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Abstract—Blockchain has attracted much attention from both
academia and industry since emerging in 2008. Due to the
inconvenience of the deployment of large-scale blockchains,
blockchain simulators are used to facilitate blockchain design and
implementation. We evaluate state-of-the-art simulators applied
to both Bitcoin and Ethereum and find that they suffer from
low performance and scalability which are significant limitations.
To build a more general and faster blockchain simulator, we
extend an existing blockchain simulator, i.e. BlockSim. We add a
network module integrated with a network topology generation
algorithm and a block propagation algorithm to generate a
realistic blockchain network and simulate the block propagation
efficiently. We design a binary transaction pool structure and
migrate BlockSim from Python to C++ so that bitwise operations
can be used to accelerate the simulation and reduce memory
usage. Moreover, we modularize the simulator based on five
primary blockchain processes. Significant blockchain elements
including consensus protocols (PoW and PoS), information
propagation algorithms (Gossip) and finalization rules (Longest
rule and GHOST rule) are implemented in individual modules
and can be combined flexibly to simulate different types of
blockchains. Experiments demonstrate that the new simulator
reduces the simulation time by an order of magnitude and
improves scalability, enabling us to simulate more than ten
thousand nodes, roughly the size of the Bitcoin and Ethereum
networks. Two typical use cases are proposed to investigate
network-related issues which are not covered by most other
simulators.

Index Terms—blockchain, simulator, network

I. INTRODUCTION

Bitcoin [[1]] started in 2008 and was the first successful
system using a blockchain as core technology. Bitcoin, like
several other similar systems, has an underlying peer-to-peer
network composed of many connected nodes. Each node
holds a copy of the ledger, which is an ordered sequence
of blocks. The nodes periodically reach consensus on the
next valid block using a consensus protocol. Hash pointers
connecting the blocks guarantee immutability of the block
contents, i.e. the transactions. While transactions in Bitcoin are
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rather simple, Ethereum [2] supports smart contracts, Turing
complete programs, as transactions.

With many attractive features including tamper resistance,
high security, decentralization and smart contracts, blockchain
systems have received a lot of attention by academia and
industry. We found that blockchain technology has been
widely used in many different fields such as finance [3]], [4],
internet of things (IoT) [5], [6]], the energy market [7], [8]], and
healthcare [9]], [10]. While researchers have a huge interest in
blockchain, popular blockchains like Bitcoin and Ethereum do
not support flexible modification and configuration. Therefore,
many blockchain simulators, from early Bitcoin Simulator [[11]]
to recent BlockSim [12] and SimBlock [13]], have been pro-
posed to simulate blockchain.

We have evaluated state-of-the-art blockchain simulators
and noticed their limited performance and scalability. Some
simulators such as Bitcoin Simulator and SimBlock do not
explicitly include transactions in order to accelerate the sim-
ulation. But some research requires simulation for transac-
tions to estimate the run time of smart contract [14] or
the throughput of blockchain [15]]. Other simulators such
as BlockSim:Faria [22] and BlockSim:Alharby [12] aim at
including much more detail but suffer from high run time
and low scalability. Therefore recent research experimented in
different ways rather than using existing blockchain simula-
tors. Some work [14], [[15] deployed a small-scale blockchain
on a few computers or servers which is very different from
the real blockchain environment. Other work [[16], [17]] ran
experiments on Ethereum testnets (Rinkeby or Ropsten) where
the configuration is unknown and blockchain settings can not
be adjusted. The work in [18]], [19] did not apply experiments
in a real blockchain but instead used theoretical analysis.

Contributions: To maintain a detailed simulation and
achieve high performance and scalability, we extend Block-
Sim:Alharby to be a flexible high-performance blockchain
simulator named CBlockSim. Our contributions are as follows.

1) We add a network module integrated with a network

generation algorithm and a Dijkstra-based algorithm to
generate a realistic blockchain network and simulate
information propagation efficiently.



2) We rebuild BlockSim:Alharby in C++ and design a
binary transaction pool data structure so that we can
adopt bitwise operations in C++ to accelerate the simu-
lation. The experiments compare CBlockSim with other
state-of-the-art simulators, indicating that CBlockSim
shortens the run time by an order of magnitude and
increases scalability by an order of magnitude.

3) We modularize the simulator based on five blockchain
processes. The simulator can be configured to represent
different blockchains, i.e. different consensus protocols,
different information propagation algorithms and final-
ization rules implemented in individual modules.

4) We propose two typical use cases towards network-
related issues that most other simulators do not cover
due to the lack of precise network simulation.

II. RELATED WORK

Since Bitcoin and Ethereum are the two most popular
blockchains, most blockchain simulators aim to simulate either
or both of them. Bitcoin Simulator [[11] built in C++ and ns3
are the most widely used simulators for Bitcoin. VIBES [20]
is another large-scale Bitcoin simulator built in Scala. An
Ethereum simulator eVIBES [21]] was proposed inspired by
VIBES. SimBlock [13]] is a simulator for Bitcoin built in
Java, supporting compact block relay. It is also expected to
support simulation for Ethereum in the future. BlockSim [22]
proposed by Faria and Correia aims to simulate both Bitcoin
and Ethereum with high flexibility. Another simulator also
named BlockSim [[12] proposed by Alharby and van Moorsel
is built in Python and can simulate both blockchains as well.

All these simulators are analyzed in [23]]. Some simulators
cannot simulate several of the blockchain components. VIBES,
eVIBES and BlockSim:Alharby adopt a fixed information
propagation delay so that they can not simulate realistic
networks. Bitcoin Simulator and SimBlock ignore simulation
of transactions but concentrate on blocks. Some simulators
have limited performance. BlockSim: Faria is only used to
simulate a small-scale blockchain. BlockSim:Alharby suffers
from high run time when simulating transactions. Our pro-
posed CBlockSim aims at performance and scalability and
simulates a significant number of blockchain components.

III. CBLOCKSIM ARCHITECTURE

As illustrated in Figure [I] CBlockSim is built on a discrete-
event simulation model. A queue eventPool is adopted to
manage two types of events, GENERATE_BLOCK event
and RECEIVE_BLOCK event. The global timestamp clock
which is no more than SIM_TIME (the simulation time
set by the user) updates with the change of the timestamp
of each event. Process A deals with GENERATE_BLOCK
event and process B deals with RECEIVE_BLOCK event. We
modularize CBlockSim based on the following five blockchain
processes [[24].

A. Block Proposal

Block Proposal (step A3 in Figure [I)) is responsible for
block generation according to different consensus protocols.
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Fig. 1. The flowchart of CBlockSim

It is an individual module for simulating the generation
time of every generated block. We implement an algorithm
to simulate two mainstream consensus protocols, PoW and
PoS. The PoW simulation algorithm is consistent with the
algorithm in BlockSim:Alharby. Suppose there are N miners
where N={1,2,---,N}. The hash power of a miner i is
denoted by H,;. The fraction of blocks generated by miner %
should be proportional to ﬁ Therefore the exponential
distribution is adopted to simulate the time between blocks as
shown in PoW function in Algorithm [T}

PoW is the most common consensus protocol of many
blockchains but it is often accused of consuming too much
energy. PoS is a promising energy-saving alternative consensus
protocol. Miners compete with each other based on their
holding stakes instead of computing power. We simulate the
PoS protocol as in PeerCoin [25] which considers both the
stake owned by the miner and the duration that the miner has
held on to it. Suppose the stake owned by miner 7 is S; and the



duration that the miner has held the stake is denoted by Age;.
Then the fraction of blocks that miner ¢ generates should be
proportional to <249 The PoS function in Algorithm

.ZjEN ‘S:J"Agej R
presents the simulation of this process.

Algorithm 1 Block Proposal
BlockInterval: the time interval between two blocks;

1: function POW(H;, currentTimestamp)
2 A= ijy: H; Blockllnterval;
3: The time took to mine a block: 7' ~ Exp(\);
4 The generation time of the next block:
genTimestamp < currentTimestamp + T
5: return genT'imestamp;
6: end function
7: function POS(S;, Age;, currentTimestamp)
. A\ — Si-Age; . 1 .
> jenSiAge;  BlockInterval®
9: The time took to mine a block: 7' ~ Exp());
10: The generation time of the next block:
genTimestamp < currentTimestamp + T';
11: return genT'imestamp;

12: end function

B. Information Propagation

While the underlying network is a key part of a
blockchain and could seriously affect the performance of the
blockchain [26], [27], in many simulators there is no realistic
network model. BlockSim:Alharby adopted the exponential
distribution to simulate the block propagation delay. Instead,
we add a network module to simulate information propagation
in detail (step 2 in Figure [I). It first generates a realistic
blockchain network topology and then calculates the block
propagation delay.

The Bitcoin network is an unstructured peer-to-peer network
which can be simulated using a random graph model [28]]. The
Ethereum network is a structured peer-to-peer network and has
been proven to have the small-world property [29]-[31]. It can
be simulated using the Watts-Strogatz model [32]. We adopt
the method proposed in [33]] to generate a random network and
a small-world network. The average degree d and a topology
controlling parameter 3 are used to control the generation of
different networks. We set d to 12 [34] and S to 1 to generate
a random graph (Bitcoin), and set d to 19.747 and S to 0.24
to generate a small-world network (Ethereum) as observed
in [31]. As presented in Algorithm [2] the GetProbability
function calculates the probability of a connection between
node ¢ and node j. The GenerateN etwork function compares
the generated random number and the probability to determine
whether two nodes are connected or not.

We propose an algorithm based on the Dijkstra algorithm to
calculate the block propagation delay as shown in Algorithm 3]
Step A5 in Figure [T] broadcasts the generated block according
to the calculated block propagation delay. The difference
between the calculation of the delay of Bitcoin and Ethereum
is due to the difference of transmission protocols. (a)(b)(c)

Algorithm 2 Network Generation
N': the number of nodes;
B: topology controlling parameter;
d: average number of connections;
G graph containing all the nodes;
function GETPROBABILITY(N, 5, d, i, J)
dis + |i—j

s

edgeDensity + ﬁ; > po in [33]
maxDistance < L%J > Dyae in [33]]
min(dis,N—dis)

“mazDistance. = U then

return 3 - (edgeDensity — 1) + 1;
else
return (3 - edgeDensity;
end if
0: end function

1:
2
3
4
5: if edgeDensity —
6
7
8
9

—_

11: function GENERATENETWORK(N, 3, d)
12: Create a graph GG with IV nodes and no edge;
13: for i, € N do

14: p < GetProbability(N, 8,d,1i,7);
15: r < random(0,1);

16: if ¢ = 5 or r > p then

17: G.edge(i,j) < 0;

18: else

19: G.edge(i,j) <+ 1;

20: end if

21: end for

22: return G,

23: end function

in Figure [2] illustrate three block transmission modes in the
Bitcoin network, where (a) is the legacy relaying mode. The
node sends the inv message to notify all its peers of the arrival
of a new block. The peer replies with the getdata message to
request the new block. (b) and (c) are the high bandwidth
relaying and low bandwidth relaying modes proposed in
Compact Block Relay (CBR) [36].

In the high bandwidth relaying mode the node sends
cmpctblock message to notify the peer of the arrival of a
new block. If the peer has all the transactions contained in
the new block, it will reconstruct the block locally and no
further transmission is needed. But if some transactions are
not available, a getblocktzn/blocktzn roundtrip is needed to
obtain remaining transactions.

In the low bandwidth relaying mode a peer receives an
inv message and returns a getdata(CM PCT) message to
request the header and short transaction IDs. As in the high
bandwidth relaying mode, the peer will try to reconstruct the
block locally unless necessary transactions are not available.
Thus, in the best case only one cmpctblock message is sent so
that one latency is needed. In the worst case five messages are
sent and the latency is counted five times. In our simulator
we count the latency three times which is the average case
and ignore the message size because in most cases small-
size messages instead of the entire block are sent to request
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Fig. 2. (a)(b)(c) present the block transmission in Bitcoin; (d)(e) present the block transmission in Ethereum

Algorithm 3 Information Propagation
Input:
sender: the sender of the transaction or block;
G: graph containing all the nodes;
Output:
D: transmission delays from sender to other nodes;

1: Set priority queue () + &, updated node vector V' + &;

2: for v e G do

3: Dv] + oc;

4: if v is a neighbor of sender then

5: Q.add(v);

6: Calculate D[v] according to Equation [I| or

7: end if

8: end for

9: D[sender] < 0;

10: V.add(sender);

11: while @ is not empty do

12: u <+ Q.pop();

13: Q.remove(u);

14: for each neighbor v of u do

15: Calculate d,, (delay between u and v) according
to Equation [T] or [2}

16: D] + min(D[v], duy);

17: end for

18: end while

missing transactions. So the transmission delay between two
adjacent nodes can be denoted by Equation [I| D indicates the
transmission delay. L indicates the latency. size indicates the
block size and pd indicates the block processing delay for 1
Mb block.

D =3-L+pd-size. (D

(d) and (e) illustrate the transmission in Ethereum network.
A node sends the complete block only to a small fraction of its
connected peers (usually the square root of the total number of

peers) and sends the hash of the new block to other peers. A
peer which receives the hash at first waits for 400 ms. Then it
sends the GetHeader message to request the block header.
After receiving the block header, it waits for 100 ms and
sends the GetBody message to request the block body. The
sender and its peer send messages five times in total. So the
transmission delay can be described by Equation[2} B denotes
the bandwidth and M denotes the number of connected peers.
We use the random function to simulate the random choice
of peers of an Ethereum node.

) L+size- (B™' +pd), random(1, M) < VM
|5 L+size- (B~ +pd), random(1,M) > /M
2)

C. Block Validation

When receiving a new block from other nodes, the receiver
needs to check the generation proof and validate and execute
all the included transactions, causing a considerable block
processing delay which affects the block propagation delay
(Equation [I] and [2). We adopt the linear model in [28] to
estimate this delay. Compared to the constant or random
variable used in other simulators, this active model can reflect
the impact of block size on the block propagation delay better.

BlockSim:Faria used 229 ms and 240 ms as the average
overall block processing delays of Ethereum and Bitcoin
based on measurements. We take the two values to estimate
block processing delays on each node. First, Considering the
generated Bitcoin topology in Section III(B) of which the
average path length is about 4 and the Bitcoin block size
is 1.22 MB, the block processing delay for 0.1 MB Bitcoin
block will be 240/4/1.22/10 ~ 5 ms, which is close to the
theoretical estimated block processing delay (4 ms) in [28].
Then using the same way to infer the block processing delay of
Ethereum, the average path length of the generated Ethereum
topology is 3.8 which is close to the estimated value (3.7) in
[30]. The average Ethereum block size in 2020 is about 0.0225



MB. So the estimated processing delay for 0.1 MB Ethereum
block is 229/3.8/0.0225/10 ~ 268 ms.

D. Block Finalization

Block finalization reaches the agreement on the acceptance
of blocks. Most blockchains adopt the longest chain rule to
determine the accepted chain but there are still some other
choices such as GHOST which is used in the early version
of Ethereum. While BlockSim:Alharby supports the longest
chain rule, we include the GHOST rule in our simulator as
well. Process B in Figure|[T]illustrates the process of the longest
chain rule.

E. Incentive Mechanism

The incentive mechanism decides the way to distribute
block rewards and transaction fees. Bitcoin only rewards the
miners who generate blocks in the longest chain. Ethereum
rewards the miners who generate blocks in the accepted
chain or uncle blocks. Step 9 in Figure [T] distributes rewards
according to different incentive mechanisms.

IV. TRANSACTION POOL DESIGN

Besides the above block-related processes, there are some
significant transaction-related steps that seriously affect the
performance of the simulator. First, the number of transac-
tions is much larger than the number of blocks. Further, the
execution times of transaction-related operations such as steps
B2 and B5 in Figure [T] will increase as the number of nodes
increases. Suppose there are N nodes in total, every generated
new block will be propagated to all other nodes according
to the Algorithm [3] so each GENERATE_BLOCK event will
trigger N-1 RECEIVE_BLOCK events. Then the frequency of
executing step B2 or BS5 will increase with the growth of the
number of nodes. Therefore, we make a special design on the
transaction pool structure to avoid massive iterative operations,
using bitwise operation in C++.
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Shared Transaction Pool
Fig. 3. Transaction storage structure

As illustrated in Figure [3] we first store the complete
transactions in a transaction pool which is shared by all the
nodes. These complete transactions will be stored in memory
only once and will be sorted by the generation timestamp.
Every node has a mempool to record received transactions
which are not included in the local chain. We use the binary
sequences, T'N (transactions in the mempool of the node) and

T B (transactions in the block), to represent transactions in
each node and block. Two pointers, low and high, are used to
determine the valid range of transactions. The length of the two
binary sequences is equal to the total number of transactions
generated during simulation. Only the transactions between
low and high are available.

For example, if ten transactions are generated during sim-
ulation, TN and T'B will have ten bits. The leftmost digit
represents the first generated transaction and the rightmost
digit represents the last generated transaction. If a digit is set
to 1 and locates between low and high, it means the block
or the mempool of the node contains this transaction. At the
beginning, low and high in every node and block are set to
-1 which means no transactions are included in any mempool
or block. All the bits of 7'V are initialized to 1 while all the
bits of T'B are initialized to 0.
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(c) Release transactions

(a) Propagate transactions

(b) Remove transactions

Fig. 4. (a) Move low and high to propagate transactions (b) Remove
transactions included in a block from the mempool (c) Release transactions
back to the mempool

Suppose the number of nodes is N and the number of
transactions is M. Three following operations benefit from
the transaction pool structure design:

1) Transaction propagation (step Al in Figure [I): as illus-
trated in Figure [@{a), before generating a new block,
transactions that were generated earlier than the block
generation timestamp should be propagated to all nodes.
We only need to move low and high to include trans-
actions that were generated before current timestamp.

2) Transaction removal (step A4 and B2 in Figure[I): when
a block is included in the local chain of a node, the
node needs to remove the transactions that are included
in this block from the mempool. Figure @[b) illustrates
this process which is a bitwise NAND operation.



3) Transaction release (step B5 in Figure [I): when a node
receives a block from another node with a longer chain,
the receiver needs to synchronize its local chain with the
longer chain. Some blocks in the local chain will become
stale or uncle blocks. The transactions included in these
blocks should be released back to the mempool to be
included again later. Figure [c) illustrates this process
which is a bitwise OR operation.

V. CBLOCKSIM VALIDATION

We validate CBlockSim by comparing the simulation results
generated by CBlockSim with the observed realistic data
of Bitcoin and Ethereum. To deal with different application
scenarios, CBlockSim can be configured to enable or disable
network simulation. Users who are not willing to simulate
network details can use an exponential distribution to simulate
a delay as in BlockSim:Alharby.

We first simulate Bitcoin using data from 2020 and compare
the result with the realistic data presented in [23]. Then we
simulate Ethereum observed in [31] and compare the result
with the data obtained from Etherscan| and Ethstatd’] The
experiment is performed ten times and we take the average
value as the result. The simulation configuration is presented
in Table [

TABLE 1
SIMULATION CONFIGURATION

Bitcoin  Ethereum

#Nodes 11,000 8,223

Simulation Time (s) 600,000 86,400
Block Interval (s) 600 13.05
Geographical Node Distribution 23] [31]

Average Degree 12 19.747
Topology Controlling Parameter 1 0.24
Bandwidth/Latency Distribution [13] [13]
Hash Power Distribution 1351 [35]

Table compares real data and the simulation output
including the average block size, the block propagation delay
and the stale/uncle rate. When disabling the network module,
the fixed average block propagation delay and block size are
used as the input parameter and the result is consistent with
the simulated result of BlockSim:Alharby. We set the average
block propagation delay to 0.7 seconds for both Bitcoin and
Ethereum. In this condition the simulated 50th percentile of the
block propagation delay is approximately 0.5 seconds which
is consistent with real data.

The simulator output is close to the real observed data.
When enabling the network topology simulation, either the
simulated block propagation delay of Ethereum or Bitcoin is
close to the observed one which means the network models
we used are relatively precise.

Uhttps://etherscan.io/charts
Zhttps://ethstats.net/

TABLE 11
COMPARISON OF AVERAGE BLOCK SIZE s, SOTH AND 90TH PERCENTILE
OF BLOCK PROPAGATION DELAY tgpp, AND STALE/UNCLE RATE 7

sp(MB) 99t (5) 2t (5) r
Bitcoin™ 1.22 0.5 33 0.06%
Bitcoin? 1.2140.02  0.4940.001  1.6140.003  0.11%=+0.006%
Bitcoin® 1.2240.01  0.3540.005  1.3440.002  0.08%=+0.001%
Ethereum™ 0.023 0.5 1.75 5.36%
Ethereum?®  0.02440.001  0.49+0.001  1.61£0.002  4.80%=+0.15%
Ethereum®  0.024+0.002  0.514£0.002  1.7240.007  5.15%=+0.16%

™ Observed data.
4 Disable network topology simulation.
b Enable network topology simulation.

VI. PERFORMANCE EVALUATION

In order to evaluate the performance of the proposed
simulator, we compare the run time and memory usage
of CBlockSim, BlockSim:Faria and BlockSim:Alharby while
varying the number of nodes and simulation time. All three
simulators perform both Bitcoin and Ethereum simulation and
have complete simulation functions. Other popular simulators
such as Bitcoin Simulator and SimBlock can only simulate
Bitcoin and are short of simulation for transactions. All the
experiments are performed to simulate Ethereum as observed
in [31]] on a Linux virtual machine with 1 CPU and 32 GB
memory. We use the Ethereum configuration in Table [T}

We first set the number of nodes to 100,200 and 300,
respectively. The simulation time is set to 6,12,18 and 24
hours, respectively. Figure [5] presents the results. Block-
Sim:Faria can only simulate a small scale blockchain with
short simulation time. The memory usage of BlockSim:Faria
is much higher than of the other two simulators. For 200
nodes and a simulation time of more than 12 or 300 nodes
and a simulation time of more than 6, it will run out of
memory (more than 32 GB). Both BlockSim:Alharby and
CBlockSim can simulate a blockchain well when the number
of nodes varies from 100 to 300 and the simulation time
varies from 6 to 24 hours. The difference in memory usage
is significant because BlockSim:Faria simulates many details
of a blockchain while the other two simulators simplify some
components. BlockSim:Alharby shares transactions among all
the nodes and uses the exponential distribution to simulate
latency. CBlockSim stores complete transactions only once
and adopts the binary encoding to represent transactions in
each node and block. It further combines a realistic network
topology and the shortest path algorithm to simulate network
communication.

With increasing number of nodes, a fast growth of the time
overhead of BlockSim:Alharby is observed from minutes to
hours. In opposition, the time overhead of CBlockSim is low
and it increases much slower, from seconds to a few min-
utes. In Figure [6] we evaluate CBlockSim individually when
setting the number of nodes to 1,000 and 10,000 because
the time overhead of BlockSim:Alharby is too large in this
condition. The high time overhead impairs the application of
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BlockSim:Alharby. The scale of 10,000 nodes is close to the
real blockchain, either Bitcoin or Ethereum. When simulating
a blockchain with 10,000 nodes for 24 hours, CBlockSim
takes about one and half hours and 4.5 GB of memory. This
demonstrates that CBlockSim has low time overhead and can
be applied to a large-scale blockchain with ten thousand nodes.
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VII. USE CASES

Using CBlockSim we can investigate some network-related
issues that many other simulators do not cover. In this section
we propose two use cases, investigating the effect of different
transmission protocols and the impact of different average
node degree on the blockchain network.

A. Compact Block Relay v.s. Eth Wire Protocol

Bitcoin uses a compact block relay to reduce the delay
caused by increased block size while Ethereum applies the
Ethereum wire protocol to propagate blocks. The two protocols

are illustrated in Figure [2] To compare the two protocols, we
use the Ethereum configuration in Table [l vary the block
size from 0.02 MB to 0.1 MB and load the two different
protocols in the information propagation module. Figure [7]
presents the 50th and 90th percentile of the block propagation
delay. Figure [§] presents the uncle rate when using the two
protocols.
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Fig. 7. The 50th and 90th percentile of block propagation delay, using CBR
and Eth Wire Protocol with different block sizes

When the block size is 0.02 MB which is close to the
average block size of Ethereum observed in [31] (March
2020), the two protocols have almost identical block propaga-
tion delay. As the block size increases, the block propagation
delay and uncle rate grow and CBR outperforms the Ethereum
Wire Protocol increasingly. Obviously, the block size has a
significant impact on the block propagation delay and uncle
rate. If the block size of Ethereum continues to increase, the
transmission protocol should be improved in the future. For
researchers or developers who aim to build an Ethereum-like
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Fig. 8. The uncle rate, using CBR and Eth Wire Protocol with different block
sizes

blockchain, it is necessary to consider using CBR to improve
the blockchain performance if the block size is rather large.

B. The Impact of Average Degree

Besides the transmission protocols the average node degree
also affects the blockchain network significantly. Increasing
the average node degree reduces the block propagation delay
but results in more network traffic. In this use case we use
CBlockSim to investigate the impact of the average node de-
gree on the blockchain performance. We vary the average node
degree of Ethereum from 10 to 100 and the simulated block
propagation delay and uncle rate are presented in Figures [J]
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Fig. 9. The impact of average degree on block propagation delay

A continuous decrease of the block propagation delay
and uncle rate can be observed as the average node degree
increases. As the average degree increases, the uncle rate drops
fast at first and then gradually slows down. When the average
degree increases from 10 to 50, the uncle rate has dropped by
about 0.6 percent. But when the degree increases from 50 to
100, the uncle rate has only dropped by about 0.3 percent.

VIII. CONCLUSION

The paper presented CBlockSim which is a modular
high-performance blockchain simulator extended from Block-
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Fig. 10. Impact of the average node degree on the uncle rate

Sim:Alharby. We publish our code on Githutﬂ Various
blockchain components including different consensus proto-
cols, network transmission protocols and finalization rules are
integrated into the simulator in the form of individual mod-
ules. Users can combine existing modules flexibly or extend
the simulator by adding new modules to simulate different
blockchains. The design of the transaction pool structure which
uses a binary sequence and bitwise operation improves the
simulation performance. The simulation time is reduced by
an order of magnitude and the scale of the network can
be extended up to ten thousand nodes or more. With the
proposed network module the simulator can be applied to
network-related research which is not covered by many other
simulators. Two typical network-related issues are investigated
as use cases.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” 2008,
[Online]. Available: https://bitcoin.org/bitcoin.pdf

[2] V. Buterin, “A Next-Generation Smart
centralized Application Platform,” 2014,
https://ethereum.org/en/whitepaper/

[3] F. Schir, “Decentralized finance: On blockchain-and smart contract-

based financial markets,” Federal Reserve Bank of St. Louis Research

Paper Series, 2021.

M. Kowalski, Z.W. Lee, and T.K. Chan, "Blockchain technology and

trust relationships in trade finance. Technological Forecasting and Social

Change,” Technological Forecasting and Social Change, vol. 166, 2021.

X. Yang, X. Yang, X. Yi, I. Khalil, X. Zhou, D. He, X. Huang, and

S. Nepal, “Blockchain-Based Secure and Lightweight Authentication

for Internet of Things,” IEEE Internet of Things Journal, early access,

July 19, 2021. DOI: 10.1109/JI0T.2021.3098007.

[6] T.Li, W. Liu, A. Liu, M. Dong, K. Ota, N.N. Xiong, and Q. Li, ”"BTS:
A Blockchain-based Trust System to Deter Malicious Data Reporting in
Intelligent Internet of Things,” IEEE Internet of Things Journal, early
access, May 31, 2021. DOI: 10.1109/J10T.2021.3085004.

[71 J. Yang, A. Paudel, H.B. Gooi, and H.D. Nguyen, A Proof-of-Stake
public blockchain based pricing scheme for peer-to-peer energy trading,”
Applied Energy, vol. 298, 117154, 2021.

[8] M. Foti, C. Mavromatis, and M. Vavalis, "Decentralized blockchain-
based consensus for Optimal Power Flow solutions,” Applied Energy,
vol. 283, 116100, 2021.

and De-
Available:

Contract
[Online].

[4

=

[5

=

3https://github.com/xuyangm/CBlockSim



[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

K. Miyachi and T.K. Mackey, "hOCBS: A privacy-preserving blockchain
framework for healthcare data leveraging an on-chain and off-chain sys-
tem design,” Information Processing & Management, vol. 58, 102535,
2021.

R. Zou, X. Lv, and J. Zhao, ”SPChain: Blockchain-based medical data
sharing and privacy-preserving eHealth system,” Information Processing
& Management, vol. 58, 102604, 2021.

A. Gervais, G.O. Karame, K. Wiist, V. Glykantzis, H. Ritzdorf, and
S. Capkun, "On the security and performance of proof of work
blockchains,” in 2016 ACM SIGSAC Conference on Computer and
Communications Security, pp. 3-16, 2016.

M. Alharby, A.V. Moorsel, “Blocksim: a simulation framework for
blockchain systems,” ACM SIGMETRICS Performance Evaluation Re-
view, vol. 46, pp. 135-138, 2019.

Y. Aoki, K. Otsuki, T. Kaneko, R. Banno, and K. Shudo, ”Simblock: A
blockchain network simulator,” in JEEE INFOCOM 2019-1EEE Confer-
ence on Computer Communications Workshops, pp. 325-329, 2019.

B. Putz, M. Dietz, P. Empl, and G. Pernul, ”Ethertwin: Blockchain-based
secure digital twin information management,” Information Processing &
Management, vol. 58, 102425, 2021.

K.P. Yu, L. Tan, M. Aloqaily, H. Yang, and Y. Jararweh, "Blockchain-
enhanced data sharing with traceable and direct revocation in IIoT,”
IEEE transactions on industrial informatics, vol. 17, pp. 7669-7678,
2021.

R. Kumar, B. Palanisamy, and S. Sural, "BEAAS: Blockchain Enabled
Attribute-Based Access Control as a Service,” in 2021 IEEE Interna-
tional Conference on Blockchain and Cryptocurrency, pp. 1-3, 2021.
R.A. Mishra, A. Kalla, A. Braeken, and M. Liyanage, "Privacy pro-
tected blockchain based architecture and implementation for sharing of
students’ credentials,” Information Processing & Management, vol. 58,
102512, 2021.

J.A. Chang, M.N. Katehakis, J.J. Shi, Z. Yan, "Blockchain-empowered
Newsvendor optimization,” International Journal of Production Eco-
nomics, vol. 238, 108144, 2021.

C. Piao, Y. Hao, J. Yan, and X. Jiang, "Privacy preserving in blockchain-
based government data sharing: A Service-On-Chain (SOC) approach,”
Information Processing & Management, vol. 58, 102651, 2021.

L. Stoykov, K. Zhang, H.A. Jacobsen, “Vibes: fast blockchain simula-
tions for large-scale peer-to-peer networks,” in 18th ACM/IFIP/USENIX
Middleware Conference, pp. 19-20, 2017.

A. Deshpande, P. Nasirifard, and H.A. Jacobsen, ”eVIBES: configurable
and interactive ethereum blockchain simulation framework,” in 19th
International Middleware Conference, pp. 11-12, 2018.

C. Faria and M. Correia, "BlockSim: blockchain simulator,” in 2019
IEEE International Conference on Blockchain, pp. 439-446, 2019.

R. Paulavicius, S. Grigaitis, and E. Filatovas, "A Systematic Review and
Empirical Analysis of Blockchain Simulators,” IEEE Access, vol. 9, pp.
38010-38028, 2021.

Y. Xiao, N. Zhang, W. Lou, and Y.T. Hou, ”A survey of distributed
consensus protocols for blockchain networks,” IEEE Communications
Surveys & Tutorials, vol. 22, pp. 1432-1465, 2020.

W. Zhao, S. Yang, X. Luo, and J. Zhou, ’On PeerCoin Proof of Stake
for Blockchain Consensus,” in 2021 The 3rd International Conference
on Blockchain Technology, pp. 129-134, 2021.

W. Hao, J. Zeng, X. Dai, J. Xiao, Q. Hua, H. Chen, K. Li, and
H. Jin, "BlockP2P: Enabling fast blockchain broadcast with scalable
peer-to-peer network topology,” in International Conference on Green,
Pervasive, and Cloud Computing, pp. 223-237, 2019.

E. Rohrer and F. Tschorsch, “Kadcast: A structured approach to broad-
cast in blockchain networks,” in The Ist ACM Conference on Advances
in Financial Technologies, pp. 199-213, 2019.

Y. Shahsavari, K. Zhang, and C. Talhi, ”A theoretical model for
block propagation analysis in bitcoin network,” IEEE Transactions on
Engineering Management, pp. 1-18, 2020.

Y. Gao, J. Shi, X. Wang, Q. Tan, C. Zhao, and Z. Yin, “Topology
measurement and analysis on ethereum p2p network,” in 2019 IEEE
Symposium on Computers and Communications, pp. 1-7, 2019.

T. Wang, C. Zhao, Q. Yang, S. Zhang, and S.C. Liew, "Ethna: Analyzing
the Underlying Peer-to-Peer Network of Ethereum Blockchain,” IEEE
Transactions on Network Science and Engineering, early access, May
07, 2021. DOI: 10.1109/TNSE.2021.307818]1.

S. Maeng, M. Essaid, C. Lee, S. Park, and H. Ju, “Visualization of
Ethereum P2P network topology and peer properties,” International
Journal of Network Management, e2175, 2021.

[35]

[36]

D.J. Watts and S.H. Strogatz, “Collective dynamics of ‘small-world’
networks,” Nature, vol.393, pp. 440-442, 1998.

H.E. Song and X.J. Wang, “Simple, distance-dependent formulation
of the Watts-Strogatz model for directed and undirected small-world
networks,” Physical Review E, vol. 90, 062801, 2014.

A. Miller, J. Litton, A. Pachulski, N. Gupta, D. Levin,
N. Spring, and B. Bhattacharjee, “Discovering bitcoin’s public
topology and influential nodes,” 2015. [Online]. Available:

https://www.cs.umd.edu/projects/coinscope/coinscope.pdf.

R. Nagayama, R. Banno, and K. Shudo, “Identifying impacts of protocol
and internet development on the bitcoin network,” in 2020 I[EEE
Symposium on Computers and Communications, pp. 1-6, 2020.
BIP-0152, 2016. [Online]. Available:
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki/.



	I Introduction
	II Related Work
	III CBlockSim Architecture
	III-A Block Proposal
	III-B Information Propagation
	III-C Block Validation
	III-D Block Finalization
	III-E Incentive Mechanism

	IV Transaction Pool Design
	V CBlockSim Validation
	VI Performance Evaluation
	VII Use Cases
	VII-A Compact Block Relay v.s. Eth Wire Protocol
	VII-B The Impact of Average Degree

	VIII Conclusion
	References

