
Blockchain-based Secure Client Selection in
Federated Learning

Truc Nguyen∗ – Phuc Thai†, Tre’ R. Jeter∗, Thang N. Dinh† and My T. Thai∗
∗Department of Computer & Information Science & Engineering, University of Florida, Gainesville, FL, 32611

†Department of Computer Science, Virginia Commonwealth University, Richmond, VA, 23284
Email: truc.nguyen@ufl.edu, thaipd@vcu.edu, t.jeter@ufl.edu, tndinh@vcu.edu, mythai@cise.ufl.edu

Abstract—Despite the great potential of Federated Learning
(FL) in large-scale distributed learning, the current system is
still subject to several privacy issues due to the fact that local
models trained by clients are exposed to the central server.
Consequently, secure aggregation protocols for FL have been
developed to conceal the local models from the server. However,
we show that, by manipulating the client selection process, the
server can circumvent the secure aggregation to learn the local
models of a victim client, indicating that secure aggregation
alone is inadequate for privacy protection. To tackle this issue,
we leverage blockchain technology to propose a verifiable client
selection protocol. Owing to the immutability and transparency
of blockchain, our proposed protocol enforces a random selection
of clients, making the server unable to control the selection
process at its discretion. We present security proofs showing
that our protocol is secure against this attack. Additionally, we
conduct several experiments on an Ethereum-like blockchain to
demonstrate the feasibility and practicality of our solution.

I. INTRODUCTION

In recent years, Federated Learning (FL) has emerged
as an auspicious large-scale distributed learning framework
that simultaneously offers both high performance in training
models and privacy protection for clients. FL, by design,
allows millions of clients to collaboratively train a global
model without the need of disclosing their private training
data. In each training round, a central server distributes the
current global model to a random subset of clients who will
train locally and upload model updates to the server. Then,
the server averages the updates into a new global model. FL
has inspired many applications in various domains, including
training mobile apps [14], [28], self-driving cars [16], [24],
digital health [6], [25], and smart manufacturing [13], [18].

Although training data never leaves clients’ devices, data
privacy can still be leaked by observing the local model
updates and conducting some attacks such as membership
inference [26], [27]. Thus, FL is not particularly secure against
an honest-but-curious server. To address this issue, recent
research has focused on developing a privacy-preserving FL
framework by devising secure aggregation on the local models
[2], [5], [29]. Specifically, it enables the server to privately
combine the local models in order to update the global model

The first two authors contribute equally to this paper.

without learning any information about each individual local
model. As a result, the local model updates are concealed from
the server, thereby preventing the server from exploiting the
updates of any client to infer their private training data.

However, in this paper, we exploit a gap in the existing
secure aggregation and show that they are inadequate to protect
the data privacy. Particularly, we demonstrate that a semi-
malicious server can circumvent a secure aggregation to learn
the local model updates of a victim client via our proposed
biased selection attack. Intuitively, our attack leverages the fact
that the central server in FL has a freedom to select any pool
of clients to participate in each training round. Hence, it can
manipulate the client selection process to target the victim and
extract their update from the output of the secure aggregation
protocol. We present two different strategies to conduct the
biased selection attack, and show experimentally that the
server can successfully infer some information about the
victim’s private training data without making any additional
security assumptions about the capabilities of the server.

To counter this attack, we focus on strictly enforcing a
random selection of clients on the central server, thereby
preventing it from manipulating the selection process at its
discretion. To this end, we propose using blockchain as a
public trust entity and devise a verifiable random selection
protocol for the server to randomly select a pool of clients
in each training round. Specifically, we utilize the blockchain
as a source of randomness that is used to determine the pool
of clients that will participate in a training round. Via the im-
mutability of blockchain, the clients can verify the correctness
of the random selection protocol, i.e., ensuring that they are
indeed randomly selected. To demonstrate the feasibility of
our solution, we concretely prove that our protocol is secure
against the biased selection attack. We also benchmark the
performance of the proposed protocol with an Ehtereum-like
blockchain and show that it imposes minimal overhead on FL.
Contributions. Our contributions are summarized as follows:
• We propose the biased selection attack where the server

learns the local model updates of a victim in spite of
secure aggregation. We describe two strategies to perform
this attack without making extra security assumptions
on the server. Then, we conduct some experiments to
demonstrate its viability with respect to inferring some
information about the victim’s training data.978-1-6654-9538-7/22/$31.00 ©2022 IEEE

ar
X

iv
:2

20
5.

05
61

1v
1

 [
cs

.C
R

]
 1

1
M

ay
 2

02
2

• As a countermeasure, we devise a verifiable random
selection protocol for the server to randomly select clients
in each training round. Our protocol leverages blockchain
as a source of randomness so that the clients can verify
whether the server correctly follows the selection proto-
col. Therefore, it enforces a random selection of clients,
making the biased selection attack infeasible.

• We present concrete security proofs to show that the
proposed protocol is secure against the attack. We also
analyze the communication and computation cost of the
protocol, together with some benchmarks to show that its
overhead on FL is minimal.

Organization. The rest of the manuscript is structured in
the following manner. Section II establishes the preliminaries
for our paper. We present the biased selection attack in
Section III. Section IV describes our proposed client selection
protocol. We then provide security and performance analysis
in Section V. Experiments to evaluate our solution are given
in Section VI. We discuss some related work in Section VII
and finally provide concluding remarks in Section VIII.

II. PRELIMINARIES
A. Federated Learning and Secure Aggregation

Depending on how training data is distributed among the
participants, there are two main versions of federated learning:
horizontal and vertical. In this paper, we focus on a horizontal
setting in which different data owners hold the same set of
features but different sets of samples.

Typically, an FL process follows the FedAvg framework
[22] which comprises multiple rounds. In this setting, a server
and a set U of n = |U| clients participate in a collaborative
learning process. Each client u ∈ U holds a training dataset
Du and agrees on a single deep learning task and model
architecture to train a global model. A central server S keeps
the parameters Gt of the global model at round t. Let xtu
be a vector representing the parameters of the local model of
client u at round t. Each training round includes the following
phases:

1) Client selection: S samples a subset of m clients U ′ ⊆ U
and sends them the current global model Gt.

2) Client computation: each selected client u ∈ U ′ updates
Gt to a new local model xtu by training on their private
data Du, and uploads xtu to the central server S.

3) Aggregation: the central server S averages the received
local models to generate a new global model as follows:

Gt+1 =
1

m

∑
u∈U ′

xtu (1)

The training continues until the global model converges.
To counter several attacks conducted based on the local

model updates of clients, such as inference attacks by the
server [1], [11], the Aggregation phase can be replaced by a
secure aggregation protocol such that each xtu is not exposed
to the server [2], [5], [29]. By leveraging cryptographic secure
multiparty computation (SMC), the secure aggregation proto-
cols can guarantee that the server cannot learn any information
about each local model update, but still be able to construct

the sum of all updates. Specifically, with secure aggregation,
the equation (1) is replaced by:

Gt+1 =
1

m

∏
{xt

u|u∈U ′}

[∑
u∈U ′

xtu

]
(2)

where
∏
X [f(X, ·)] denotes an abstract secure computation

protocol on some function f(X, ·) and X is a private input.
The protocol

∏
X [f(X, ·)] is: (1) correct if it outputs the same

value as f(X, ·), and is: (2) secure if it does not reveal X
during the execution of the protocol.
B. Blockchain

Blockchain, introduced in [23], is a type of distributed
ledger, jointly maintained by a set of nodes in a network, called
miners. Blockchain can provide guarantees on the correctness
(i.e. tamper-resistance) and security of the ledger without the
need of trust on a central trusted party.

A consensus protocol for maintaining blockchain is called
secure if it satisfies the following two security properties:
1) persistence: all honest miners have the same view of the
ledger; and 2) liveness: the valid transactions will eventually
be added to the ledger.

In this work, we consider a proof-of-work (PoW)
blockchain, in which miners compete to solve a PoW puzzle.
The miner who solves the puzzle can append a new block into
a blockchain data structure. The PoW blockchain is shown to
be secure under the assumption that the honest miners hold the
majority of mining power [12]. The security of the protocol is
parameterized by the length of the hash function κ ∈ N [12],
called security parameter.

The blockchain is used in our client selection protocol to
ensure 1) all clients in FL have the same views on the selected
clients, and 2) a provably random selection of the client.

C. Verifiable random function
To implement the provable random client selection, we

use a cryptographic tool called verifiable random functions
(VRF) [10]. VRF is a public-key pseudorandom function
that provides proofs showing that its outputs were calculated
correctly and randomly, i.e., hard to predict. Consider a user
with secret and public keys sk and pk. The user can use
VRF to generate a function output σ and a proof π for any
input value x by running a function VRFprovesk(x). Everyone
else, using the proof π and the public key pk, can check that
the output σ was calculated correctly by calling a function
VRFverify(pk, σ, π). Yet, the proof π and the output σ does
not reveal any information on the secret key sk.

In our protocol, the input value x in the VRF is a random-
ness rnd, extracted from the blockchain. Each client i ∈ U
independently computes an VRF output σi on the input value
rnd to determine whether or not i is selected into the pool.

III. BIASED SELECTION ATTACK AND SECURE CLIENT
SELECTION PROBLEM

This section describes a simple yet effective biased selection
attack and defines necessary properties of a secure client
selection. First, we establish the threat model as follows.

Threat model. Our threat model extends that of previous work
on secure aggregation in FL [2], [5], [29]. Instead of an honest-
but-curious server, we consider a semi-malicious server that
honestly follows the training protocol of FL, except that it
tries to manipulate the selection process to its advantage. We
assume that a secure aggregation protocol is used such that
the server learns nothing other than the sum of the model
updates in each training round as in equation (2). The server
can collude with a subset of clients. We denote by β ∈ (0, 1)
an upper-bound on the fraction of colluding clients. The goal
of the server is to learn the parameters of the victim’s local
model updates, from which it can infer some properties about
the victim’s training data.

A. Biased selection attacks

We present two different strategies to conduct this attack.
First, we show that the server can viably collude with some
clients Ū ⊂ U to learn the local models of a victim v ∈ U \Ū .
Second, we demonstrate that the server can still learn some
information about the victim’s local model xv and conduct
inference attacks even without colluding with some clients.
Colluding attack. Let Ū ⊂ U be the set of clients with which
the server can collude. At a particular round t, the server can
extract the victim’s local model xtv as follows:

1) The central server S selects the victim v and a subset
of colluding clients U ′ ⊆ Ū and sends them the current
global model Gt.

2) The selected clients compute their local model updates as
normal. However, each selected colluding client u ∈ U ′
secretly shares their xtu with the server.

3) The server, via a secure aggregation protocol, obtains S =∏
{xt

u|u∈U ′∪v}
[∑

u∈U ′∪v x
t
u

]
, which is the sum of the

clients’ local models as in equation (2). Since the server
knows the local models of the colluding clients, i.e., xtu
for u ∈ U ′, it can extract the victim’s model as xtv =
S −

∑
u∈U ′ xtu.

Note that the server cannot solely select the victim as
the only client in the training round since certain secure
aggregation protocols require some form of communication
between the selected clients [5]. Hence, the server has to select
some clients that it can collude with, i.e., Ū 6= ∅. In fact, those
colluding clients are not necessarily real devices in the system,
but can be some Sybil clients created by the server. Therefore,
it is viable for the server to have some clients to collude with
and conduct this attack to extract the victim’s model.
Non-colluding attack. In this strategy, even if we restrict
the threat model to forbid collusion between the server and
the clients, the server can still learn some information about
the victim’s model only by manipulating the client selection
process. This attack requires at least two training rounds as
illustrated in Fig. 1. The attack procedure is shown below:

1) At round t, the server selects the victim v and a subset
of other clients U ′ ⊆ U \ v to conduct the training round
with Gt.

Fig. 1: Overview of the non-colluding attack. The attack works
in two rounds where the victim is selected in the first round,
but not in the second round. The sum of the local models’
parameters of each round is obtained via secure aggregation
(Sec. agg.). The difference between the sums of two rounds
give an approximation x̃tv of the victim’s model.

2) Through secure aggregation, the server obtains St =∏
{xt

u|u∈U ′∪v}
[∑

u∈U ′∪v x
t
u

]
which is the sum of the

clients’ models including the victim’s.
3) At round t+1, the server re-selects the subset U ′ (without

selecting v) and conducts the training round with Gt+1.
4) The server obtains St+1 =

∏
{xt+1

u |u∈U ′}
[∑

u∈U ′ xt+1
u

]
which is the sum of the clients’ models excluding the
victim’s.

5) The server then extracts an approximation of the victim’s
model xtv by x̃tv = St+1 − St

The intuition behind this strategy is that, suppose Gt+1 =
Gt, for each client u ∈ U ′, the local model parameters
in the two rounds xtu and xt+1

u are trained with the same
initialization, same algorithm and on the same training data
Du. Therefore, we can expect that xt+1

u ≈ xtu for u ∈ U ′.
As such, St+1 − St should give a good approximation of the
victim’s local model.

Regarding the assumption that Gt+1 = Gt, the server can
simply reuse Gt at round t+ 1. Moreover, even if the server
chooses not to reuse Gt to avoid being suspicious, it can still
honestly update Gt+1 according to the protocol and send Gt+1

to the clients at round t+1. However, this should be done only
when the global model has already converged, thus Gt+1 ≈
Gt, so that the attack is still effective.
Membership inference attack on x̃tv . With the non-colluding
attack, we show how the server is able to obtain an approxima-
tion of the victim’s model x̃tv , the question remains whether
the server can conduct any kind of privacy attacks on x̃tv ,
in other words, does x̃tv leak any information about Dv? We
investigate this issue by conducting some experiments with
membership inference attacks [26], [27] on x̃tv .

In our experiments, we use the CIFAR-10 dataset [19] and
partition it among 50 clients, where each one holds about
1000 training samples. For the classification task, we use a
convolutional neural network composed of two convolutional
layers and two pooling layers, together with one fully con-
nected layer, and a Softmax layer at the end. ReLU is used
as the activation function. In each training round, the server
randomly selects 6 clients to locally train their models using

Fig. 2: The success rate of the membership inference attack
[27] on x̃tv per class label. The black dashed line shows the
baseline success rate of random guessing, which is 0.5. The
red dashed line shows the average attack success rate across
all class labels, which is 0.743.

an Adam optimizer with 5 epochs and a batch size of 32. The
global model converges after 100 training rounds. Then, at
t = 101, the server conducts the non-colluding attack in two
rounds to obtain the approximation x̃tv of the victim’s model.

Next, we conduct the membership inference attack from
Shokri et al. [27] on x̃tv . This attack builds shadow models that
mimic the behaviour of the victim’s model (i.e., same model
architecture, training data comes from the same distribution),
and then uses the posteriors of those shadow models to train
an attack model that determines whether a data sample is a
member of the training dataset or not. In our experiments, we
train the attack model as a Support Vector Machine (SVM)
classifier. The attack success rate is determined by the portion
of data samples that the attack model correctly predicts their
membership, and it should be greater than 0.5, which is the
baseline for random guessing.

Figure 2 shows the attack success rate of the membership
inference attack per class label. We can see that the average
success rate is about 0.743 which is much higher than the
baseline. In particular, the attack can attain 0.92 success rate
on the class label 6. From this result, we can conclude that
even without colluding with clients, the server can still learn
some information about the victim’s training dataset Dv only
by manipulating the client selection process.

B. Secure client selection problem

We define a new problem, called secure client selection
(SCC) problem that asks for a protocol Π, executed by a
server S and a set of clients U , to select subset of clients
in each training round in FL. At the end of the execution
of the protocol Π, for each client j, the server S sends a
collections of proofs {ω(i)

j }i∈U , in which ω(i)
j is either empty

or a proof on whether or not the client i is selected. The
designed protocol is required to have three security properties,
namely, pool consistency, pool quality, and anti-targeting.

Definition III.1 (Secure client selection problem). Let stj be
the local state of the client j ∈ U at the end of a training
round. We say Π is secure iff there exists a predicate PVerΠ

that takes the state stj of a client j, a proof ω(i)
j (provided by

server S) as input and output

PVerΠ(stj , ω
(i)
j) =


1 if i is selected in the view of j,
0 if i is not selected in the view of j,
⊥ if ω(i)

j is empty or invalid.

with the following properties:
• Pool consistency: ∀i ∈ U and ∀j1, j2 ∈ H,

Pr

[
∃ ω(i)

j1
, ω

(i)
j2

PVerΠ(stj , ω
(i)
j1

) = 1∧
PVerΠ(stj′ , ω

(i)
j2

) = 0

]
≤ e−Ω(κ),

where H denotes the set of honest clients and κ is the
security parameter.

• γ-pool quality for γ ∈ (0, 1): Let P be the set of selected
clients, defined as:

P = {i ∈ U : ∃j ∈ H s.t. PVerΠ(stj , ω
(i)
j) = 1}.

We have:

Pr

[
H ∩ P
P

≥ γ
]
≥ 1− e−Ω(κ).

• Anti-targeting: Let c = m
n , termed the selection probabil-

ity. We have:

|Pr[i ∈ P]− c| ≤ e−Ω(κ), ∀i ∈ U .

The pool consistency ensures that the server cannot prove
that a client is selected to one client while proving that it
is not selected to another client. The pool quality enforces a
minimum fraction of selected honest clients. Finally, the anti-
targeting guarantees that all honest clients are selected with
the almost the same probability.
Baseline protocol. Initially, the clients register their public
keys on the blockchain. In each training round, each client
computes a set of selected clients using a pre-arranged function
of the registered information and the round number. The func-
tion can be implemented using blockchain’s smart contracts so
that all the clients agree on the same list of selected clients.

The above protocol provides pool consistency. However,
it could not guarantee either pool quality or anti-targeting
properties. Jumping a head, in Section V, we will show that
our protocol can achieve all three security properties of SCC
problem (see Table I).

Protocols PC PQ AT
Baseline yes no no

This work yes yes yes

TABLE I: The security of the baseline protocol and our
protocol. PC, PQ, and AT stand for pool consistency, pool
quality, and anti-targeting, respectively.

Grinding attack on the baseline protocol. The clients, who
colluded with the server, can wait til all other clients complete
their registration. Then they can probe for different public keys
to bias the selection of clients. Since the round number and the
registration information of honest clients are known, the search

can be done to either give more chance for colluding clients to
be selected (breaking the pool quality) or more chance towards
a targeted honest client (breaking the anti-targeting).
Completeness of the security properties. We show that
if a protocol satisfies the above three security properties in
Definition III.1, the adversary cannot perform biased selection
attacks as discussed in the previous subsection.

Lemma III.2. Consider a pool selection protocol that can
achieve pool consistency, pool quality, and anti-targeting
properties. The probability that the server can perform
colluding/non-colluding attacks is at most e−Ω(min{h,κ}),
where h = |H| and κ is the security parameter.

Due to the space limit, we provide an outline of our proof.
By pool consistency, all nodes have the same view on P , the
set of selected clients with a probability at least 1− e−Ω(κ).

From the anti-targeting property, the probability that an
honest client is selected concentrate around c, the selection
probability. We have

Pr[Colluding attack] ≤ Pr[H ∩ P = 1]

≈
(
h

1

)
c(1− c)h−1 = e−Ω(h).

For non-colluding attacks, let Si, Si+1 be the sets of selected
clients in two consecutive rounds and s = |Si|.

Pr[Non-colluding attack] ≤ Pr[Si+1 = Si ∪ {x}, x ∈ H]

≈
(
s

1

)
cs−1(1− c)h−s−1 = e−Ω(h).

Combining all the probabilities of the bad events yields the
bound e−Ω(min{h,κ}).

IV. CLIENT SELECTION PROTOCOL

4. Dispute

...

5.Final selection

3. Initial selection

Central server

2. VRF-based random election

1. Randomness extraction

Bl
oc

kc
ha

in

Fig. 3: The 5 steps of client selection in each training round:
(1) Randomness extraction, (2) Random election, (3) Initial
commitment, (4) Dispute, and (5) Final selection.

Our protocol consists of a one-time registration phase and
multiple training rounds. In the registration phase, clients
registered their public keys with the server. At the beginning
of each training round, a random subset of clients will be
selected using our client selection protocol.

Registration phase. At the beginning of the FL process,
each client registers its public key with the server. The
server composes a list of all public keys, submits a succinct
commitment of the list to the blockchain, and provides each
client with a membership proof using Merkle proof [7], a
lightweight way to prove the membership in large sets.
Membership proof with sorted Merkle tree. Given a set of
l values X = {d1, d2, . . . , dl}, a Merkle tree is a binary
tree constructed over the hash values of di. The root of the
Merkle tree, denoted by MRoot(X), can be used as a succinct
representation of all the values. Knowing MRoot(X), we
can construct a membership/non-membership proof of size
O(log l) to prove whether a value x appears in X . Such a

proof, denoted by MProof(x
?
∈ X), can also be verified in a

time O(log l).
Let U be the set of registered clients, the server submits a

registration transaction containing the Merkle root MRoot(U)

to blockchain and sends MProof(pki
?
∈ U) to each client i.

Client selection phase. As shown in Fig. 3, the selection
consists of: randomness extraction, VRF-based random elec-
tion, initial selection, dispute, and final selection. In random-
ness extraction, all clients and the server compute locally a
random token rnd by hashing together the block headers in
the previous round. Verifiable random functions (VRFs) [10],
taking the client’s public key and rnd as inputs, are employed
to determine which clients are selected. In the initial selection,
the server composes a list of selected clients and commits the
list to the blockchain. A selected client can submit a dispute
transaction if s/he is not properly included in the initial list,
forcing the server to include her/him in the final selection.

We provide the details for the steps in the client selection
protocol in Alg. 1. We use the height of the blockchain, or
block height (BH), to measure time. We select a parameter
τ = Ω(κ) so that sent messages are received and submitted
transactions are finalized within τ blocks. For a training round
started at BH `, the client selection protocol is executed
between block heights ` and `+ 2τ .

Algorithm 1: Client selection protocol.
One trainning round: Consider a training round that starts

at block height (BH) `.
1 BH `: Randomness extraction The server and clients extract

the randomness rnd from the blockchain.
2 BH `: VRF-based random election: Each client i computes

(σi, πi)← VRFproveski(rnd). If σi < c2κ, the client i is
qualified and sends the proof (σi, πi, pki) to the server.

3 BH `+ τ : Initial selection: The server submits the Merkle
tree root on the set of qualified clients Pt and sends the
Merkle proof to each client.

4 BH `+ τ : Dispute: If a qualified client i does not receive
the proof from the server, it submits a dispute transaction
that consists of the proof (σi, πi, pki) to blockchain.

5 BH `+ 2τ : Final selection: The server submits the Merkle
tree root on the set of dispute clients Pf .

1. Randomness extraction. We follow the scheme to extract
the randomness in [9]. At block height `, the server and all

clients compute a randomness rnd by hashing together the
block headers of κ blocks created during the previous training
round. The chain quality of the blockchain means that, with
high probability, at least one of those blocks must be from an
honest miner [12]. Thus, rnd includes at least one unbiased
random source.
2. VRF-based random election. After extracting the random-
ness, each client i uses the VRF to check whether or not she/he
is selected in this round. The client i computes the output σi
and the proof πi of the VRF based on the randomness rnd, i.e.,
(σi, πi)← VRFproveski(rnd). If the VRF output σi is smaller
than a given threshold, i.e., σi < c2κ, the client i is qualified
to be selected. Here, c = m

n is the selection probability, i.e.,
the fraction of selected clients per round. If the client i is
qualified, she/he sends a message (σi, πi, pki) to the server.
3. Initial selection. Let Pt be the set of public keys of qualified
clients that are verified by the server. The server submits an
initial selection transaction that consists of the Merkle tree
root MRoot(Pt) to the blockchain. After the transaction is
included to the blockchain, the server provides a Merkle proof

MProof(pki
?
∈ Pt) for each client i ∈ U .

4. Dispute. If a qualified client i ∈ U does not receive
any Merkle proof from the server, or finds any discrepancy
between the Merkle root obtained from the server to the one
that the server submitted to the blockchain, it will start a
dispute process. The client will submit proof of qualification
directly to blockchain to force the inclusion of itself into
the pool. More concretely, at block height ` + τ , the client
can submit a transaction containing the tuple (σi, πi, pki) to
the blockchain. The client i also includes the Merkle proof

MProof(pki
?
∈ U) to show that its public key is registered.

5. Final selection. At block height `+2τ , the server submits a
final selection transaction that contains the information of all
dispute transactions. Let Pt be the set of the public keys of
dispute clients, i.e., the clients who submitted dispute transac-
tions. Then, similar to the initial selection, the server constructs
a Merkle tree Merklef based on Pf . The server submits a
final selection transaction that consists of the Merkle tree root
MRoot(Pf) and sends a Merkle proof MProof(pki

?
∈ Pf)

to each client i ∈ U . Here, before adding the final selection
transaction to the blockchain, the miners verify that all public
keys of the dispute clients are included in the MRootf . The
correctness will be enforced through smart contracts, executed
by all miners in the blockchain.

V. SECURITY ANALYSIS

In this section, we analyze the security of our protocol
in Algo. 1. We start with the construction of our PVer(·)
function, followed by the proof sketches on the three security
properties, defined in Section II.

Pool membership verification function. We describe the
function PVer(stj , ω

(i)
j) that verifies if the client i is selected

in the view of the client j.

For each client j with the state stj , the function
PVer(stj , ω

(i)
j) extracts the blockchain Cj from the local state

stj and then proceeds as follows.
• The function verifies whether or not (1)
VRFverify(pki, σi, πi) = 1. (2) the initial selection
transaction and the final commitment transaction are
included in the header blockchain Cj . If those conditions
do not hold, it returns ⊥.

• If all conditions hold, i.e., the proof ω(i)
j is valid, the

function verifies (1) σi < c2κ, and (2) pki is included in
MRoot or in MRootf . If those conditions hold, it returns
1, i.e., the client i is selected.

• Otherwise, the function returns 0, i.e., the client i is not
selected.

Recall that in our protocol, for each qualified client j, the
server provides only ω(j)

j , the proof of membership of j. The
proof consists of (1) the VRF output and the public key of j
(σj , πj , pkj), (2) the initial selection transaction that consists
of MRoott, (3) the Merkle proof MProoft(pkj), (4) the final
selection transaction that consists of MRootf , and (5) the
Merkle proof MProoff (pkj).

Pool from all clients’ views. We say a client i is selected
if there exists an honest client j and a proof ω(i)

j such that
PVer(stj , ω

(i)
j) = 1. Let P be the set of selected clients, i.e.,

P = {i : ∃ honest client j, ω(i)
j , s.t.,PVer(stj1 , ω

(i)
j) = 1}.

We first prove that all honest clients have the same view
on the set P of selected clients. Intuitive, as the blockchain
maintains an immutable ledger, all honest clients have the
same view on the commitment transactions. Thus, they can
extract the same list of selected clients.

Lemma V.1 (Pool consistency). For any client i ∈ U , and
any honest clients j1, j2, we have,

Pr

[
∃ ω(i)

j1
, ω

(i)
j2

PVer(stj1 , ω
(i)
j1

) = 1∧
PVer(stj2 , ω

(i)
j2

) = 0

]
≤ e−Ω(κ)

We omit the proof due to the space limit and outline the
main intuition. As all the honest clients have the same view
on the blockchain, the valid proofs ω(i)

j1
, ω

(i)
j2

must have the
same Merkle tree roots MRoott and MRootf . Recall that, the
client i is considered to be selected if it is included in MRoott
and MRootf . Thus, the honest clients have the same view on
whether or not the client i is selected.

Next, we prove that the fraction of honest selected clients
is proportional to the fraction of honest clients. Intuitively,
the VRFs guarantee the randomness in selecting the qualified
clients, i.e., the fraction of honest qualified clients is propor-
tional to the fraction of honest clients. Plus, the dispute ensures
that all honest qualified clients are selected.

Lemma V.2 (Pool quality). Let H be the set of honest clients
in the set of selected clients P . For ε > 0, we have,

Pr[
H ∩ P
P

≥ α(1− ε)] ≥ 1− e−Ω(nc−log κ)

where n is the number of clients, α = 1 − β is the fraction
of honest clients, and c is the selection probability.

Proof. Let P ′ ⊇ P be the set of qualified clients, i.e., the
clients having VRF outputs smaller than c2κ. Let H′ and M′
be the set of honest and colluding clients in P ′, respectively.

We prove by bounding the number of qualified colluding
clients. By the chain quality property of the blockchain [12],
the adversary can create at most κ blocks among the last
blocks used for creating the randomness. Thus, it has at most κ
randomness values to choose from. Using the Chernoff bound
and union bound, for any ε′ > 0, we have

Pr[|M′| ≥ (1 + ε′)n(1− α)c] ≤ κeΩ(nc) = e−Ω(nc−log κ)

For the honest clients, since the server cannot predict the
outputs of the VRFs, thus, changing the randomness will not
affect the probability that honest clients are selected. Using
the Chernoff bound, for any ε′ > 0, we have,

Pr[|H′| ≤ (1− ε′)nαc] ≤ e−Ω(nc)

By choosing ε′ such that ε = 1−ε′
1+ε′ , we have

Pr

[
|H′|
|P ′|

≤ α(1− ε)
]
≤ e−Ω(nc−log κ)

Recall that, the honest qualified clients are included either in
the initial selection transaction or the final selection transaction
(through dispute). Thus, we haveH = H′. Further, the selected
clients must be qualified, i.e., |P| ≤ |P ′|. Hence, we have
|H′|
|P′| ≥

|H|
|P| . Therefore,

Pr

[
|H|
|P|
≤ α(1− ε)

]
≤ Pr

[
|H′|
|P ′|

≤ α(1− ε)
]
≤ e−Ω(nc−log κ)

Finally, we show that even when the server can choose
among up to κ different randomess values, it has little chance
to select a target client.

Lemma V.3 (Anti-targeting). Considering an honest client i,
we have

|Pr[i ∈ P]− c| = e−Ω(κ),

where c is the selection probability.

Proof. As we have shown in the proof of Lemma V.2, an
honest client is selected if the output of its VRF is smaller than
a threshold. As the adversary cannot predict the output of the
VRF of the client i, for any randomness rnd, the outputs of the
VRF of i cannot be distinguished with a random number. Thus,
with probability c, the client i is qualified. If the blockchain
is secure (with probability 1 − e−Ω(κ)), the qualified client i
is selected. Thus, the probability that the client i is selected
is at most c+ e−Ω(κ) and at least c− e−Ω(κ).

Together, lemmas V.1, V.2, V.3 yield the security proof of
our protocol.

Theorem V.4 (Secure pool selection). The pool selection pro-
tocol in Algorithm 1 achieves pool quality, pool consistency,
and anti-targeting properties.

VI. EXPERIMENTS

We evaluate the performance of our protocol and the (inse-
cure) baseline protocol (section III). Further, we analyze the
dispute cost associated with the server and the clients.

Setup. We assume a public blockchain, e.g., Avalanche or
Solana, with Solidity smart contracts. We use the VRF in the
Libsodium cryptographic library1 and the VRF verification in
Solidity at https://github.com/witnet/vrf-solidity.

We conducted all experiments on a CentOS machine In-
tel(R) Xeon(R) CPU E7-8894 v4 2.40GHz. We report the
performance of the protocols in terms of blockchain storage
cost (in KB), blockchain computation cost (in gas), and CPU
time for the server and clients.

We choose the number of clients among 10k, 100k, and
1000k and set the selection probability c = 1% of that. The
number of training rounds in the FL process is assumed to be
1, 000.

A. Performance

1k 10k 100k
Number of clients

100

102

104

St
or

ag
e

(K
B)

140.7 140.7 140.7

0.1 0.1 0.1

703.1

7031.2

70312.5

Our protocol
(registration)

Our protocol
(pool selection) Baseline

10k 100k 1000k
Number of clients

10 1

101

103

105
St

or
ag

e
(K

B)

140.7 140.7 140.7

0.1 0.1 0.1

703.1

7031.2

70312.5

(a) Storage

10k 100k 1000k
Number of clients

106

108

1010

Ga
s

6.7×104 4.6×104 5.7×104

5.5×107 5.9×107 5.7×107

5.6×108

5.7×109

5.9×1010

(b) Computation cost (gas)

Fig. 4: The storage and computation costs on the blockchain
for the registration and the pool selection in 1, 000 training
rounds.

Storage and computation on blockchain. As shown in Fig.
4, the storage and computation costs on blockchain for our
protocol is significantly lower than those in the baseline
protocol. Further, both the storage cost and the computation
cost of our protocol remain constants when the number of
clients increases. This contradicts the linear increase in the
costs for the baseline protocol. For example, when the number
of clients n = 1000k, the total size of transactions in the
baseline protocol and in our protocol are 70.3MB and 0.1KB,
respectively. Similarly, the total gas cost is 5.9 · 1010 in the
baseline protocol and 5.7 · 107 in our protocol. Thus, our
protocol is up to several orders of magnitude more efficient
than the (insecure) baseline protocol.
CPU time. Only short computation times are needed for both
the server and the clients in our protocol. For n = 1000k
clients, the server in our protocol takes a 7.5s time to construct
the Merkle tree during the registration, and a 5.8s time
per round to verify the VRF proofs of the clients. All the
computation is done using a single core. We note that this

1https://github.com/algorand/libsodium/tree/draft-irtf-cfrg-vrf-03

https://github.com/witnet/vrf-solidity
https://github.com/algorand/libsodium/tree/draft-irtf-cfrg-vrf-03

time can be reduced by several folds using parallel computing
(not shown in here). The computation for each client is also
very short with a negligible time in the registration, and a
0.031s time per training round.

The baseline protocol incurs negligible computing times for
both the server and the clients.

B. Dispute cost

We now measure the dispute cost of the server and the
average dispute cost of each client. We consider a scenario
in which the number of clients is n = 1000k, the selection
probability c = 1%, the probability that qualified clients
submit a dispute transaction is 1%. We report the cost of the
server and the average cost of each client in 1, 000 training
round.

Storage (KB) Computation cost (gas)
The server 70.35 4.7× 109

Each client 0.01 2.1× 105

TABLE II: The storage and computation costs for dispute.

As shown in Table. II, the average dispute cost of each client
is much smaller than that, paid by the server. The storage costs
for the server and each client are 140.7KB and 0.01KB,
respectively. Similarly, the gas cost for the server and each
client are 4.7× 109 and 2.1× 105, respectively.

VII. RELATED WORK

Secure aggregation in FL. Leveraging secret sharing and ran-
dom masking, Bonawitz et al. [5] propose a secure aggregation
method and apply it to deep neural networks to aggregate
client-provided model updates. In [2] and [29], the authors
utilize homomorphic encryption to blindly aggregate the model
updates into global models. These secure aggregation proto-
cols can scale up to millions of devices, and are robust to
clients dropping out. Generic secure MPC based on secret
sharing that securely computes any function among multiple
parties [4], [8], [20] can also be used as secure aggregation
in FL. However, they are not scalable enough due to the high
complexity in both computation and communication.

Although these protocols provide strong security guarantees
with respect to concealing the local model updates from
the server, they are only applicable to an honest-but-curious
adversary. They assume that the server honestly follows the
protocol, including the random client selection. We show that
the server can easily manipulate the selection process to bypass
the secure aggregation and learn the local model update of a
victim. We also devise a verifiable random selection protocol
as a countermeasure to prevent the server from manipulating
the selection of participating clients, thereby maintaining the
security guarantees of secure aggregation protocols.

Integration of Blockchain and FL. Recently, there have been
multiple studies focusing on integrating the immutability and
transparency properties of blockchain into FL. For instance,
Bao et al. [3] propose FLChain which is an auditable and
decentralized FL system that can reward the honest clients

and detect the malicious ones. Zhang et al. [30] propose
a blockchain-based federated learning approach for IoT de-
vice failure detection. Kang et al. [15] develop a reputation
management scheme using blockchain to manage and select
reliable clients, thereby avoiding unreliable model updates. In
[17], [21], the authors utilize blockchain for the exchange and
aggregation of local model updates without a central server.

The above-mentioned systems cannot be employed directly
to address the biased selection attack because they are not
designed specifically for protecting client model updates.
Additionally, they are not compatible to be used with a secure
aggregation protocol. Our approach is different in a way that
we use blockchain as a source of randomness for the client
selection protocol, such that it enforces the random selection
of clients, making the biased selection attack infeasible.

VIII. CONCLUSION

In this paper, we have shown that using the secure aggrega-
tion protocols alone is not adequate to protect the local model
updates from the server. Via our proposed biased selection
attack, we have demonstrated that the server can manipulate
the client selection process to learn the local model update
of a victim, effectively circumventing the security guarantees
of the secure aggregation protocols. To counter this attack and
ensure privacy protection for the local model updates, we have
proposed a verifiable client selection protocol using blockchain
as a source of randomness. As a result, it enforces a random
selection of clients in each training round, thereby preventing
the server from manipulating the client selection process.
We have proven its security against the proposed attack and
analyzed its computation cost with Ethereum Solidity to show
that it imposes negligible overhead on FL.

ACKNOWLEDGEMENT

This work was supported in part by the National Science
Foundation under grants CNS-2140477 and CNS-2140411.

REFERENCES

[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya
Mironov, Kunal Talwar, and Li Zhang. Deep learning with differential
privacy. In Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security, pages 308–318, 2016.

[2] Yoshinori Aono, Takuya Hayashi, Lihua Wang, Shiho Moriai, et al.
Privacy-preserving deep learning via additively homomorphic encryp-
tion. IEEE Transactions on Information Forensics and Security,
13(5):1333–1345, 2017.

[3] Xianglin Bao, Cheng Su, Yan Xiong, Wenchao Huang, and Yifei Hu.
Flchain: A blockchain for auditable federated learning with trust and
incentive. In 2019 5th International Conference on Big Data Computing
and Communications (BIGCOM), pages 151–159. IEEE, 2019.

[4] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness
theorems for non-cryptographic fault-tolerant distributed computation. In
Providing Sound Foundations for Cryptography: On the Work of Shafi
Goldwasser and Silvio Micali, pages 351–371. 2019.

[5] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone,
H Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and
Karn Seth. Practical secure aggregation for privacy-preserving machine
learning. In proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 1175–1191, 2017.

[6] Travers Ching, Daniel S Himmelstein, Brett K Beaulieu-Jones,
Alexandr A Kalinin, Brian T Do, Gregory P Way, Enrico Ferrero,
Paul-Michael Agapow, Michael Zietz, Michael M Hoffman, et al.
Opportunities and obstacles for deep learning in biology and medicine.
Journal of The Royal Society Interface, 15(141):20170387, 2018.

[7] Rasmus Dahlberg, Tobias Pulls, and Roel Peeters. Efficient sparse
merkle trees. In Nordic Conference on Secure IT Systems, pages 199–
215. Springer, 2016.

[8] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Multi-
party computation from somewhat homomorphic encryption. In Annual
Cryptology Conference, pages 643–662. Springer, 2012.

[9] Bernardo David, Peter Gaži, Aggelos Kiayias, and Alexander Russell.
Ouroboros praos: An adaptively-secure, semi-synchronous proof-of-
stake blockchain. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages 66–98. Springer,
2018.

[10] Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random
function with short proofs and keys. In International Workshop on Public
Key Cryptography, pages 416–431. Springer, 2005.

[11] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion
attacks that exploit confidence information and basic countermeasures.
In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, pages 1322–1333, 2015.

[12] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin
backbone protocol: Analysis and applications. In Annual international
conference on the theory and applications of cryptographic techniques,
pages 281–310. Springer, 2015.

[13] Meng Hao, Hongwei Li, Xizhao Luo, Guowen Xu, Haomiao Yang, and
Sen Liu. Efficient and privacy-enhanced federated learning for industrial
artificial intelligence. IEEE Transactions on Industrial Informatics,
16(10):6532–6542, 2019.

[14] Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy,
Françoise Beaufays, Sean Augenstein, Hubert Eichner, Chloé Kiddon,
and Daniel Ramage. Federated learning for mobile keyboard prediction.
arXiv preprint arXiv:1811.03604, 2018.

[15] Jiawen Kang, Zehui Xiong, Dusit Niyato, Yuze Zou, Yang Zhang, and
Mohsen Guizani. Reliable federated learning for mobile networks. IEEE
Wireless Communications, 27(2):72–80, 2020.

[16] Latif U Khan, Yan Kyaw Tun, Madyan Alsenwi, Muhammad Imran,
Zhu Han, and Choong Seon Hong. A dispersed federated learning
framework for 6g-enabled autonomous driving cars. arXiv preprint
arXiv:2105.09641, 2021.

[17] Hyesung Kim, Jihong Park, Mehdi Bennis, and Seong-Lyun Kim.
Blockchained on-device federated learning. IEEE Communications
Letters, 24(6):1279–1283, 2019.

[18] Jakub Konečnỳ, H Brendan McMahan, Daniel Ramage, and Peter
Richtárik. Federated optimization: Distributed machine learning for on-
device intelligence. arXiv preprint arXiv:1610.02527, 2016.

[19] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of
features from tiny images. 2009.

[20] Yehuda Lindell, Benny Pinkas, Nigel P Smart, and Avishay Yanai.
Efficient constant round multi-party computation combining bmr and
spdz. In Annual Cryptology Conference, pages 319–338. Springer, 2015.

[21] Chuan Ma, Jun Li, Ming Ding, Long Shi, Taotao Wang, Zhu Han, and
H Vincent Poor. When federated learning meets blockchain: A new
distributed learning paradigm. arXiv preprint arXiv:2009.09338, 2020.

[22] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. Communication-efficient learning of deep
networks from decentralized data. In Artificial intelligence and statistics,
pages 1273–1282. PMLR, 2017.

[23] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
Decentralized Business Review, page 21260, 2008.

[24] Jason Posner, Lewis Tseng, Moayad Aloqaily, and Yaser Jararweh.
Federated learning in vehicular networks: opportunities and solutions.
IEEE Network, 35(2):152–159, 2021.

[25] Nicola Rieke, Jonny Hancox, Wenqi Li, Fausto Milletari, Holger R
Roth, Shadi Albarqouni, Spyridon Bakas, Mathieu N Galtier, Bennett A
Landman, Klaus Maier-Hein, et al. The future of digital health with
federated learning. NPJ digital medicine, 3(1):1–7, 2020.

[26] Ahmed Salem, Yang Zhang, Mathias Humbert, Pascal Berrang, Mario
Fritz, and Michael Backes. Ml-leaks: Model and data independent
membership inference attacks and defenses on machine learning models.
arXiv preprint arXiv:1806.01246, 2018.

[27] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov.
Membership inference attacks against machine learning models. In 2017
IEEE Symposium on Security and Privacy (SP), pages 3–18. IEEE, 2017.

[28] Timothy Yang, Galen Andrew, Hubert Eichner, Haicheng Sun, Wei
Li, Nicholas Kong, Daniel Ramage, and Françoise Beaufays. Applied
federated learning: Improving google keyboard query suggestions. arXiv
preprint arXiv:1812.02903, 2018.

[29] Chengliang Zhang, Suyi Li, Junzhe Xia, Wei Wang, Feng Yan, and
Yang Liu. Batchcrypt: Efficient homomorphic encryption for cross-silo
federated learning. In 2020 {USENIX} Annual Technical Conference
({USENIX}{ATC} 20), pages 493–506, 2020.

[30] Weishan Zhang, Qinghua Lu, Qiuyu Yu, Zhaotong Li, Yue Liu, Sin Kit
Lo, Shiping Chen, Xiwei Xu, and Liming Zhu. Blockchain-based
federated learning for device failure detection in industrial iot. IEEE
Internet of Things Journal, 8(7):5926–5937, 2020.

	I Introduction
	II Preliminaries
	II-A Federated Learning and Secure Aggregation
	II-B Blockchain
	II-C Verifiable random function

	III Biased selection attack and Secure client selection problem
	III-A Biased selection attacks
	III-B Secure client selection problem

	IV Client selection protocol
	V Security Analysis
	VI Experiments
	VI-A Performance
	VI-B Dispute cost

	VII Related work
	VIII Conclusion
	References

