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Abstract—Mining in proof-of-work blockchains has become
an expensive affair requiring specialized hardware capable of
executing several megahashes per second at huge electricity costs.
Miners earn a reward each time they mine a block within
the longest chain, which helps offset their mining costs. It is
therefore of interest to miners to maximize the number of mined
blocks in the blockchain and increase revenue. A key factor
affecting mining rewards earned is the connectivity between
miners in the peer-to-peer network. To maximize rewards a
miner must choose its network connections carefully, ensuring
existence of paths to other miners that are on average of a lower
latency compared to paths between other miners. We formulate
the problem of deciding whom to connect to for miners as a
combinatorial bandit problem. Each node picks its neighbors
strategically to minimize the latency to reach 90% of the hash
power of the network relative to the 90-th percentile latency
from other nodes. A key contribution of our work is the use
of a network coordinates based model for learning the network
structure within the bandit algorithm. Experimentally we show
our proposed algorithm outperforming or matching baselines on
diverse network settings.

Index Terms—Mining Rewards, Proof-of-work, Combinatorial
Bandit, Network Games

I. INTRODUCTION

Blockchain is rapidly emerging as a transformational tech-
nology for realizing trustless, decentralized and secure peer-
to-peer (p2p) applications at large scales over the internet.
Cryptocurrency, the earliest proposed blockchain application,
has grown to be a trillion dollar market today, while thousands
of decentralized applications (dapps) are enjoying massive
popularity in myriad domains including healthcare, social net-
works, decentralized web and beyond. The continued demand
for cryptocurrencies and dapps, despite recent turbulence in
market sentiments, also underscores the value of blockchains
as protocols for realizing truly democratized applications [8].

A blockchain is an append-only distributed ledger of trans-
actions (e.g., payments) maintained by nodes of a p2p net-
work. Nodes run a consensus protocol for ensuring consistent
transaction ordering in the ledgers across the entire network. In
Proof-of-Work (PoW) consensus—the prototypical blockchain
consensus algorithm used by Bitcoin, Ethereum 1.0 and many
other systems—transactions are packaged in to blocks that are
regularly added to the blockchain through a process called
mining. A block is proposed (mined) by a node (miner)

through solving a computationally difficult cryptographic puz-
zle, for which the miner receives a monetary fee as reward. To
prevent Sybil attacks, the cryptographic puzzle difficulty is set
so high today that miners use custom hardware within highly
optimized mining farm facilities. The high cost of mining pits
the miners in direct competition with each other, with each
miner vying to mine as many blocks as possible and maximize
profits.

Miners resort to various strategies to increase their earnings,
such as favoring locations with cheap electricity, or increas-
ing hardware power consumption and cooling efficiencies of
the mining farms [9], [15], [42], [44]. They also organize
themselves in to mining pools, apportioning mining rewards
across pool miners for a steadier income over time. However, a
fundamental factor affecting rewards earned by a miner is the
latency of block propagation in the p2p network. For a block
mined by a miner to be included in the blockchain, the block
must be propagated to other miners as quickly as possible
through gossip over the p2p network. In the gossip process
a mined block is immediately sent to the miner’s neighbors,
who then validate the block and forward the block to their
neighbors and so on. Delayed block propagation causes the
block to be ‘forked’ which nulls the reward for the block.
Similarly, blocks mined by other miners must also reach a
miner fast to prevent mining on a forked chain.

Propagating a block through a worldwide network of miners
takes between 100s of milliseconds to a few seconds on
popular blockchains today [18], [20]. Speed of light delay
over the vast distances between miners, and the number of
hops blocks have to be relayed over in a sparse p2p network
topology are major factors contributing to the propagation
delay. A fresh block is mined once every few seconds on
many blockchains—notably Ethereum, and Ethereum Classic
which have a ‘block time’ of 12 seconds on average [46]. The
high delay in block propagation relative to block time means a
speedup of even few 10s of milliseconds in a miner’s network
translates to significant gains in mining rewards for the miner
over time [25].

With a general understanding that faster the network the
higher are the rewards earned, miners often subscribe to high-
speed (few Gbps) Internet access links and make use of low-
latency private backbone networks of cloud providers when
possible [5], [6]. Increasingly pool operators are also choosing
private block relay networks (e.g., BloXroute [1], [29]) for
a more efficient block dispersion. However, recent work has978-8-3503-1019-1/23/$31.00 ©2023 IEEE
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shown that the dependence of mining rewards on propagation
latency is more intricate than this [35]. Specifically, an honest
miner that is well connected with other miners inadvertently
creates efficient, low latency paths for other miners by acting
as a centrally located bridge between the miners. However, to
maximize the marginal gains in reward due to the network, it
is important for a miner to have paths to other miners that are,
on average, of a lower delay relative to the delays of paths
between other miners. For example, if miners are arranged as
a star topology with links of unit delay and uniform compute
power across nodes, the central node receives a higher reward
compared to the leaf nodes by including more blocks on the
blockchain. On the other hand, on a complete graph topology
with unit delay links and uniform compute power as before, all
nodes receive the same reward. A node identically connected
to other nodes in the two cases (i.e., the central node in the
star topology and any arbitrary node in the complete graph
topology: both have direct links to all other nodes) receives dif-
ferent rewards, as rewards depend not only on the node’s own
connections but also on how other nodes’ connections. Thus,
there is an inherent tension for a miner in increasing her own
connectivity to the rest of the network while simultaneously
ensuring that the connectivity between other miners do not
significantly increase. A systematic research of this tension,
and efficient connection policies to maximize marginal mining
reward gain due to the network, have not been done to our best
knowledge.

In this work, we formalize the p2p topology construction
problem as a game between miners and present Cobalt, a
decentralized policy for optimizing reward. We consider a
simplified setting where only a single node chooses its con-
nections, while the rest of the network’s topology is fixed.
We assume that the global topology of the p2p network is
unknown to miners. We thus model the problem of optimizing
rewards by the connections-deciding miner node as a Markov
decision process (MDP) with no state and an action set with
a combinatorial number of actions.

We derive the optimal neighbor selection policy using
a combinatorial multi-armed bandit (MAB) approach [14].
In the MAB algorithm, the agent (miner) explores various
candidate connection configurations, and gradually adapts its
connections based on past experience to gain the most min-
ing rewards. A key contribution of our work is a network
coordinates based model for efficiently learning the MAB
environment [19]. In this model, miners are assigned real-
valued vectors from an Euclidean space, which capture the
relative location of miners with respect to each other in the
network. The coodinates are continuously updated based upon
the reward feedback the agent receives from the environment.
Thus, despite not having global knowledge of the network
initially, we show that it is possible for an agent to learn about
the network by just using the observed reward information.

To enable the deployment of MAB algorithm, we have
built a simulator. To simplify the reward computation in the
simulator, rather than simulating the actual mining process
at each step of the MDP, we consider a computationally

easier function that only depends on the pairwise shortest path
lengths between miners. Importantly, our MDP reward func-
tion captures the property that a miner’s mining gains depends
on how small the shortest path lengths between the agent and
other miners are relative to the shortest path lengths between
other miners. Experimentally we show Cobalt outperforms or
matches heuristics on diverse network settings.

II. RELATED WORK

P2P network design for optimizing mining rewards has
remained a relatively under-explored topic in the community.
The work that is closest to our is Perigee [34] which proposes
an adaptive peer-selection algorithm for minimizing block
propagation latency in the network. However, Perigee does
not model the game-theoretic competition between miners.
Subsequent works [11], [43] consider optimizing the network
to maximize extractable value (MEV) from transactions. A
number of prior works have exposed the impact of the network
on mining [12], [26], [28], [37], [40], [47], [48]. While
these works generally suggest that better network connectivity
translates to higher mining rewards earned, the competitive
effects of network connectivity and methods to optimize
them have not been discussed. Other related works include
KadCast [38] which proposes a Kadmila-based structured
overlay for efficient block broadcast, and relay networks such
as BloXroute [29] for transports blocks quickly across vast
geographic distances.

The idea of network coordinates for p2p networks has been
prominently explored in the network systems literature since
the turn of the millenium, including distributed approaches to
learn them [19], [32], [36]. More recently, a number of theo-
retical works have studied using low-distortion embeddings in
finite metrics (i.e., over finite graphs) for various applications,
e.g., sparse spanner construction [10], [13], [16], [21].

Game theory of blockchains, especially at the consen-
sus layer, has received considerable attention. For example,
Lewenberg et al. [33] use game theory to study how mining
rewards can be shared across members of a mining pool. On
the other hand, prior works have considered various network
games outside the context of blockchains [24], [39]. Our work
is the first (to our best knowledge) to consider network games
in blockchains.

III. PROBLEM FORMULATION

Let us consider a complete directed graph G = (V, E),
where V is the set of nodes and E is the set of directed edges.
Each node in the graph represents a mining server. The hash
rate of the mining server v is denoted by Hv . We use H to
denote the hash rate vector H := (Hv)v∈V . A directed edge
(v1, v2) ∈ E represents a (TCP) link between the nodes v1, v2.1

The directed edge represents that node v1 can send messages
(e.g., transactions, blocks etc.) to v2 as and when required by
the protocol. The time take for a message sent from v1 to
reach v2 along the link (v1, v2) is denoted by l(v1, v2) ≥ 0.

1We assume if (v1, v2) ∈ E then (v2, v1) ∈ E for all v1, v2 ∈ V .



For (v1, v2) /∈ V , we let l(v1, v2) denote the latency of sending
a message from v1 to v2 had there been a link between v1 and
v2. We refer to L := [l(v1, v2)]v1,v2 ∈ RV×V

+ as the latency
matrix. In practice, the latency matrix is nearly a symmetric
matrix; asymmetry in the latency between two nodes can arise
occasionally if the forward and reverse IP paths between the
nodes have significantly different lengths. We assume that the
hash rate of the nodes is publicly known by all the nodes. For
instance, by inspecting the frequency with which blocks are
mined by different miners on the blockchain, one can estimate
the relative hash power of different nodes. Each node v has
knowledge of latency l(v, u) between itself and other nodes
u ∈ V , but does not have knowledge of the latency between
other pairs of nodes. To get an estimate of the latency l(v, u)
to a node u, the node v can simply issue a ping to u and
measure the round-trip-time.

Let t ∈ N denote a time slot (or a round number). The
duration of each time slot is a design parameter, and could
be multiple minutes or hours long depending on the block
production rate in the blockchain. Based on the information
available to each node v, node v must decide on a certain
number of nodes to connect to for the running the PoW
consensus protocol. We assume each node can only connect
to a maximum of δ ∈ N nodes. To make a new connection,
a node first sends a connection request to the recipient who
either accepts or rejects the request. Each node can have at
most γ ∈ N incoming connections at any point in time.
The numbers δ and γ are public information and part of the
consensus protocol specification.

If every node determines the connections strategically in
every time slot to increase its expected reward, it leads to a
multi-agent game problem. Since games are generally more
difficult to solve, we first simplify the problem by assuming
that the network topology is fixed and only one node is
strategically picking the connections to the other nodes. This
leads to a more tractable Markov decision process, which we
describe next.

A. Markov Decision Problem Formulation

We now formulate the node connection problem as an MDP
from the point of view of an individual node with the rest of
the network being fixed. As we will see, this is a MDP with
no state and has a combinatorial action set.

Let v0 ∈ V be the node that needs to determine the
connections to other nodes. Let F ⊂ E denote the links
in G that have been made by nodes other than v0, i.e.,
F = {(u, u′) ∈ E : u ̸= v0}. The edges in F denote the fixed
part of the network. The set of edges in F will be augmented
with the connections picked by v0.

The MDP is parametrized by the hash rate vector H , the
roundtrip delay matrix L, and the parameters δ and γ. We let
the complete parameters be denoted by θ := (H, L, δ, γ).

The action of the node v0 at time t is a set aS,t =
{ut,1, u2,t, . . . , uδ,t} of nodes in V\{v0} to whom v0 connects
to.

Once the action is picked, the neighbors of the node v0 are
determined for the time t. The set of edges in the network at
time t is Ft := F ∪ {(v0, v) : v ∈ at} ⊂ E over which the
consensus protocol runs.

Let Pt(v, v
′) denote the set of paths from node v to v′ for

v′ ∈ V \ {v0}. Each path P ∈ Pt(v, v
′) ⊂ Ft is an ordered

collection ((v, u1), (u1, u2), . . . , (uk, v
′)). Define l̄(v, v′) as

l̄(v, v′) = min
P∈Pt(v,v′)

∑
(u,u′)∈P

l(u, u′), (1)

which measures the latency for messages starting from node
v to reach node v′.

We let 1V denote a vector of all 1s of size |V|. Let Uv
denote a collection of subsets of nodes with aggregate hash
power greater than 90% of the total hash power in the network
as follows:

Uv(Ft; θ) =

{
U ⊂ V \ {v} :

∑
u∈U

Hu ≥ 0.91T
VH

}
. (2)

Let Av(Ft; θ) denote the 90 percentile network latency for
node v. This is determined by

Av(Ft; θ) = min
U∈Uv(Ft;θ)

max
u∈U

l̄(v, u). (3)

Define Ā(Ft; θ) as the average 90-th percentile latency of
the network:

Ā(Ft; θ) =
1

|V|
∑
v∈V

Av(Ft; θ). (4)

For a node v, the amount of cryptocurrency earned during the
mining process is fairly complicated function of the network
topology. To keep the problem tractable, we pick a simple
reward function for the node that attempts to minimize the 90
percentile network latency in comparison to the average 90
percentile network latency of all the nodes. Accordingly, the
reward of the node v0 is given by

Rv(at) = −β
Av(Ft; θ)

Ā(Ft; θ)
, (5)

where β is a positive constant that depends on the blockchain
protocol and the length of the timeslot. Eq. (5) captures the
intuition that a miner receives greater than its fair share of
rewards if the miner has network connectivity that is on
average better than the network connectivity of other miners.
In practice the reward during a time slot can be computed by
measuring the cumulative mining fees earned over the duration
of the time slot. The goal of the node v0 is to pick its neighbors
at every time step strategically so that the long term average
expected reward is maximized, where the randomization (if
any) comes from the miner’s neighbor selection policy. Thus,
we arrive at an MDP with no state and a combinatorial number
of actions.



(a) Base network (b) Player v connects to node b (c) Player v connects to node c

Fig. 1: Example of a network showing the effect of player v’s action on reward.

B. Key Issues

From a node’s perspective, the hash rate vector of the
network and the parameters δ and γ are public knowledge and
therefore known to the node. However, each node v can only
observe the latency l(v, ·) to all other nodes in the network.
Thus, the node does not know the latency other nodes in the
network are observing. Moreover, the edges associated with
the other nodes in the network are also unknown to the node
v. Thus, each node v has partial knowledge of L and F .

Since we have a stateless MDP and each node does not
know some graph and network parameters, we arrive at a
“multi-agent combinatorial bandit problem". If every node is
strategic in the network and picks their neighbors strategically,
then the multi-agent combinatorial bandit problem is very
difficult to solve. Thus, for simplicity, we assume that all nodes
except v0 are non strategic, due to which the network edges
F is fixed (though node v0 still has only partial knowledge of
F). The goal of this paper is to solve the combinatorial bandit
problem associated with node v0’s optimization problem.

C. Computation of Av(Ft; θ)

Note that a naïve computation of Av(Ft; θ) (Eq. (3))
requires combinatorial number of operations. In this section,
we identify a simple algorithm which computes the value
Av(Ft; θ) in polynomial time.

Algorithm 1 Computing Av(Ft; θ)

1: Input: v, graph Ft, latency matrix L, hash power H
2: Output: Av(Ft; θ)
3: Compute l̄(v, v′) for all v, v′ ∈ V in graph Ft

4: Sort nodes in V \ {v} as (v1, v2, . . . , vn−1) such that
l̄(v, v1) ≤ l̄(v, v2) ≤ . . . l̄(v, vn−1). Here, n = |V|.

5: Initialize k ← 1, sk ← l̄(v, vk).
6: while Hv +

∑k+1
i=1 Hvi ≤ 0.91T

VH do
7: sk+1 ← max{sk, l̄(v, vk+1)}
8: k ← k + 1
9: end while

10: return max{sk, l̄(v, vk+1)}

Lemma 1: Algorithm 1 computes Av(Ft; θ) as defined in
Eq. (3), and does so in polynomial time.

IV. MOTIVATION

Before we present our algorithm, we motivate the problem
with a simple, toy example. Consider a network of 5 nodes
as shown in Fig. 1a, with node v being the player node. The
solid edges show existing links in the network, while dotted
edges are potential links that can be added by the player if it
chooses to. For each link, Fig. 1a also indicates the latency
of the link. For simplicity, suppose player v is interested in
choosing δ = 1 new connection in the network. Further, in this
example we define Av as the 100-th percentile latency for any
node v, instead of the 90-th percentile latency as in Eq. (3).
The precise hash power distribution across nodes therefore
does not matter for this example. The reward earned by the
player is as in Eq.(5) with β = 1.

Fig. 1b and 1c show two possible actions for player v.
In Fig. 1b node v makes the connection to node b, while
in Fig. 1c node v makes the connection to node c. If v
connects to b, the 100-th percentile latency values of nodes
a, b, c, d, v are 5, 4, 5, 4, 3 respectively, which gives a reward
of −0.71 to v. On the other hand, if v connects to c,
the 100-th percentile latency values of nodes a, b, c, d, v are
5.7, 5.7, 4.7, 4, 3 respectively, which now provides a reward
of −0.65 to the player.

Thus, the amount of reward earned by the player depends on
the choice of connections made by the player. The problem
is non-trivial even if the player has to choose just a single
new connection. Intuitively, in Fig. 1 no matter what action
node v chooses, its 100-th percentile latency remains the same.
However, the choice of connections crucially impacts the 100-
th percentile latency values of the other nodes in the network.
For example, in Fig. 1b, while v’s connection to b does not
provide any benefit to v it significantly shortens the path for
b to reach a, which ultimately reduces the reward earned by
v. In Fig. 1c, however, by connecting to c, node v ensures b’s
path length to a remains large thus incurring a greater reward
than in Fig. 1b. The key observation with this example is that
if a node is already well-connected in the network, then any
additional connections made by the node must not significantly
help other nodes in reducing their latency. With larger sized
networks, non-uniform hash power distribution, and δ > 1,
the problem becomes even more complex.



V. COBALT DESIGN

We now present Cobalt, a combinatorial bandit algorithm
for choosing efficient actions by the player. Cobalt is a fully
decentralized algorithm that miners can use to determine
effective peers to connect with to maximize their mining
rewards. The algorithm is inspired by a line of theoretical
works in the combinatorial bandit literature [14], [22], [23],
[27], [30], [41]. However, prior works typically assume a
"simple" and known underlying model (or, oracle) for the
bandit environment which allows for efficient algorithms and
tractable analysis. In our case, it is a priori not clear whether
the blockchain p2p networking environment seen from the
perspective of an individual miner can be fit reasonably to any
of the existing combinatorial bandit models in the literature. A
core contribution of Cobalt is an efficient model based on the
idea of network coordinates [17], [19], [31], [32], [36], which
we claim can be used to learn an effective representation of
the bandit environment from past observations. The network-
coordinate model can then be used to estimate rewards ob-
tained through playing different actions, using which the best
action to take can be inferred.

In a network-coordinate model, each node v ∈ V of
the networks is assigned a real-valued vector of coordinates
xv ∈ Rk in an Euclidean space (e.g., k = 5 in our
evaluations). A node’s coordinates represents its location in
the network, relative to other nodes. For instance, two nodes
with a low round-trip-time delay to each other should have
coordinates that are close to each other in Euclidean distance,
and vice-versa. Network coordinates are real-valued which
makes them amenable to be learned via gradient descent
techniques within auto-differentiation packages. Thus, purely
based on past bandit action-reward information observed by a
player, our model creates an estimate of the network structure
and computes effective actions the player can take. While IP
addresses of miners may be known publicly (e.g., through
blockchain monitoring services [3]), an IP address does not re-
veal fine-grained information about a miner’s relative position
in the network. Moreover, IP addresses can easily be spoofed
and do not reveal the topological structure of the network.
We remark that alternative network models are possible: for
instance, we can try to learn the miner-to-miner link latency
directly. This approach requires O(n2 parameters (n = |V|),
as opposed to the O(n) parameters in our proposed network
coordinates model. Learned link latency values also do not
reveal topological information.

Algorithm 2 presents an overview of Cobalt. At each time
step, based on the current set of node network coordinates the
algorithm computes the best action (function BESTACTION)
the player can take. Upon playing the recommended action,
the player receives a reward from the bandit environment.
The player compares the reward obtained against its estimated
reward for the action (function ESTIMATEREWARD), and
uses the discrepancy between the two to revise its network
coordinate model (function UPDATEMODEL). To avoid over-
fitting, we follow an ϵ−greedy schedule for exploring random

Algorithm 2 Algorithm template for Oracle at node v

1: Initialize: Oracle model and its parameters θ =
[x1, x2, . . . , xn] where xi is estimate of network coordi-
nate for node i; exploration parameter ϵ;

2: for each time step t do
3: Sample R uniformly randomly between [0, 1];
4: if R < ϵ then
5: Choose action av(t) randomly and observe rewards

Rv(t);
6: else
7: Choose av(t)← BESTACTION(θ) as the best action

and observe reward Rv(t);
8: end if
9: Predicted reward ← ESTIMATEREWARD(θ, av(t))

10: Update Oracle model parameters: θ ←
UPDATEMODEL(θ, av(t), Rv(t))

11: end for

actions occasionally. We discuss the subroutines below.

BESTACTION(): For a candidate action av with network co-
ordinates θ, the ESTIMATEREWARD(θ, av) function computes
an estimate of the reward earned if the player plays action
av . To compute what is the best action that can be played,
the BESTACTION(θ) function simply exhaustively calls the
ESTIMATEREWARD(θ, av) routine for all possible candidate
actions av , and selects the action having the highest estimated
reward. An exhaustive search is possible for small networks;
for larger networks we can consider a random subsample of
candidate actions or other local search heuristics to reduce
complexity.

ESTIMATEREWARD(): To compute an estimate of the reward
given a candidate action av , we first estimate the link latency
between any two nodes u, u′ ∈ V as l̂(u, u′) = ||xu − xu′ ||2
where || · ||2 is the L2 norm. Next, we compute an estimate of
the network topology Ê . For the player v, we let links from
v to nodes in av be the set of links incident to v in Ê . For
nodes u, u′ ∈ V, u, u′ ̸= v, we heuristically estimate whether
(u, u′) ∈ Ê based on θ. A simple heuristic, for instance,
is to randomly decide whether (u, u′) ∈ Ê . Here whether
(u, u′) ∈ Ê is estimated once at time step 0, and fixed af-
terwards. More complex heuristics that also take in to account
the current values θ of the network coordinates to estimate
Ê are also possible. We have adopted the random estimation
heuristic in our evaluations. We also discuss advantages of
knowing additional information about the true topology in our
experimental results. With both the network topology Ê and
link latencies estimated, we can compute the 90-th percentile
latency Au for all u ∈ V in the graph (V, Ê) and hence the
reward estimate R̂v(av).

UPDATEMODEL(): The last step during a round is to update
the network coordinate values θ by comparing the estimated
reward against the actual reward obtained. We define a loss
function λ(t) = (Rv(t) − ESTIMATEREWARD(θ, av(t)))

2,
where Rv(t), av(t) denote the reward obtained and action



Algorithm Amsterdam Atlanta Shanghai Tokyo
Av Reward Av Reward Av Reward Av Reward

Random
choice

205.097 -1.299 205.662 -1.106 208.901 -1.494 200.159 -1.229

Least Latency 204.104 -1.114 204.308 -0.9663 204.344 -1.079 199.852 -1.211
Most Hash
Power

204.11 -1.089 204.457 -1.022 208.572 -1.332 204.913 -1.433

Cobalt(Ours) 204.105 -1.04 204.298 -0.9674 205.003 -1.094 203.246 -1.16

TABLE I: Average Reward obtained under real world hash power distribution by player nodes in Europe, North America and
Asia respectively.

taken during time step t, respectively. The coordinates are then
updated as

θ(t+ 1)← θ(t)− η∇θλ(t), (6)

where η > 0 is a step-size parameter. Note that comput-
ing ∇θλ(t) requires taking the gradient of ESTIMATERE-
WARD(θ, av(t)) with respect to θ, which in turn requires
computing the gradient of the 90-th percentile latency Au for
u ∈ V . This can easily be done as Au for any u can be
expressed as a sum of link latencies (estimated via network
coordinates) along the 90-th percentlie latency path which is
differentiable with respect to θ.

VI. SIMULATION SETUP AND EVALUATION

In this section, we illustrate the effectiveness of
Cobalt through experimental evaluation. We build a custom
simulator on Python following the model described in §III-A.

A. Dataset Used
A custom dataset has been generated using publicly avail-

able Ethereum blockchain data. Training dataset was created
by selecting the major Ethereum Mining pools responsible
for mining the most blocks, with their available network hash
rates, and their estimated server locations [2], [4]. The round
trip times have been collected from publicly available ping
data for major cities based on where these Ethereum nodes
were estimated to be located [7]. Further synthetic distributions
of hash powers have also been added to the training data,
(we consider uniform hash rates as well as those drawn from
an exponential distribution, apart from the true values). The
ground-truth topology of the network is assumed to be static,
and has been abstracted from the previous blocks of the
Ethereum blockchain network [4].

B. Baselines
We consider the following baselines in our evaluations:
• Random Selection: In this, a playing node selects four

connections randomly. This is the standard practice for a
current node while connecting to a blockchain network.

• Least Latency: This heuristic involves a player node
simply choosing the 4 neighbors that provide the lowest
link latencies.

• Most Hash Power: Similar to LeastLatency, the player
node selects 4 nodes that provide the maximum hash rate.

We compare the above baselines to our slightly more strategic
approach that takes a look at the 90 percentile network latency
using a multi-armed bandit approach.

C. Implementation Details
We run the experiment for T = 300 rounds. We restrict

the number of allowable connections to 4, that are chosen
according to our neighbor selection policy. Here, β = 1 and
exploration parameter ϵ=0.1. For a single node v0, our action
can only be to either connect to a new node after disconnecting
from an existing node, or to keep the connection with an
existing node, such that the total number of connections does
not exceed 4 at any point of time. We initialize our network
coordinates for the nodes randomly, and assume a random
topology for the Oracle as described in §V. The coordinate
system used here is a five dimensional one. We use the
coordinates for estimating reward as described in §V.

D. Results
Table I displays our results for the listed method compared

to baseline heuristics. We observe the results for different
initializations of v0 being the cities Amsterdam, Atlanta,
Shanghai and Tokyo which are some of the major hubs for
mining Ethereum blocks in the North American, European and
Asian continents respectively.

We perform detailed experiments on player nodes Shanghai
and Amsterdam, where Amsterdam is considered a "well
connected" node and Shanghai, a "poorly connected" node.

1) Real world hash: In current blockchain networks, we
observe that most of the hash power is concentrated in a few
key regions (greater than 50% in the United States and Europe
for Ethereum nodes [3]) , whereas the remainder is distributed
among other scattered nodes. As such, a node located in a
region without this concentration of hash power (such as Asia),
may face many challenges to improving their mining rewards
as compared to a node located in a well connected region (such
as North America). One of the solutions of this problem in a
topology like this for a node wishing to increase their rewards
without heavily investing into additional infrastructure would
be to shift away from randomly selecting their neighbors
and picking their connections more strategically, by following
some kind of policy to choose the nodes. I affirms that this is
indeed a natural next step, as the rewards obtained by random
selection are always suboptimal.

In this topology motivated by the real world, Fig. 2 de-
scribes the actual rewards obtained by a player as well as
the prediction curve by our algorithm on both well connected
and poorly connected players, and we see that for a complex
network, our model is able to successfully learn the optimal
action to take to converge to the best rewards.



(a) Player node Amsterdam

(b) Player Node Shanghai

Fig. 2: Prediction estimates of reward obtained by well-
connected and poorly connected players and their actual
rewards obtained.

2) Uniform hash and exponential hash: Apart from the real
world scenario, we also look at other variations of topologies,
starting with the ideal case, where we assume that all nodes
have equal hash power. Here too (Fig. 3), it is reasonable to
expect to outperform random selection for both well connected
and poorly connected nodes, simply by virtue of the playing
node being unable to select the optimal arm each time.
However, here as our problem has been simplified, the only
parameter that matters to the playing node becomes the link
latencies, and the optimal action would be to connect to the
neighbors closest to it. Indeed, our results reflect this case, and
the best action selected by our algorithm eventually converges
to the least latency arm.

A slightly more complex example would be if we vary the
hash rate. Here, we use data that contains nodes with hash
powers that have been drawn from an exponential distribution.
Fig. 4 suggests that for a playing node, simple heuristics might
be a better choice from the perspective of ease of use, however
Cobalt is very competitive in terms of the rewards obtained.
Picking the least latency heuristic might be the cheapest in case
of a network where there is a certain degree of confidence that
the hash rates are unequal, but not very disparate from each
other. For such a kind of network topology, a prudent approach
could be to consider a simpler heuristic.

(a) Player node Amsterdam

(b) Player Node Shanghai

Fig. 3: Reward obtained by well-connected and poorly con-
nected players v/s random selection under uniform hash power.

3) Role of topology estimate in Oracle: To compute a
reliable estimate of the reward function given a candidate
action, Algorithm 2 requires an estimate of the underlying
network topology. In the results so far, we have assumed a
random estimate of the topology.

From the perspective of a playing node, knowing the quality
of active links between its neighbors is very useful in order to
estimate the delays between the blocks being received by this
node in the blockchain network, but typically, the underlying
topology of the network is unknown to a player node, as a
result learning a good action makes more sense. Fig. 5 shows
that our algorithm learns improved policies if the topology
estimate used in the Oracle matches with the actual topology
of the network.

4) Interpreting the network coordinates: Fig. 6 shows the
t-SNE visualization [45] of the network coordinates that have
been estimated by our model. We start with a random model,
however as time passes, we observe our model trying to mimic
the topology of the ground truth coordinates. For instance,
we observe that even though the coordinates for Shanghai
(shown by the large green point in Fig. 6) starts out being the
middle, as time progresses the Shanghai’s coordinates tends to
move out to the periphery which is consistent with Shanghai’s
remote location relative to other nodes in our dataset.



(a) Player node Amsterdam

(b) Player Node Shanghai

Fig. 4: Reward obtained by well-connected and poorly con-
nected players for all heuristics vs chain bandits for an
exponentially distributed hash power setting

VII. CONCLUSION

In this paper, we have introduced Cobalt, a network coor-
dinates based model that maximizes mining rewards earned
by a miner through careful choice of neighbor connections on
the P2P topology. We modeled the problem as a combinatorial
bandit problem in which a node has only partial knowledge
of the rest of the network and show that it is useful for a
playing node to consider a careful selection of neighboring
nodes instead of randomly choosing their connections.

A. Future Work

Our future work involves expanding this to a dynamic
system, where all nodes are allowed to choose their neighbors
and we attempt to understand the equilibrium of this game
problem.

Another future direction is the development of other net-
work topology estimates for the oracle. Our current model
uses a random estimate, however others (such as a coordinate
dependent topology estimate) and their impact on the model
would be an interesting study.
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