
solution.

Index Terms—layer-2, off-chain, micropayment, video sharing
rewards

I. INTRODUCTION

Internet video accounts for over three-quarters of all internet
traffic today, and will increase further to 82% by 2022,
according to Cisco’s global IP traffic forecast [1]. The same
report predicts that from 2017 to 2022, global Internet video
traffic will grow four-fold, live Internet video will grow 15-
fold, virtual reality and augmented reality traffic will grow 12-
fold. In the U.S., video consumption among the millennials has
jumped 256% from an average of 1.6 hours per week to 5.7
hours per week according to a SSRS Media and Technology
survey, and mobile devices are leading the charge in video
consumption.

Content Delivery Networks (CDNs), which are systems of
distributed servers that deliver content data to end users, are
predicted by Cisco to carry 72% of Internet traffic by 2022.
They play an important role in distributing web content and
streaming video data, by providing a backbone infrastructure
for the data delivery. A major limitation of today’s CDN
networks is the so-called “last-mile” delivery problem, where
a last-mile link between a limited number of data centers
and end users presents a bottleneck in the data streaming
and delivery pipeline and often leads to less optimal user
experience, including link failures, noticeable delays, choppy
streams, poor picture quality, and frequent rebuffering. An-
other major concern is the CDN bandwidth cost, which can
easily reach millions of dollars per year for popular video
streaming sites. These issues become more prominent with the
coming era of high resolution digital media, for example 4K,
8K, and 360-degree VR streaming, and upcoming technologies
such as light field streaming.

To overcome such bandwidth limitations, decentralized
peer-to-peer data streaming and delivery platforms have been
developed based on self-organizing and self-configuring mesh

networks [2]–[5]. These solutions typically enhance the video
player with a peer-to-peer stream delivery SDK. While watch-
ing the video streams, end users may opt-in to share redundant
or unused bandwidth resources via the SDK, and thus greatly
reduces the bandwidth pressure of the CDN servers, resulting
in higher stream delivery quality. However, in practice, rela-
tively few users will voluntarily share their resource unless
properly compensated. Without an incentive mechanism in
place, we may not expect many users to get on board and
join the sharing ecosystem.

The emerging blockchain platforms [6]–[8] provide a
promising infrastructure for delivering the incentives through
cryptocurrency transactions. For example, a viewer who re-
ceived a video chunk can pay a smaller amount of cryp-
tocurrency to the peer that delivered the chunk, in return for
the bandwidth shared. Such a pay-per-byte scheme offers the
finest granularity of reward to the peers, and can thus effec-
tively incentivize the bandwidth sharing. However, to make
such a blockchain-based rewarding mechanism practical, the
blockchain needs to support ultra-high transaction throughput.
For example, for one single video stream with a moderate
100,000 concurrent viewers, assuming each viewer receives
and pays for a video chunk from a peer node once every 10
seconds, then the required transaction throughput is already
as high as 10,000 transactions per second, exceeding the
capability of most of the leading blockchain platforms.

Off-chain/Layer-2 solutions including payment channels
[9]–[16], side-chains [17], [18], and roll-up [19]–[21] provide
promising possibilities for blockchain throughput scaling. By
moving the majority of transactions off-chain, the system is
able to support frequent payments for small, individual video
data chunks transmitted to or received from one or more peers.
However, as will be discussed in more details later in the paper,
these existing solutions may not be the best fit for delivering
data sharing rewards. In particular, existing payment channels
can only handle a pair of users. However, when watching a
video stream, typically a viewer is exchanging video chunks
with and need to pay to multiple peers. Setting up a payment
channel with each individual peer is highly inefficient. Instead,
we need an off-chain mechanism that can handle one-to-many
payments.

1) Our Contributions.: In this paper, we address this
problem with a novel micropayment pool design which is
capable of handling one-to-many off-chain payments. Our
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contributions can be summarized as follows:

• We analyze the requirements for a micropayment system
for data sharing rewards.

• We propose a micropayment pool design which can
handle off-chain one-to-many payments, well suited for
delivering the data sharing rewards with pay-per-byte
granularity.

• We analyze the validity and effectiveness of the micro-
payment pool, and show that it is more efficient for data
sharing rewards than payment channels.

2) Related Works.: Off-chain/Layer-2 payment has been a
hot research topic in recent years as a scalability solution for
blockchain platforms [9]–[16], [22]. A payment channel (or
more generally state channel) is a mechanism that allows users
to exchange multiple transactions without committing to the
blockchain [9], [10]. Such “off-line” transactions can be settled
on the blockchain later, thus incurring minimal transaction
confirmation latencies. A payment channel typically start with
an opening funding transaction to lock the initial fund onto the
blockchain [9]. Then, subsequent commitment transactions are
exchanged off-line between the two users to update the initial
state. A final settlement transaction unilaterally or bilaterally
closes the payment channel when submitted to the blockchain
for confirmation. As state updates or commitment transactions
can be exchanged between the users off-line, as soon as
they are created and signed, many more transactions can be
exchanged in between the funding and the settlement transac-
tions. Cutting the number of on-chain transactions down to
two also drastically reduces the costs associated with very
frequent micropayments. Earlier development revolves around
Bitcoin, and evolved into networks of payment channel called
the Lightning Network [9]. Over the years, more designs of
off-chain payment channels built on top on other blockchain
infrastructes, including the Ethereum smart contract, are pro-
posed [23]. These payment channels typically only handle
back-and-forth payments among two parties. The Lightning
Network and the alike can potentially handling multi-party
payment, but has rather complex setup and requires pre-
existing payment routes among the users participated in the
value exchange [9], [15], [23].

Besides payment/state channel, other layer-2 solutions like
side-chain [17], [18] and roll-up [19]–[21] are also widely
discussed among the blockchain research community. It is
worth noting that our off-chain micropayment pool can work
on top of these solutions to further extend the throughput of
the blockchain.

II. MOTIVATION

In this section, we will first review the peer-to-peer video
bandwidth sharing problem, which provides the context for
our discussion. Then, we will dive into the bandwidth sharing
reward problem and discuss the shortcomings of the existing
payment channel solutions.

Fig. 1: Viewer Alice pulling stream data from multiple peesrs.
The solid arrows represent the video stream data flows, and
the dashed arrows represent the micropayments between the
peers.

A. Peer-to-Peer Video Bandwidth Sharing

Popular videos or live streams, such as NBA final games,
could attract millions of people watching concurrently. Given
the sheer number of concurrent users, for any viewer, it is
highly likely that there are other viewers nearby enjoying the
same video stream. Since they are watching the same content,
instead of loading the stream from the CDN, some of them
can pull from other peers close by. With sufficient number
of concurrent viewers, such a peer-to-peer sharing mechanism
can offload significant amount of CDN data. To achieve the
maximum offload, a viewer typically pulls the stream from
multiple peers, as shown in Figure 1.

In the example, Viewer Alice has multiple peers (Bob,
Carol, and David, etc) in her proximity. Popular video stream-
ing protocols like HLS/MPEG-DASH typically divides the
video file into small video data chunks. A viewer client
would download these data chunks in serial order. As the
video stream plays, whenever Alice needs to download the
next data chunk, the peer-to-peer sharing SDK asks around
and download the chunk from peers if one of the peer nodes
already has the chunk available locally. The CDN is used as a
fallback source when none of the peers has the required chunk.
It is reported that such a peer network can potentially result in
50% to 90% CDN bandwidth saving [3], [4] if all the viewers
participate in stream data sharing.

B. Off-Chain Payment Channels for Bandwidth Sharing Re-
wards

In the example shown in Figure 1, viewer Alice can send a
small amount of crytocurrency with an on-chain transaction for



each video data trunk she obtain from peer nodes. However, as
mentioned in the introduction, this could quickly overwhelm
the capacity of the blockchain.

An immediate optimization is to adopt the payment chan-
nel technique. Indeed, a payment channel can significantly
improve the scalability since it reduces the number of on-
chain transactions. With a payment channel, a viewer can pay
for many video segments with just one on-chain settlement
transaction. Nonetheless, there are two issues with the payment
channel solution.

First, slow node switching are unconducive to streaming
data segments from many cachers to a single viewer. As
discussed above, an on-chain transaction is needed to establish
a payment channel between any two parties, which might take
at least a couple seconds to be confirmed on the blockchain.
Typically, to make peer-to-peer sharing effective, a viewer is
typically connected to 10+ peers to increase the likelihood that
at least one of the connected peers possesses the desired video
chunk. Each time the viewer needs to pull a stream from a new
peer, it needs to make an on-chain transaction first to open the
payment channel, which is time consuming. In addition, before
the on-chain transaction is confirmed, the viewer node cannot
pull streams from the peer node. This could halt the video
stream, leading to degraded user experience.

Second, the payment channel solution still requires a rela-
tively large number of on-chain transactions. Each payment
channel requires an upfront token lockup transaction, and a
settlement transaction to close the channel. With 10+ peers,
this implies each viewer is associated with at least 20 on-chain
transactions, which still hinders the scalability of the system.

Thus, there is an unsolved need to design an off-chain
payment system suited for decentralized video streaming, with
support for one-to-many off-chain transactions. Such a system
can effectively address the two issues mentioned above. First,
with the one-to-many payment capability, node switching can
be done instantly since no intermediate on-chain transaction
is required when connecting to a new peer. Second, the one-
to-many capability also potentially reduces the number of on-
chain transactions needed, and thus increasing the scalability
of the system. Of course, the system should be trustless, and
able to detect, prevent, and penalize fraudulent activities such
as double spending.

III. OFF-CHAIN MICROPAYMENT POOL

In this section, we present a “resource-oriented off-chain
micropayment pool” design that has the desired properties
listed in the previous section.

1) Resource-Oriented Off-Chain Micropayment Pool.: Fig-
ure 2 is a diagram illustrating the working mechanism of
our proposed resource-oriented off-chain micropayment pool,
showing a viewer Alice making off-chain payments to cachers
Bob and Carol for video chunks. In the following, as we
discuss the micropayment pool design, we will keep the
discussion at the protocol abstraction level. However, we note
that the proposed micropayment pool can be implemented
on any Turing-complete smart contract platforms such as

Ethereum [7]. The interaction between Alice and any of her
peers (e.g. Bob) can be devided into four steps, as illustrated
below.

Step 1. Micropayment pool creation: Alice publishes an on-
chain transaction to create a micropayment pool with a time-
lock duration:

CreatePool(resourceId, deposit, collateral, duration) (1)

To create the pool, Alice may specify a “Resource ID”
resourceId that uniquely represents the digital content she
intends to retrieve. It may refer to a video file, or a live
stream. The deposit amount may be at least the total value
of the resource to be retrieved. For instance, if the resource
is a video file which is worth 100 tokens, then the deposit
has to be at least 100 tokens. Along with the deposit, Alice
is required to put down a collateral which can discourage
Alice from double spending. If a double spending attempt
from Alice is detected, the collateral will be slashed. We will
discuss the double spending detection and slashing later in this
section. There we will also show that if collateral > deposit,
the net return of a double spend is always negative, and
hence any rational user will have no incentive to double
spend. The duration acts as a time-lock similar to that of
a standard payment channel. Any withdrawal (i.e. Step 4. On-
chain settlement) from the micropayment pool has to be before
the time-lock expires. The blockchain returns Alice the Merkle
proof of the CreatePool transaction after it has been committed
to the blockchain, as well as cptxHash, the transaction hash
of the CreatePool transaction.

Step 2. Initial handshake between peers: Whenever Alice
wants to retrieve the specified resource from a peer (Bob,
Carol, or David, etc.), she sends the Merkle proof and
cptxHash, the transaction hash of the on-chain CreatePool
transaction to that peer. The peer verifies the Merkle proof to
ensure that the pool has sufficient deposit and collateral for the
requested resource, and both parties can proceed to the next
steps. Since Alice already has the required Merkle proofs in
hand, and the peer can verify the proofs instantly with the
corresponding block headers, this handshaking can be done
instantly.

Step 3. Off-chain payments: Alice signs ServicePayment
transactions and sends them to the peers off-chain in exchange
for parts of the specified resource (e.g., a piece of the video
file, a live stream segment, etc.). A ServicePayment transaction
may contain the following data:

ServicePayment(target, amount, cptxHash, tgtSeq, σ)
(2)

Here target is the address of the peer that Alice retrieves
the resource from, and amount is the amount of token pay-
ment Alice intends to send. Similar to payment channels, the



Fig. 2: The working mechanism of the resource-oriented off-chain micropayment pool. Here Alice first downloads video chunks
from Bob, and pay to Bob via the micropayment pool with the four-step interaction. Then, Alice switches and downloads
video chunks from Carol without an intermediate on-chain transaction.

amount should increment each time to reflect the total value
of the resource Alice already received since the handshake
(Step 2). In the video streaming context, say each video
chunk is worth 5 token. Then the first ServicePayment
Alice sent to Bob should set amount to 5, and the second
ServicePayment should set amount to 10, and so on.
tgtSeq is to prevent a replay attack. It is similar to the “nonce”
parameter in an Ethereum transaction. If a target publishes a
ServicePayment transaction to the blockchain (see Step 4),
its tgtSeq needs to increment by one. Alice also attachs her
signature σ to the ServicePayment transaction, where σ is
computed by

σ = Sign(skAlice, target||amount||cptxHash||tgtSeq))
(3)

As the peer (Bob, Carlo, or David, etc.) receives the off-chain
ServicePayment transactions, it needs to verify validity of the
transactions, including the amount, cptxHash, tgtSeq, and
the signature σ. Upon validation, the peer can send Alice the
requested data chunks of the resource specified by the Cre-
atePool transaction. Note that the off-chain ServicePayment
transactions can be sent directly between two peers. Hence
there is no scalability bottleneck for this step. On the other
hand, to ensure that the data returned by the peers are parts of
the requested resource, Alice can compare the hashes of the
parts against the expected part hashes, which are small strings
downloadable form the CDN.

Step 4. On-chain settlement: Any peer (Bob, Carol, or
David, etc.) that receives the ServicePayment transactions from
Alice can sign and publish the transactions to the blockchain
anytime before the timelock expires to withdraw the tokens.
ServicePayment transactions that are published on-chain may
also be called “on-chain settlement” transactions. The protocol
also requires the peer to pay for the transaction fee for the on-
chain settlement.

Finally, we note that if Bob cannot provide the video chunks
Alice requested, Alice may switch to another peer (e.g. Carol).
As illustrated by Figure 2, when the switch happens, no on-
chain transaction is needed. This means the viewer can switch
to any peer node at any time without making an on-
chain transaction that could potentially block or delay the
video stream delivery. We also note that for the purpose of
illustration, in Figure 2 Carol starts to interact with Alice
only after Bob submits the ServicePayment transaction to the
blockchain. In practice though, multiple peers can interact
with Alice in parallel, and the micropayment pool still works
correctly (Theorem IV.1).

2) Double Spending Detection and Penalty.: A malicious
actor may attempt to make a double spending if it is profitable.
Thus, the micropayment pool needs to equipped with a proper
mechanism to penalize double spending attempts. To detecting
double spending, the on-chain smart contract that implements
the micropayment pool should check every on-chain trans-
action. The double spending detection rule is simple: if a
remaining deposit in the micropayment pool cannot cover the
next consolidated payment transaction signed by both Alice
and another peer, the smart contract will consider that Alice
has conducted a double spend. The smart contract should also
slash the collateral of the micropayment pool as the penalty
to Alice. We will prove in Theorem IV.1 that this ensures that
Alice is worse off if she double spends.

IV. ANALYSIS

1) Assumption.: Recall that in our context, a resource
refers to a piece of digital content. We can thus make the
following self-evident assumption before proving the correct-
ness of the proposed resource-oriented micropayment pool:
Possessing multiple copies of a resource does not increase the
value the resource. For example, if Alice already downloads
a video file from Bob, then the same video downloaded from
Carol does not provide any extra value to Alice.



2) Correctness Analysis.: In this section, we will prove
the correctness of the proposed micropayment pool under the
above assumption.

Theorem IV.1. The creator of the resource-oriented micro-
payment pool cannot profit from double spending.

Proof. We assume Alice is malicious, while her peers Bob,
Carol, and David maybe honest. Even worse, Alice could
colludes with another malicious peer Edward. Alice exchanges
partially signed transactions with Bob, Carol, and David for
the specified resource. Based on our assumption above, Alice
gains no extra value for the duplicated resource, the maximum
value she gets from Bob, Carol, and David is at most the
deposit amount.

As Alice colludes with Edward, she can send Edward the
full deposit amount. She then asks Edward to commit the
settlement transaction before anyone else and return her the
deposit later. In other words, Alice gets the resource which is
worth at most the deposit amount for free, before the double
spending is detected. Later when Bob, Carol, or David commit
the settlement transaction, the double spending is detected, and
the full collateral amount will be slashed. Hence, the net return
for Alice is

netAlice = deposit− collateral (4)

Therefore, for this scenario, as long as collateral >
deposit, Alice’s net return is negative. Hence, if Alice is
rational, she would not have any incentive to double spend.
Similarly, analysis for other cases show that Alice’s net return
is always negative if she conducts a double spend.

Theorem IV.2. A malicious peer might not return the re-
quested data to the micropayment pool creator after receiving
the ServicePayment. However, the loss of the pool creator can
be bounded by k · A, where k is the number of peers, and A
is the amount of tokens paid for each data chunk.

Proof. First, the pool creator Alice has a way to verify if
a data chunk (i.e. a part of the resource) returned by a
peer is the requested chunk. Since the CreatePool transaction
specifies the resourceId, all the users should have a common
understanding of which resource is expected to be shared.
And as described in “Step 3. Off-chain payments”, with the
resourceId, they can download the hashes of the data chucks
from the CDN and verify the data chunks received from the
peers.

A malicious peer might not return the requested data to
Alice after receiving the ServicePayment. If such behavior is
detected, Alice can blacklist that peer turn to another peer
to get the resource. Thus, the lost of Alice is bounded by
k · A. Moreover, if the resource is divided into small enough
chunks, in theory A can be made infinitesimally small. Then,
the total lost k ·A will also be infinitesimally small. In a more
practical case where some the peers is honest, Alice should
be able to identify those peers and get the requested resource
from them.

Theorem IV.3. The proposed resource-oriented micropayment
pool can incentivize the users to minimize the number of on-
chain transactions.

Proof. As specified in “Step 4. On-chain settlement”, the
protocol requires the peer (i.e. the target address of the
ServicePayment transaction) to pay for the transaction fee for
the on-chain settlement. To pay less transaction fees, a peer
would have the incentive to publish on-chain settlements only
when necessary, which is beneficial to the scalability of the
network.

V. RESULTS AND DISCUSSIONS

We have implemented the proposed resource-oriented mi-
cropayment pool in a testnet environment and compare its
effectiveness with the traditional payment channels. As also
discussed in Section II-B, we compare two aspects that are
critical for the bandwidth sharing reward use case, i.e. the node
switching time and the number of on-chain transactions. The
comparison shows that our proposed resource-oriented micro-
payment pool has multiple advantages for bandwidth sharing
rewards compared to existing payment channel solution.

Node switching time: As discussed in the previous sections, in
the peer-to-peer stream sharing environment, due to high peer
churn rate, a viewer needs to connect to new peer frequently.
In our testnet environment, such node switching happens once
every 60 to 100 seconds on average. With the proposed
micropayment pool, after the initial CreatePool transaction,
when the viewer pulls the video stream data from a new peer,
no on-chain transaction is required. Instead, the viewer can just
send the Merkle proofs of the CreatePool transaction to the
peer, and the peer can then validate it with the corresponding
block header. In our implementation, the entire process can
be conducted within 100 milliseconds. Such fast turn-around
time means the viewer can pull data from the new peer
instantly, and thereby improves the stream delivery quality.
In contrast, using traditional payment channel, the stream data
exchange with the new peer cannot start until the token locking
transaction is confirmed. On Ethereum, this could take up to
90 seconds (6 block confirmation). On newer blockchains like
Algorand, transaction confirmation can still takes several to
tens of seconds, making the peer-to-peer stream sharing much
less efficient.

Number of on-chain transactions: For a viewer, our one-to-
many micropayment pool only requires one CreatePool trans-
action upfront. Then for each peer the viewr connects to, only
one on-chain settlement transaction is needed to transfer the
tokens. Thus, for a viewer with n peer, a total of n+1 on-chain
transactions are needed. In comparison, using the traditional
payment channel, each peer is associated with an opening
and a closing on-chain transactions. Thus, a total of 2n on-
chain transactions are needed. As n is usually larger than
10 in a typical streaming session, given the same blockchain
transaction throughput, our proposed micropayment pool can
increase the maximum number of concurrent viewers by



almost 100%. Thus, our resource-oriented micropayment pool
can significantly improve the scalability of the blockchain for
bandwidth sharing rewards.
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