
UC Berkeley
UC Berkeley Previously Published Works

Title
MEVade: An MEV-Resistant Blockchain Design

Permalink
https://escholarship.org/uc/item/3b84884k

Authors
Piet, Julien
Nair, Vivek
Subramanian, Sanjay

Publication Date
2023-05-05

DOI
10.1109/icbc56567.2023.10174966

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3b84884k
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

MEVade: An MEV-Resistant Blockchain Design
Julien Piet
UC Berkeley

Berkeley, CA, USA
piet@berkeley.edu

Vivek Nair
UC Berkeley

Berkeley, CA, USA
vcn@berkeley.edu

Sanjay Subramanian
UC Berkeley

Berkeley, CA, USA
sanjayss@berkeley.edu

Abstract—Ethereum is a popular blockchain that facilitates the
creation of decentralized applications (dApps) and enables digital
transactions to be executed without the need for a central author-
ity. However, as in traditional markets, information asymmetry
and market inefficiencies are used to the detriment of ordinary
users via trading strategies that exploit “Miner Extractable
Value” (MEV). We propose two extensions of Ethereum, one
for proof of work (PoW), and one for proof of stake (PoS),
that eliminate most forms of MEV by randomizing the execution
order of transactions and hiding the content of transactions until
their inclusion in a block. We simulate attack scenarios for both
settings and provide detailed security properties and proofs.

I. INTRODUCTION

Ethereum is today the most popular blockchain for Decen-
tralized Finance (DeFi), providing a set of on-chain currencies,
exchanges, and services that emulate a conventional finan-
cial market without reliance on central authorities. Despite
Ethereum’s promise of a secure, transparent, and immutable
digital asset exchange platform, a plethora of information
asymmetries persist (just as they do in traditional financial
markets), and are heavily exploited at the cost of all other
users. As early as 2014, Ethereum miners were already
conspiring to perform frontrunning [1], a type of market
manipulation that would be prohibited in regulated exchanges.

The concept of extracting value from DeFi transactions is
coined Miner Extractable Value (MEV). Measurement studies
of MEV in Ethereum have conclusively demonstrated that
MEV exploitation is not only practical but, in fact, widely
prevalent [2]. This presents an increasingly worrisome trend,
as most forms of MEV harm ordinary users by impacting
currency exchange rates while adding friction and uncertainty
to transaction execution. The net effect is increased cost
and uncertainty for DeFi users, to the benefit of only a
select few validators who reap the rewards. Moreover, in
PoW chains, MEV encourages forking; as of in March 2022,
multiple blocks per week contained enough extractable value
to incentivize forking attacks from Ethereum miners [1].

MEV is possible thanks to validators’ advanced knowledge
of transactions, and their full control over the ordering of
blocks they propose. Transactions in Ethereum, as in many
chains, are public until added to a block, which allows curious
participants to peek, and possibly propose transactions that
take advantage of them. This is used in MEV, but also for

generalized frontrunning (GF), in which malicious participants
can steal from honest participants, giving Ethereum’s transac-
tion pool the “Dark Forest” nickname [3], [4].

Both academia and industry alike have proposed methods
to address the MEV problem, such as improved decentralized
exchange (DEX) contracts, enforcement of ordering consis-
tency, and transaction encryption. However, none have truly
resolved the issue in the proof-of-stake (PoS) setting.

In this paper, we propose two practical protocols, one
for PoW and one for PoS, to mitigate MEV and GF, by
(1) encrypting transactions until they are included in blocks
and (2) randomizing the execution order of transactions. We
analyzed the security properties of our PoS protocol, which
preserves the safety and liveness guarantees of Ethereum,
while supporting Ethereum’s current transaction throughput.

The remainder of this paper is structured as follows: We first
provide background on Ethereum, both in its PoW and PoS
variants (§II). We then review previous efforts in this space
(§III), and present our protocols for PoW (§V) and PoS (§VI).
Finally, we discuss the limitations of our approach (§VII).

II. BACKGROUND

A blockchain enables a network of nodes to maintain a
decentralized ledger of transactions without necessitating the
use of a trusted authority that is responsible for record-keeping.
Ethereum [5] is presently one of the largest blockchains in
the world by transaction volume, and is the most popular
blockchain that supports smart contracts that can be arbitrarily
complex in terms of Turing completeness [2]. A typical exam-
ple of a smart contract that may be invoked by a transaction
is a decentralized exchange (DEX) of one token for another.

Central to the design of a blockchain system is the process
by which nodes in the network achieve consensus on a
transaction history. Each block in a blockchain contains a
sequence of transactions; once a block becomes part of a
node’s chain, the node will consider all of those transactions to
be part of the canonical transaction history. While new blocks
are always “gossiped” between nodes, a node looking for the
newest version of the blockchain may see several different
versions of the chain when looking at the blocks broadcast
by other nodes. In Ethereum, to resolve this conflict, the node
will refer to a forking rule to decide which chain is valid.

Nodes should not be able to tamper with the transaction his-
tory. Blockchains use consensus mechanisms for participants
to agree on a common history and come up with new blocks.978-8-3503-1019-1/23/$31.00 ©2023 IEEE

Ethereum used to rely on a proof of work consensus (PoW),
before recently switching to proof of stake (PoS).

In PoW, which was introduced for the Bitcoin
blockchain [6], each block includes a value called a
nonce that establishes the validity of the block. Nodes
that publish new blocks after finding nonces for them are
called miners. The forking rule states the longest chain of
blocks is valid. Crucially, given the contents of a block, it is
computationally difficult to find a nonce that will be judged
valid. Thus, rewriting the chain requires mining faster than
the rest of the network, in order to produce the longest chain.

By contrast, PoS requires nodes to have a financial stake (i.e.
capital) to participate in the process of establishing new blocks.
These nodes are called validators. Ethereum’s PoS splits time
into epochs of 32 slots, each slot lasting 12 seconds. In each
slot, a random committee of validators is chosen. One of these
validators proposes a block, while the others cast votes to elect
the valid chain. Finally, a third class of validators in each slot
aggregate votes to be included in future blocks [7].

MEV. In both the PoW and PoS variants of Ethereum,
miners and validators can take advantage of the public nature
of the mempool to exploit information asymmetries to their
own benefit. There are several recognized forms of MEV [1]:
• Frontrunning avoids the price slippage caused by a target

transaction by inserting a transaction before the target.
• Backrunning exploits the price slippage caused by a target

transaction by inserting a transaction after the target.
• Sandwiching combines front and back running to exploit

the price differential before and after a target transaction.
• Arbitrage takes advantage of pricing gaps of the same asset

in different markets, and is the most well-known but least
prevalent form of MEV. Unlike the above attacks, Arbitrage
is generally seen favorably in financial markets, as it does
not rely on insider knowledge of transactions. Still, arbitrage
transactions benefit from placement at the top of a block so
that others cannot benefit from the opportunity.

III. RELATED WORK

There have been multiple works analyzing MEV and trying
to understand the scale of the issue [1], [2], [4], [8], [9].
Although the incentives of stakeholders on Ethereum, the
chain with most DeFi activity, are not aligned with reducing
MEV, it is nonetheless an important topic of research given
that it has been shown to create network congestion and hence
increase transaction prices not just for DEX transactions but
also for simple transfers affecting the system.

MEV-resistant DEX. One strategy is to change the model
used to redefine how DEXs process transactions instead of
using instant confirmation such as AMMs. For example,
McMenamin et al. [10] provide game-theoretic guarantees
against MEV extraction by using frequent batch auctions,
while Heimbach et al. [11] do the same by setting the
slippage tolerance in swaps to prevent sandwich attacks. Other
approaches aim to use off-chain communication [12] or multi-
party computation [13] to eliminate arbitrage opportunities.
Finally, A2MM [14] advocates for a unified AMM for the

blockchain to mitigate sandwich and back-running attacks.
While these designs provide better guarantees than standard
AMMs, they are significantly more complicated, sometimes
with more trust assumptions. This also increases the surface
area of attack for smart contract bugs. Finally, designing better
individual DEXs does not limit MEV across different DEXs.

Order-fairness. An alternative direction to mitigating MEV
is to have miners agree on the order in which transactions
were submitted to the mempool, with the idea that limiting
the reordering of transactions limits the ability of a miner
to extract MEV. Byers [15] gives an overview of ordering
consensus, while Themis [16] and Aequitas [17] achieve
decentralized order fairness in a decentralized manner, but are
only able to enforce a weak version of order-fairness, coined
batch order-fairness, that does not eliminate MEV. Wendy [18]
is a set of protocols for ensuring order fairness based on
linearizability. Unfortunately, this too only provides coarse
order-fairness and does not mitigate all reordering possibilities.

Threshold Encryption. Finally, some prior work suggests
that clients first encrypt transactions that get decrypted only
after the position of the transaction on the blockchain has been
fixed. Helix [19] is a PBFT-based blockchain that uses thresh-
old encryption to hide the content of transactions. Ferveo [20]
extends this idea and proposes a protocol for Mempool Privacy
on any BFT consensus-based blockchain. These solutions are
elegant and provide strong privacy guarantees; however, they
do not immediately extend to Ethereum, which is not based
on BFT consensus and instead uses GASPER [7]. In contrast,
this work proposes a practical encryption mechanism, inspired
by Ferveo but supported by Ethereum, and crucially also
introduces random transaction ordering to further deter MEV.

Alternatively, one may consider using “Timelock Encryp-
tion” via Verifiable Delay Functions [21]. However, this would
require that a transaction always be included in a block within
a certain period of time. We argue that this is not a reasonable
model for Ethereum, given that transactions can potentially
wait indefinitely in the mempool. Further, if a transaction is
included early, then the updated state from this transaction
is unavailable until much later, affecting the user experience.
One could also use trusted execution environments (TEEs),
but this approach crucially relies on the integrity of TEEs,
which has been repeatedly broken [22]. For instance, a TEE-
based blockchain named Secret Network was recently rendered
completely vulnerable due to an attack on the underlying TEE
[23], whereby researchers were able to extract the secret key.

IV. TECHNIQUES

In this section, we describe the primitives we use for both
our protocols. We prevent MEV by randomizing the execution
order of transactions in a block (so no validator can execute
reordering MEV strategies) and by blinding transactions until
they are committed to (to prevent frontrunning). Combined,
these two techniques make most MEVs impractical. For in-
stance, front and back running rely heavily on having advance
knowledge of a transaction, which is made impossible by
blinding. Further, the likelihood that the three transactions of

a sandwich attack will be randomly ordered in the correct
sequence is only P (N,N−3)

P (N,N) = 1
6 . Finally, while our schemes

do not eliminate arbitrage, they ensure that all nodes have
equal extraction odds rather than advantaging validators.

A. Random ordering

Our first primitive serves to randomize the execution order
of transactions in a block. This execution must happen after
the block has been committed to, but before the next block
is submitted, in order to support DeFi applications without
adding latency or uncertainty. We require a source of random-
ness to execute transactions in a random ordering, which must
be agreed upon by all parties in the chain, needs to be refreshed
for every block, and cannot be revealed before the block has
been committed to (or else the block proposer could adaptively
select the set of transactions in a block to influence extracted
value). We abstract this concept by using a randomness beacon
that interfaces with the blockchain to provide fresh randomness
for each block. We also introduce ρ(N,R), which returns a
pseudorandom permutation of [1, N].

Fig. 1. Use of randomness beacon for random transaction ordering.

Figure 1 shows a high-level view of random ordering. First,
validators propose a block B, including a set of N transac-
tions, ordered in a canonical way (e.g., by hash). Next, the
randomness beacon emits a random value R, which is agreed
upon by all. This value is used to generate a permutation
ρ(N,R) that determines the transaction execution order.

We now provide practical solutions for implementing this
randomness beacon, both for PoW and PoS blockchains. In
particular, we make sure (1) our randomness is unpredictable
before block commitments, yet (2) agreed upon by all after the
fact. We propose two main strategies for implementing such
randomness beacons: ones derived from chain data, and others
derived from participants in the chain.

a) Chain data randomness.: In this setting, random
values are derived using chain data. Initially, this seems to
violate property (1), as a single user can compute randomness
independently from other users before submitting a block.
However, we circumvent this problem with delay functions,
which are difficult to compute, taking a non-compressible
amount of time, but have an efficiently verifiable output. As
long as the block time is smaller than the delay, miners are not
able to adaptively select transactions to alter the final order.

Fig. 2. Using mined nonces as a randomness source for proof of work.

In a proof-of-work setting, this can be implemented without
any additional tools. Miners compete to find a nonce producing
a low enough hash value. This nonce is difficult to find yet easy
to verify by design, so we use it to seed our pseudorandom
permutation function ρ, as illustrated in Figure 2. A powerful
enough miner could potentially solve the PoW puzzle multiple
times, and publish the block with the highest extracted value.
However, as we show in Section V-A, non-majority miners
have a negligible likelihood of mining multiple blocks before
any other miner can solve a single PoW puzzle.

In a proof of stake setting, we cannot use the same trick:
blocks are signed by validators instantly, so there is no
natural delay. Verifiable delay functions (VDF) are a candidate
solution. However, their correct implementation is challenging.
Instead, in PoS, we rely on a second form of randomness,
derived from other nodes in the network. In particular, we can
bootstrap randomness directly from blinded transactions.

b) Consensus-derived randomness: Alternatively, in-
stead of deriving random values from chain data, here we
use inputs from participants to generate a random value. By
combining user inputs, we derive a value that no single node
has influence over, yet every participant agrees upon. The
advantage of this type of solution is no validator can determine
the ordering of a block alone. However, in its simplest form,
it also comes with a significant weakness: the last user to
provide a random value can adaptively choose their value and
thus have total control over the random output.

We can solve this using verifiable user contributions, mean-
ing inputs must be random but not arbitrary. The node cannot
choose its contribution as it could be used to its own advan-
tage. A standard way of achieving this uses digital signatures:
inputs must be the digital signature of a known piece of
information using a node’s secret key, so every other party
can verify the signature is valid. Ethereum’s own RANDAO
algorithm, used to randomly select validator committees for
block slots, uses this primitive. In this setting, the last node
cannot fully influence the random value, but can still have
one bit of influence over the final result, by choosing or not to
withhold its value. In particular, a set of k conspiring nodes can
exert k bits of influence over the random value, and thus can
potentially have a significant impact on the final permutation.

Thankfully, we can combine random input sharing and
transaction blinding to prevent this last problem: each blinded
transaction contains a random input (e.g., the signature of
the transaction nonce), which is only revealed when the
transaction is decrypted. As long as decryption is atomic,

meaning either all transactions in a block are revealed or none
are, as long as at least two transactions in the block are not
conspiring, the resulting transaction ordering is truly random
to all nodes. We now describe our primitives for blinding.

B. Transaction Blinding

Hiding transactions prevents MEV by making them unread-
able until execution. We are only concerned with hiding the
recipient of the transaction, its data contents, and its value.
Other parts of the transaction need to remain in the clear for
miners to ensure they are profitable, and that the sender has
enough funds. Moreover, other fields do not provide useful
information for frontrunners (except for correlation attacks).
Fully encrypting the content of a transaction poses significant
hurdles without providing additional MEV protection, thus we
chose to only hide the transaction recipient, content, and value.

As for random ordering, it is important that the transaction
be uncovered before the next block in the chain is proposed;
waiting any longer would slow DeFi trades and thus add
uncertainty to asset prices. This necessarily implies we can-
not guarantee transaction privacy in the event of forks; all
blocks on a dead branch will have revealed their transactions,
yet these transactions might not be included in the main
chain. This is mostly an issue in PoW chains, in which
occasional forks will inevitably leak the content of some
transactions. There are two main ways to hide transactions:
“Commit-reveal” and “Threshold decryption.” We chose to use
a commit-reveal structure for PoW and threshold decryption
for PoS, which already uses committees.

a) Commit-reveal: In this setting, nodes commit to a
transaction and only reveal it once it’s been included in a
block. In practice, this is done using a symmetric cipher. The
sensitive part of the transaction is encrypted using a secret
one-time key. Once the sender node sees a block containing
the transaction, it reveals the key, so everyone can decipher
the transaction. Nodes should only reveal keys once they trust
the block will be included in the chain; otherwise, they might
be tricked into revealing the contents of a transaction. As
discussed earlier, this is necessary in order to avoid latency.

The advantage of this solution is its simplicity, and the fact it
does not rely on a committee of nodes to decrypt transactions.
However, these properties come at a cost. Nodes must stay
online anytime they have a pending transaction, and the node
must be aware of the key, and thus knows the content of the
transaction. This is a potential issue: most transactions are
submitted through third-party nodes, since most users do not
have their own private Ethereum node. Consensus is also more
difficult to reach, since all nodes in the network must agree
on the set of keys that have been released for a specific block.

b) Threshold Public-Key Encryption: Threshold Public-
Key Encryption (TPKE), albeit more complex than a commit-
reveal scheme, has several advantages. It allows users to
encrypt a transaction and go offline. In fact, as long as a user
knows the public key for the block slot it is targeting, they can
encrypt the transaction themselves, such that no node is aware
of its contents (including the node submitting the transaction).

TPKE also supports a degree of node failure. Previous work,
such as Ferveo [20], uses TPKE to hide transactions. We
use a simulation-based definition of adaptive CCA (chosen-
ciphertext attack) secure TPKE as defined by Canetti and
Goldwasser [24], which was shown to imply the strong notion
of IND-CCA2. This strong notion of security ensures, in par-
ticular, the scheme will not be malleable, thus attackers cannot
change the contents of an encrypted transaction. We restrict
protocols ΠTPKE for TPKE to consist five PPT algorithms
(Setup,Enc,Dec,Verify,Combine) as defined below:
• Setup(1κ, n, t)→ {pk, vk, (sk1, . . . , skn)}: Takes as input a

security parameter and positive integers n, t and outputs a
public, verification key and secret keys with threshold t+1.

• Enc(pk,m; ρ) → ct: Takes as input the public key pk, a
message m and randomness ρ and outputs a ciphertext ct.

• Dec(ct, ski) → mi: Takes a secret key ski and ciphertext
ct and outputs a partial decryption of message mi.

• Verify(pk, vk,mi) → {0, 1}: Takes as input the public
key, verification key, and partial decryption of message and
outputs 1 if and only if the share is a valid decryption.

• Combine(pk, vk, {mi}i∈S⊆[n]) → m takes as input t + 1
partial decryptions of the message and reconstructs m.

For a protocol ΠTPKE to be t-secure, it must securely emulate
the following ideal functionality [25]1.

FTPKE

Parties: Encrypting user E and Servers (S1, . . . , Sn).
Parameters: Space of receipts C, number of servers n and
threshold 0 < t ≤ n.
• Setup. Adversary specifies a distribution Γ over C.
• Encryption. When E sends (Enc,m), sample a receipt
c← Γ and store (c,m). Send c to E.

• Decryption. When t+1 servers send (Dec, c), if a tuple
(c,m) has been stored, send m to the servers. Else, send
⊥ to the servers.

Fig. 3. Ideal Functionality for Threshold Public-Key Encryption scheme.

We rely on Ferveo’s TPKE as a practical implementation
of such a scheme. We refer the reader to the appendix of the
original paper [20] for proof of semantic security. However,
Ferveo itself is not well suited for Ethereum, as its bandwidth
and computational requirements do not scale well for the
12,000 validators per slot in Ethereum.

Our solution closely adapts Ferveo’s algorithm to Ethereum,
but only uses aggregators instead of all validators to hold secret
shares, making it more efficient. Section VI provides a detailed
description of our protocol.

V. PROOF OF WORK PROTOCOL

We describe in this section our proposed mechanism for
committee-less transaction encryption in proof of work. Our
system is designed as an extension of Ethereum but can be
applied to other PoW chains. We blind transactions using a

1In the original paper, the authors actually define and construct protocols
satisfying the stronger Universally Composable notion of security [26]

commit-reveal structure, which leverages two types of blocks,
as shown in Figure 4. The first block, called the Transaction
Block, is analogous to blocks in traditional blockchains, except
that the transactions in this block are encrypted. The second
type of block, called Key Blocks, contains the secret keys for
deciphering the transactions in transaction blocks.

Fig. 4. Ordering of transaction and key blocks

When a node submits a transaction to the network, it gener-
ates a secret key and uses it to encrypt the data, recipient, and
value. Miners then commit to a set of encrypted transactions
in a transaction block. Nodes whose transactions are included
in the blocks release their keys to the network, and miners can
then build a key block containing these keys.

In order to provide censorship resistance, the network
expects a fixed number of key blocks k to be submitted to the
network before it can move on to the next transaction block.
These blocks can be submitted in parallel by different miners,
and only need to point toward the original transaction block.
Once k key blocks have been created, nodes can use these
to decipher the original transactions. They then use the mined
Transaction Block nonce to shuffle the transaction order before
execution and update the state machine accordingly before
proceeding to the next transaction block. This next transaction
block must include a pointer to the k valid key blocks.

One potential pitfall of this mechanism is that miners can
choose not to include some keys in key blocks, censoring
some transactions. Requiring a number of distributed key
blocks helps mitigate this issue, as many miners would need
to collude in order to censor a particular transaction since
any block can contain the key. Increasing k leads to better
censorship resistance, at the cost of a larger overhead for the
network, especially for proof of work, since nodes will have
to wait for k miners to mine key blocks, instead of a single
miner. If a node submits a transaction but never releases the
key, this transaction will be skipped when others cannot find
the key in a key block, and the user will be charged max gas.

A. Simulation
We implemented the random ordering modification to the

Ethereum protocol in the Proof-of-work setting. Our imple-
mentation is a modification of goethereum (Geth) [27]. In

Fig. 5. Time for a client node to process the transactions in a received block
in the PoW setting with (blue) and without (red) the random ordering scheme.

Geth, the code for the miner’s processing of transactions in a
block is separate from the code that nodes use when processing
transactions received from a miner. We modified both of these
sections so that they use the random ordering scheme.

We conducted a timing experiment to compare the amount
of processing time for transactions required by a client node
with and without the random ordering scheme. We simulate
a client node by running the same process as the mining
node, but without activating the mining functionality, such
that it only receives blocks mined by the mining node. In
this experiment, we have a single miner and a single client.
Each transaction sends a fixed amount of ETH from a fixed
sender account to a fixed receiver account. We insert 10,000
transactions; between each pair of transactions, we sample an
amount of delay time uniformly at random between 0 and 0.2
seconds. Figure 5 shows the amount of time that a client node
takes to process the transactions in a block when using the
random ordering scheme vs. the time taken with the baseline
protocol. The results show that there is a modest overhead in
the processing time for the client that is proportional to the
number of transactions in the block. In practice, the number
of transactions per block is likely to be less when using the
random ordering scheme because transactions are added to
the block based on the maximum gas of the transaction rather
than the actual gas consumed. For the miner, we expect that
the overhead would be low relative to the cost of mining.

A miner able to mine N blocks before anyone else can
mine a single block will be able to choose the best MEV
option amongst N blocks. We compute the probability that
one miner with hash rate a can achieve this. We can model
the time taken for the miner to mine his ith block as Xi ∼
Exp(a/N). Since the combined hash rate of all of the other
miners is 1 − a, we can model the time taken for any other
miner to mine one block as Y ∼ Exp(1− a). We aim to find
Pr[max(X1, ..., XN) ≤ Y], where Xis are independent. Thus:

Pr[Xi ≤ t] = 1− e−at/N

Pr[max(Xi) ≤ Y] =

∫ ∞

0

(1− a)e−(1−a)t(1− e−at/N)Ndt

=
Γ (1 +N) Γ

(
1 +N

(
1
a − 1

))
Γ(1 +N/a)

Fig. 6. PoS protocol diagram

Figure 7 plots this probability for different values of a
and N : Even a miner with a 50% hash rate has a very low
likelihood of successfully mining more than 3 blocks before
anyone else. This analysis also applies to the number of key
blocks. A miner with 50% of the hash rate only has a 0.4%
likelihood of mining 5 key blocks before anyone else.

Fig. 7. Probability that in PoW a miner with hashrate a (x-axis) can mine
N blocks before any other miner mines a single block, AKA the probability
they can manipulate transaction ordering under our random ordering scheme.

However, using more key blocks increases the time to
process a block. Assuming we keep the same mining difficulty
for key blocks as for transaction blocks, a single key block
doubles the time it takes to process a block since both the
key block and transaction block must be mined sequentially.
Requiring 5 key blocks triples the expected time. Thus, setting
the number of key blocks allows one to select the best
compromise between speed and security.

VI. PROOF OF STAKE PROTOCOL

Our proof of stake protocol closely resembles Ferveo but
adapts the algorithm to run efficiently with Ethereum’s con-
sensus layer. We build on top of the GASPER [7] Ethereum
protocol. We first introduce 3 primitives used to interface the
TPKE scheme with Ethereum.
• D, a distributed key generation algorithm, in which N

parties agree on a public key broadcast to the entire network.

• B, a blinding procedure, that takes a transaction and a set
of public keys and returns a blinded transaction.

• R, a reveal algorithm, which uses partial decryptions to
reveal and order blinded transactions.

As in GASPER, time is divided into epochs and slots, and
each slot has a randomly chosen set of validators that can
perform one of three tasks: proposing a block, attesting to a
block, or aggregating attestations. There is a single proposer
for each block; however, we fix the number of aggregators to
a constant value CA. More specifically, each slot gets assigned
a proposer and a set of attestors at the start of the previous
epoch, at least 32 slots in advance. As in GASPER, these are
separated into committees. We choose a constant number of
aggregators per committee. Once these roles are determined,
aggregators run algorithm D to generate a public key pk. This
public key is signed by each aggregator, broadcast to the entire
network, and advertised in a subsequent block.

Nodes submit transactions to the network as in Ethereum,
except that they now have the option of crafting blinded
transactions. This is done using B, which uses the public
keys of target blocks to blind the transaction for inclusion
in specific time slots. Blinded transactions contain a signature
of the transaction nonce, used as a randomness source.

In GASPER, single slots are divided into three subparts:
the proposer submits a block during the first third, valida-
tors submit their attestations during the second third, and
aggregators summarize these votes in the last third. We keep
this structure but slightly change what occurs in a slot, as
illustrated in Figure 6. During the first part of the slot, the
proposer submits a block, that can contain both blinded and
clear-text transactions. However, blocks have the following
modifications: (A) transactions must be ordered in canonical
order, such as by hash value, (B) the block includes the keys
for the transactions of its parent block, and (C) blocks can
optionally contain advertised public keys for future slots.

In GASPER, during the second step of a slot, validators
submit attestations containing two votes: One pointing to the
current head of the chain, and a finality layer vote. Validators
will vote on the block proposed in the first step if it is valid,

and points to the correct parent block. The only modification to
this setup is that we require an additional check for a block to
be valid: it needs to include the correct keys to the transactions
in the previous block. By “correct”, we mean these keys must
have been derived from the reveal algorithm R: every honest
node in the network should agree on the same keys.

Our most important change comes in the last part of the slot.
Aggregators, now known ahead of time, will still aggregate
like-minded votes from validators in their committee using
BLS signatures. However, if they believe the proposed block
to be the head of the chain, they reveal a partial decryption
of the blinding keys for the transactions in the block, using
EncTPKE . Finally, if at least two-thirds of aggregators have
revealed partial decryptions, any node can use R to interpolate
the blinding keys for each transaction and recover the content
of transactions. In particular, R applies a bitwise XOR to the
blinded signatures to seed a random permutation ρ, which is
used to randomly reorder the transactions before execution.

Algorithms. We now describe our four primitives, using
Ferveo’s TPKE as a starting point.

a) D: Our distributed key generation algorithm is built
around the setup phase of Ferveo’s TPKE, replacing all
validators by the subset of aggregators. However, this protocol
itself is not adapted to Ethereum: nodes can only derive and
verify the public key if they have followed the transcript of
the DKG. Instead, we propose aggregators sign the public key
using BLS signatures and the existing PKI, aggregate their
signatures, and release them to the blockchain to be included
in a future block, so nodes can rely on on-chain information
to determine the public key of future slots.

Nodes must verify that at least two-thirds of aggregators
signed a slot public key. We use a bitmap to track the list of
signatories, as described in Algorithm 1. Proposers include the
slot public keys with the most signatures in their block.

DKG algorithms are expensive. Ferveo’s implementation
requires O(N2) communications, and O(N2) computation
per aggregator. Thankfully, we only need a small number
of aggregators (around CA = 128); according to Ferveo’s
simulation, this should take less than a second for computation
and require under 200kB total communication. A committee
is elected about 6 minutes before the slot it supervises.

b) B: Our blinding procedure is almost identical to
Ferveo’s encryption process, but transactions are extended to
include a randomness seed and support multi-slot encryption.

c) R: Our reveal algorithm first verifies the partial
decryptions of aggregators, then uses them to reveal all blinded
transactions in a block, and finally randomly permutes them
before execution. If not enough valid partial decryptions
are available, it aborts and the block is not executed. If a
transaction cannot be decrypted, the sender is charged the
maximum gas fee, and the transaction is not executed.

Algorithm 1: D, the DKG algorithm, for aggregator
Ai, i ≤ N with BLS key pair

(
pBLS
i , sBLS

i

)
pk, vk, ski ← SetupTPKE(1

κ, N, 2N/3)
Mi ←

(
ei, SignBLS

(
(pk, vk), sBLS

i

))
Gossip Mi with other aggregators
for M received do

if M0 == ej and VerifyBLS

(
M1, pBLS

j

)
then

Mi ←
(
M0

i + ej , AggBLS

(
M1

i , M1
))

if Mi includes at least 2/3rd of aggregators then
Broadcast Mi to network

Algorithm 2: B, the blinding algorithm, for a transac-
tion T with sender S and key pair

(
pkS , skS

)
.

Sample a random AES key k;
Separate T into Tclear, Tblind

R← SignBLS(Tclear.nonce, skS)
C ← EncAES-GCM ((Tblind, R), k)
K ← []
for Target slot s with TPKE public key pk do

K.append (s,EncTPKE(pk, k))

Sign and Broadcast Tfinal := (Tclear, C,K)

Algorithm 3: R, the reveal algorithm, for block B =
(T1, . . . , Tb), with TPKE keys (pk, sk), and partial
decryptions mj

i for aggregator j and transaction i.

for Aggregator j with partial decryptions do
if ∃i,VerifyTPKE

(
pk, vk,mj

i

)
== ⊥ then

Ignore decryptions from aggregator j;

R← 0;
for Ti ∈ B do

ki ← CombineTPKE

(
pk, vk, {mj

i}j
)

; if
DecAES-GCM(Ti, k) ̸= ⊥ then

Tblindi
, Ri ← DecAES-GCM(Ti, k);

R← R⊕Ri;
Ti ← (Tcleari , Tblindi);

else
Discard Ti and charge sender max gas

B ← ρ(R)(B); /* Reorder block */
Execute B;

Properties. Our proposal keeps the same structure as
Ethereum’s GASPER protocol, with a small update to the
LMD-GHOST forking rule. In addition to the current criteria,
each link in the chain is only considered valid if the block
was successfully revealed in procedure R.
• We achieve the same safety and plausible liveness guaran-

tees as GASPER. As long as at least 2N/3 validators are
honest, the protocol is safe and can make progress, even in
the asynchronous model.

• As long as 2N/3 validators are honest, in the (1/3)—
synchronous model defined in [7], our protocol achieves
probabilistic liveness.

Our protocol achieves the following properties:
• Blinding. As long as 2N/3 validators are honest, in a

(1/3)—synchronous model, an adversary has a negligible
chance of revealing blinded transactions in the mempool,
and transactions are only revealed once included in a block.

• Random ordering. If (1) 2N/3 validators are honest, (2) the
network is (1/3)—synchronous, and (3) a block includes two
blinded transactions with fresh nonces from non-conspiring
entities, then no node can predict the execution order of the
block until it has been committed to.

We sketch proofs of these properties in Appendix A.

VII. DISCUSSION

Transaction choice. Blinding and randomizing execution
ordering prevent MEV, but also make it more difficult for
a proposer to reach its gas objectives. The gas price and
max gas of a transaction is still revealed, so proposers can
choose profitable transactions from senders with enough funds.
However, proposers can no longer predict the gas usage of
each transaction. One solution is to use the max gas as an
indicator of gas usage for a transaction. This makes sure no
block will ever go above the gas limit, however, it introduces
a risk of denial of service. Users can simply specify a high
max gas, but then only use a small amount, leading to under-
utilized blocks and lower throughput. We can fix this by
imposing that a percentage of unspent gas in a transaction
is paid to the proposers. This eliminates the DoS attack but
makes transactions costlier as a result.

Another approach is to add a min gas field to transactions.
Proposers can select transactions based on this field, and
will always get paid at least min gas for each transaction,
regardless of the execution outcome. This introduces another
issue: blocks can now exceed their max gas allotment, which
might create a computational bottleneck.
Economic incentives. Not all transactions are subject to MEV,
and thus do not require blinding. However, we want to ensure
proposers are incentivized to include blinded transactions in
their blocks. We do this by adding a fixed gas cost for the
blinding procedure, to be paid by the sender. We have not
set a specific value for this parameter — this requires further
economic analysis of this new protocol, to account for the
additional computational and network cost of blinded trans-
actions. Transaction pricing will be affected by randomized
execution ordering, since users will no longer pay to be first,
but will pay to be included. We leave this to future work.
PoW limitations. Our PoW protocol adds significant latency
to the chain, because of the delay incurred by key blocks.
Throughput can be recovered by increasing the gas limit of
each block to compensate for the added delay. PoW Ethereum
also had significantly more orphaned blocks than PoS. In
our current PoW protocol, any orphaned block will leak the
content of the transaction that was included, meaning we
cannot protect transaction privacy in the event of forks.
PoS limitations. While transaction size does not increase
substantially, the partial decryption process adds network over-

head, since we require a total of CA × |B| partial decryption
messages for CA aggregators and |B| blinded transactions.

The reveal operation adds overhead to each node in the
network because of the Combine primitive. Using results from
Ferveo, a Combine takes about 20ms per transaction for an
aggregation pool of size 128. This means we can realistically
include up to 200 blinded transactions per block before the
delay becomes larger than the aggregation slot time of 4
seconds. This is enough to support the encryption of all current
DeFi trades, however, we need a more efficient combined
algorithm to increase the throughput of blinded transactions.

Since the sender’s address is still public, proposers can
censor some addresses. Hiding the full content of a transaction
would remedy this issue, however, this creates additional
hurdles for selecting transactions.

Users wanting to protect their trades can do so by blinding
their transactions: this will provide them with the guarantee
of both privacy and random order execution, protecting them
from frontrunning. However, we would like to also randomize
the execution order of transactions even if none of them
are blinded. A potential solution to this problem is to use
Verifiable Delay Functions (VDF) to generate pseudo-random
values at some fixed delay after the proposal of a block.

Transactions can only be encrypted to a specific set of
slots. If the transaction does not get included in any of these
slots, the encrypted transactions will be dropped from the
memory pool, and the user will need to resubmit a transaction
encrypted to future slots. Our system is subject to brute-force
attacks. Attackers can submit multiple transactions so one has
a higher chance of being executed first, adding congestion to
the network. However, this is costly for the attacker, since
only one of the transactions will potentially succeed, while all
will be charged a gas price. Users can mount a privacy attack,
in which they duplicate the encrypted data and key material
of a target transaction, but replace the sender’s address and
signature with their own. If this newly crafted transaction gets
included in a block before the original, it can be decrypted,
revealing the original transaction, but not executed, since the
sender address will not correspond to the encrypted data, thus
violating the original transaction’s privacy. This can be fixed
using a zero-knowledge proof that the sender in the cleartext
data corresponds to the sender in the encrypted data.

VIII. CONCLUSION

MEV exploitation severely impacts the trust users put in
Ethereum transactions. In this paper, we mitigate MEV by
encrypting transactions and randomizing their order in a block.
We propose two practical protocols, one for Ethereum’s PoW
protocol and another for the newer PoS variant. We simulate
the probability of various attack scenarios and show our PoS
protocol provides the same safety and liveness guarantees as
Ethereum, while supporting the same transaction throughput
and latency, and only slightly block and transaction sizes.

AVAILABILITY

Our Ethereum random ordering implementation is available
at https://github.com/sanjayss34/geth-random-order.

https://github.com/sanjayss34/geth-random-order

REFERENCES

[1] J. Piet, J. Fairoze, and N. Weaver, “Extracting godl [sic] from the salt
mines: Ethereum miners extracting value,” 2022.

[2] P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov, L. Breidenbach,
and A. Juels, “Flash boys 2.0: Frontrunning in decentralized exchanges,
miner extractable value, and consensus instability,” in IEEE Symposium
on Security and Privacy, 2020.

[3] D. Robinson, “Ethereum is a dark forest.” https://www.paradigm.xyz/
2020/08/ethereum-is-a-dark-forest, 2020. Accessed: 2022-02-16.

[4] K. Qin, L. Zhou, and A. Gervais, “Quantifying blockchain extractable
value: How dark is the forest?,” arXiv preprint, 2021.

[5] G. Wood, “A secure decentralised generalised transaction ledger.”
[6] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decen-

tralized Business Review, p. 21260, 2008.
[7] V. Buterin, D. Hernandez, T. Kamphefner, K. Pham, Z. Qiao, D. Ryan,

J. Sin, Y. Wang, and Y. X. Zhang, “Combining ghost and casper,” 2020.
[8] L. Zhou, K. Qin, A. Cully, B. Livshits, and A. Gervais, “On the just-

in-time discovery of profit-generating transactions in defi protocols,” in
2021 IEEE Symposium on Security and Privacy (SP), 2021.

[9] Y. Wang, Y. Chen, S. Deng, and R. Wattenhofer, “Cyclic arbitrage in
decentralized exchange markets,” Available at SSRN 3834535, 2021.

[10] C. McMenamin, V. Daza, and M. Fitzi, “Fairtradex: A decentralised
exchange preventing value extraction,” arXiv preprint, 2022.

[11] L. Heimbach and R. Wattenhofer, “Eliminating sandwich attacks with
the help of game theory,” arXiv preprint, 2022.

[12] M. Ciampi, M. Ishaq, M. Magdon-Ismail, R. Ostrovsky, and V. Zikas,
“Fairmm: A fast and frontrunning-resistant crypto market-maker,” IACR
Cryptology ePrint Archive, 2021.

[13] C. Baum, B. David, and T. K. Frederiksen, “P2DEX: privacy-preserving
decentralized cryptocurrency exchange,” in Applied Cryptography and
Network Security - 19th International Conference (K. Sako and N. O.
Tippenhauer, eds.), 2021.

[14] L. Zhou, K. Qin, and A. Gervais, “A2mm: Mitigating frontrunning,
transaction reordering and consensus instability in decentralized ex-
changes,” arXiv preprint, 2021.

[15] J. Byers, Combating Front-Running in the Blockchain Ecosystem. PhD
thesis, Lehigh University, 2022.

[16] M. Kelkar, S. Deb, S. Long, A. Juels, and S. Kannan, “Themis: Fast,
strong order-fairness in byzantine consensus,” IACR Cryptology ePrint
Archive, 2021.

[17] M. Kelkar, F. Zhang, S. Goldfeder, and A. Juels, “Order-fairness for
byzantine consensus,” in International Cryptology Conference, 2020.

[18] K. Kursawe, “Wendy, the good little fairness widget: Achieving order
fairness for blockchains,” in Proceedings of the 2nd ACM Conference
on Advances in Financial Technologies, 2020.

[19] D. Yakira, A. Asayag, G. Cohen, I. Grayevsky, M. Leshkowitz, O. Rot-
tenstreich, and R. Tamari, “Helix: A fair blockchain consensus protocol
resistant to ordering manipulation,” IEEE Transactions on Network and
Service Management, 2021.

[20] J. Bebel and D. Ojha, “Ferveo: Threshold decryption for mempool
privacy in bft networks.” Cryptology ePrint Archive, Paper 2022/898,
2022. https://eprint.iacr.org/2022/898.

[21] D. Boneh, J. Bonneau, B. Bünz, and B. Fisch, “Verifiable delay
functions.” Cryptology ePrint Archive, Paper 2018/601, 2018. https:
//eprint.iacr.org/2018/601.

[22] “Sgx.fail.” https://sgx.fail.
[23] S. Network, “Successful resolution of xapic vulnerability.”
[24] R. Canetti and S. Goldwasser, “An efficient threshold public key

cryptosystem secure against adaptive chosen ciphertext attack,” in EU-
ROCRYPT, Springer, 1999.

[25] O. Goldreich, Foundations of cryptography: volume 2, basic applica-
tions. Cambridge university press, 2009.

[26] R. Canetti, “Universally composable security: A new paradigm for
cryptographic protocols,” in FOCS, IEEE, 2001.

[27] “Go-Ethereum.” https://github.com/ethereum/go-ethereum.

ACKNOWLEDGMENTS

We appreciate the advice and feedback of Guru Vamsi
Policharla, Dawn Song, David Wagner, Vern Paxson, Raluca
Popa, Mayank Rathee, and Emma Dauterman. This work was
supported in part by the National Science Foundation, the

National Physical Science Consortium, the Fannie and John
Hertz Foundation, and the Berkeley Center for Responsible,
Decentralized Intelligence.

APPENDIX

A. Proof of Stake properties

a) Safety and liveness proof sketch: The proof of the
safety guarantee from the GASPER paper still holds, since
we do not change the Ethereum finality layer. The proof for
plausible liveness is almost identical to the original (Theroem
6.3 of [7]). We simply need to add, in addition to the
plausibility of an honest proposer submitting the first block
B in epoch j, that it is also plausible for 2/3rds of the
aggregators to be honest and to decrypt transactions in B
in time. Then, honest participants in the epoch will vote for
B as the next supermajority link, keeping the chain live.
Probabilistic liveness is trickier to prove. Section 7 of the
original paper provides detailed proof, that we can adapt for
our purposes. We need to change the equivocation game, so
that we win if O2 gets at least 2/3rd of the validator votes
for the slot, or if O1 gets at least 2/3rd of the validator
votes for the slot and gets 2/3rd of the aggregator votes and
partial decryptions for the slot. This means the current block is
chosen only if it gets enough votes and it gets decrypted. For
committees with 128 aggregators or more, the lower bounds
on the success rate of the equivocation game still hold. The
rest of the proof works the same as the original paper since
our proposal does not change justification votes.

b) Blinding proof sketch: We now sketch the proof of
the blinding property. First, we show that the probability of
randomly picking 2/3rds malicious aggregators when 2N/3
validators are honest is negligible. We model this using a
Binomial distribution and find the probability of this event for
128 aggregators to be around 10−15, happening once every
60 million years on average. Now, we know transactions are
only revealed if they are part of a valid block. The only way
for transactions to be revealed without being executed is for
the block to be orphaned. Assuming (1/3)—synchronicity, this
is not possible. For a slot starting at T and a slot duration s,
if a valid block is proposed, aggregators will release partial
decryptions at T + 2/3s, which will be received by the rest
of the network by the start of the next slot at T + s. In
particular, the next honest proposer will receive the transaction
decryptions in time and the block will not be orphaned.

c) Random ordering proof sketch: The random ordering
property is a consequence of the blinding property. As long
as one transaction per block is unknown to an adversary, and
contains a fresh nonce, that adversary will be unable to guess
the transaction’s randomness, and will not be able to predict
the execution order until all transactions are revealed. Since
transactions are only revealed after the block has been commit-
ted, the adversary will be unable to predict the execution order
until after commitment. Thus, if any two transactions are from
non-conspiring entities, no adversary can know the contents of
both transactions, and thus the above property applies.

https://www.paradigm.xyz/2020/08/ethereum-is-a-dark-forest
https://www.paradigm.xyz/2020/08/ethereum-is-a-dark-forest
https://eprint.iacr.org/2022/898
https://eprint.iacr.org/2018/601
https://eprint.iacr.org/2018/601
https://sgx.fail
https://github.com/ethereum/go-ethereum

	Introduction
	Background
	Related work
	Techniques
	Random ordering
	Transaction Blinding

	Proof of Work protocol
	Simulation

	Proof of Stake protocol
	Discussion
	Conclusion
	References
	Appendix
	Proof of Stake properties

