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Abstract—As COVID-19 evolved into a pandemic, a lot of
effort has been made by scientific community to intervene in
its spread. One of them was to predict the trend of the epidemic
to provide a basis for the decision making of both the public
and private sectors. In this paper, a system for predicting the
spread of COVID-19 based on detecting and tracking events
evolution in social media is proposed. The system includes a
pipeline for building Event-Centric Knowledge Graphs from
Twitter data streams about COVID-19, and uses the graph
statistics to obtain a more accurate prediction based on the
simulation of epidemic dynamic models. Experiments of 128
countries or regions conducted on the data set released by Johns
Hopkins University on COVID-19 confirmed the effectiveness of
the system. At the same time, the guidance our system provided
to the plan of return-to-work for an enterprise has attracted the
attention of and reported by top influential media.

Index Terms—Event Detection, Event-Centric Knowledge
Graphs, Epidemic Model, COVID-19, Time-Series Prediction

I. INTRODUCTION

As COVID-19 evolved into a pandemic, the scientific com-

munity tried a variety of methodologies to predict the infec-

tious trend of the disease to provide a basis for public sector

planning decisions. In classical epidemic studies, usually, two

types of models were used in the study of epidemic dynamics

models: stochastic and deterministic models. Most popular

epidemic dynamics models used are deterministic because they

require less data, and are relatively easy to setup. The SEIR

model, for example, includes four compartments represented

by Susceptible, Exposed, Infectious and Recovered. The key

difference of the SEIR model from its predecessor SIR model

is: SEIR model considers the infected phase accounting for a

latent period. However, classical epidemic models have several

drawbacks in the big data era. The most salient shortcoming of

classical epidemic dynamic models is the latency of response

to the emergent event.

In Natural Language Processing forums, event detection has

been an active research task and industrial systems has been

deployed for social media stream analysis recently. The social

media service provider Twitter provides a product feature

named ’Trends For You’ back-boned by a real-time event

detection system [1]. Such service inspires our system which

tracks top trends by detecting events in COVID-19 related

social media stream and incorporates statistics of those trends

into the epidemic prediction model.

The first three authors contribute equally and are alphabetically ordered.

Fig. 1. Confirmed COVID-19 Cases Per Day in Hubei, China.

Fig. 2. Confirmed COVID-19 Cases Per Day in Beijing, China.

But how can we combine these two methodologies, namely,

epidemic dynamics and event detection, to reach a more

advanced prediction model to combat COVID-19? First, let’s

take a look at the statistics from Jan 22nd to Apr 13th

country by country and state by state. As shown in Table I,

the confirmed cases and fatalities vary significantly between

128 countries so as 33 states in China. We believe that the

differences in international and provincial statistics are due

to the difference of emergent date of patient zero and sizes

of susceptible. Comes to the time-series, as shown in Fig. 1,

the number of confirmed cases of China’s Hubei apparently

lags in trend comparing to Beijing’s curve as shown in Fig. 2.

Comparing the trend of fatalities according to the change of
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Fig. 3. COVID-19 Fatalities Per Day in Hubei, China.

TABLE I
STATISTICS FROM JAN 22ND TO APR 13TH

By Country (Global) Confirmed Cases Fatalities
Count 128 128
Mean 6225 640
Std 175556 2776
Max 103616 20465

By State (China Only) Confirmed Cases Fatalities
Count 33 33
Mean 1839 101
Std 8764 560
Max 50633 3221

date in Fig. 3 and Fig. 4, we can observe a smoother curve

of Hubei province comparing to the city of Beijing’s. To our

assumption, the differences in the distribution in time series

within the same country or region are caused by emergent

events.

Based on the observations above, in our work two mecha-

nisms are designed to address different problems respectively.

On the one hand, our system minimizes the mean error of

the epidemic model by fitting and simulation using different

parameter settings for each country or region. Considering

there are over 100 countries and regions globally, it is im-

practical to set all parameters by hand, so we designed a

salable mechanism to search the best fits. On the other hand, by

representing events from Twitter streams as knowledge graphs,

our system incorporates a set of graph statistics as features

into regression models to correct the prediction error of the

epidemic models. Our system is experimented on a global data

set and its effectiveness is verified in real-world practice.

II. RELATED WORK

A. Epidemic Model

In research [2], a special cellular automata model is used,

which can well reproduce the time evolution of diseases given

by SIR model. In research [3], the virus infection coefficient

R0 is proposed and applied in SIR model to simulate the

spread of epidemic. On January 24, five authors including

Jonathan published paper [4] to predict the number of people

infected with covid-19 virus in Wuhan in the future. In this

Fig. 4. COVID-19 Fatalities Per Day in Beijing, China.

paper, SEIR model is constructed to estimate the infection

coefficient of the virus according to the real data published

by the government. It predicted that the number of people

infected in Wuhan will be 9217-14245 by January 21. On

January 31, the Lancet published the research [5] of Hong

Kong scientists. The authors used the classic SEIR model in

the dynamics of infectious diseases to construct differential

equation. Then they predicted the turning point of epidemic

in May according to the parameter regeneration number R0,

the average incubation time De and the average treatment time

Di. In research [6], the author introduces four kinds of people

based on SEIR model: isolation of susceptible, isolation of

latent, isolation of infected and inpatients. Combined with

the traffic flow data from Wuhan to Beijing, it predicted that

after the closure of Wuhan, the number of cases in Beijing

can be reduced by 91.14% in next week. On February 28,

academician Zhong Nanshan and others published a research

[7] in the medical journal JTD. Their team used the LSTM

model and used the case statistics data of SARS from April

to June 2003 as the training set, with the epidemiological

parameters of covid-19 to predict that the epidemic reached

peak at the end of February and was basically controlled at

the end of April. In the research [8] published by Zhu huaiqiu,

a professor of the school of technology of Peking University,

VHP (virus host prediction) was developed based on the deep

learning algorithm. They found that the infectivity mode of

mink virus is closer to the new coronary 2019 ncov virus.

In the PKU team’s simulation forecast for epidemic situation

[9], the author made two improvements to SEIR model: (1)

Further dividing the population into isolated and uninsulated

patients; (2) Fitting the basic regeneration coefficient (R0) of

virus with index function.Then they fitted out that the epidemic

situation in Hubei Province reached the inflection point in the

middle of February. In [10], the authors introduced isolation

susceptible (SQ), isolation latent (EQ) and isolation infected

(IQ) population on the basis of SEIR model.They reconstruct

the dynamic equation, and predict that the number of people

infected with covid-19 in Hubei Province reached the peak

on February 19. In [11], the author combined with the flow

of people in the city based on the classic SIR model. The
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research analyzed the effect of reducing public transport travel

and blocking the densely populated places on the spread of the

epidemic.

B. Event-Centric Knowledge Graphs

Currently, there are many definitions of event detection

problems. Orr et al. [12] regard event detection as the recogni-

tion of trigger words to determine the type of event. However,

concerning social data streams, it is difficult to predict trigger

words, given the unstructured and noisy nature of the doc-

uments. In Twitter data, McMinn et al.[13] performed event

detection and aggregated tweet streams into appropriate event-

based clustering. Guille and Favre [14] also clustered related

words from the tweet stream. Some important event detection

techniques were introduced by [15, 16]. These techniques can

be roughly divided into feature-pivot (FP) or document-pivot

(DP) methods. The former corresponds to grouping entities

within documents according to their distribution, while the

latter requires clustering on documents according to their

semantic distance. A popular category of FP technology is

topic detection, which attempts to identify events by modeling

documents as ”a mixture of topics, where topics are probability

distributions over words” [17].

However, many topic detection methods cannot fully capture

the ”burst” or speed of words over time, which is essential for

distinguishing events from non-events [18, 19]. Bursty terms

on Twitter are defined as terms that appear at an unusually high

tweet rate. Many studies have attempted to use bursty term

tracking to discover events. TwitterMonitor [20] recognizes

bursty words and then used the greedy algorithm to merge

them into groups according to the co-occurrence in the tweet

so as to perform event detection. Each group represents an

event. EDCoW [21] tracks all co-occurrences over a time

window and used wavelet decomposition to identify bursty

words. Most of the above methods did not consider the

evolution of events. Some recent studies [22, 23, 24] proposed

the use of incremental clustering [25] to solve the problem of

event evolution. As new data arrives at the stream, the model

will be updated incrementally. Due to the large size of the

update, this method may not be suitable for Twitter Firehose.

Fedoryszak M et al [1] solve this problem by linking event

clusters and achieves event detection with evolution tracking

in real-time through modeling events as cluster chains and

addressing scaling concerns with new design choices.

The evolution of events are more practically appealing but

even more challenging. For example, the previous work of the

narrative event chain did not specifically focus on the learning

narrative. All in all, the topic signature is a set of terms

indicating the subject [26]. These terms can capture certain

narrative relationships, but the model requires training data

for topic classification. Bean and Riloff [27] proposed the use

case framework network as a contextual role knowledge for

anaphora resolution. Brody [28] proposed a method similar

to the case framework. This method discovers high-level

correlations between verbs by grouping verbs that share the

same vocabulary items in the subject/object position. Chamber

et al [29] described a three-step process to learning narrative

event chains and introduce two evaluations: the narrative cloze

to evaluate event relatedness, and an order coherence task to

evaluate narrative order.

The latest work on unsupervised inference about the se-

quence of prototype events in texts began with Chambers and

Jurafsky [29]. Based on this, Chambers and Jurafsky [30]

make the inductive representation closer to the concept of the

semantic framework and infer the event schema. Chambers

[31] and Cheung, Poon, and Vanderwende [32] also focus

on schema induction. Various developments of C&J08 have

been proposed. Jans et al. [33] compared the methods of

collecting and using model statistics to measure the correlation

between events. Compared with C&J08’s PPMI statistics, they

can get better results through the bigram conditional proba-

bility model. Balasubramanian et al. [34] used open-domain

relations extracted by the information extraction system Ollie

instead of verbs to capture more information about the event.

They also focus on event schema extraction. And another line

of work approaches event knowledge acquisition using event

schema descriptions (ESDs), natural language descriptions of

typical sequences of events, written by hand (Regneri, Koller,

and Pinkal [35]; Regneri et al. [36]; Modi and Titov [37]).

Predicting the relationships between events described in the

text is essential for many applications, such as dialogue gen-

eration. Script event prediction is one of the most challenging

task in this area. This task was first proposed by Chambers and

Jurafsky [31], who defined it as providing the context of an

existing event and needed to select the most reasonable follow-

up event from the candidate list. Previous studies established

prediction models based on event pairs [31, 38] or event chains

[39]. Despite the successful use of event pairs and event

chains, the rich connections between events have not been

fully explored. Event evolutionary graph is another emergent

research topic as a representation tool of relationship between

event. Structurally, EEG is a directed cyclic graph, whose

nodes are events and edges stand for the relations between

events, e.g. temporal and causal relations. Duvenaud et al.

[40] introduced a convolutional neural network that can be

run directly on the graph, which can be used for end-to-

end learning prediction tasks. Kipf and Welling [41] proposed

a scalable semi-supervised learning graph method based on

effective variants of convolutional neural networks. Li et al. Li

Z et al [42] proposed a scaled graph neural network (SGNN),

which is feasible to large-scale graphs and borrow the idea

of divide and conquer in the training process that instead

of computing the representations on the whole graph, SGNN

processes only the concerned nodes each time.

Based upon the above advancement in Nature Language

Processing research, an approach to create Event-Centric

Knowledge Graphs (ECKGs) using state-of-the-art NLP tools

was presented in [43]. We follow the same notion of ECKGs

in this paper, because at the core of our system, the vision

is to acquire and represent the fragmented knowledge about

emergent event and use it to enhance epidemic prediciton by

tracking the evolution of such knowledge.
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III. EPIDEMIC DYNAMICS

A. Model

Similar to SARS, COVID-19 has an incubation period. Once

a patient recovers, he or she will not be re-infected or infect

others in a short time, so SEIR model is adopted. In this

model, there are 4 notions of population: S(t) represents sus-

ceptible population, E(t) represents exposed population, I(t)
represents infected population, and R(t) represents recovered

population. In the SEIR model, there are be four differential

equations respectively, calculating the change in proportion of

each population at time t:

dS

dt
= −β · S(t) · I(t)

N
(1)

dE

dt
= β · S(t) · I(t)

N
− σ · E(t) (2)

dI

dt
= σ · E(t)− γ · I(t) (3)

dR

dt
= γ · I(t) (4)

In the above formula, N represents the total number of

people affected by the epidemic:

N = S + E + I +R

B. Data sets

The data sets released by Johns Hopkins CSSE1 include

globally reported epidemic numbers started from Jan 22nd.

The data sets are divided according to different countries and

regions. The data set roughly consists of three parts: daily

number of confirmed cases in each country or region, daily

number of fatalities in each country or region, and daily

number of recovered cases in each country or region.

Treatement of number of confirmed. Notably, number of

confirmed cases in the data refers to the cumulative number

of confirmed cases per day, so it is not consistent with the

hypothesis of SEIR model. Confirmed in the infectious disease

refers to the number of cases so far, so it should be processed

in the data. From the situation of the epidemic, once the

confirmed patient dies, his or her body will be immediately

disposed of, that is, the dead patient will not continue to be

infectious to normal people. Therefore, the confirmed case in

the data is treated as follows: Current confirmed retention =

cumulative number - recovered number - number of deaths.

Data division. Since the spread of COVID19 virus is

affected by many factors such as city size, population density

and total population, different models should be established

for different countries and regions, so the data are divided

according to each country and region for simulation.

1https://github.com/CSSEGISandData/COVID-
19/tree/master/csse covid 19 data/csse covid 19 time series

TABLE II
PARAMETER SEARCH SPACE OF SEIR

Parameter Search Space
Name Lower Bound Upper Bound Step Size
S0 10 * max(It) 500 * max(It) 50 * max(It)
β 0.1 10 0.1
σ 0.1 1 0.01
γ 1/14

Period Jan 22nd to Apr 13th

C. Experiments

The number of susceptible people varies by regions. For

example, China has adopted strong travel restrictions and

residents must wear masks when going out, which has greatly

reduced the total number of susceptible people S. Therefore, a

heuristic is adopted to estimate S0. The maximum number of

infected people is multiplyed by a amplification ratio which is

searched between 10 and 500 with the step length of 50 where

S0 represents the total number of people S when t = 0. The

value of I0 is the number of people infected when the epidemic

is first detected in each region. R0 takes the value of 0.

Initialization. As the parameter β is affected by various fac-

tors (measures taken, population density, epidemic prevention

equipment, urban development), the values of β in different

regions fluctuate greatly. Empirically, the values of β is known

to vary from 0.1 to 10, so the search range of β is set as

(0.1, 10) and the step size is set as 0.1. σ is a patient’s

conversion probability of status from suseptible to exposed,

and the search space of this value is also set as (0.1, 1), and

the step size is set as 0.01. According to the current published

epidemic data and medical research, the recovery period of the

infected person is 14 days, so it is assumed that γ = 1/14.

Simulation. For simulation, the period of 82 days are sam-

pled 8200 times. So the step size of is 1/100. The calculated

loss is calculated on the 82 days instead of the 8200 data points

in total. And the interpolated point on each 82 days should be

used to calculate the loss. For example, the predicted results

of the next day should be calculated with the mean square

error of points with an index number of 200.

Parameter search. The parameter search process involves

three parameters, S0, β and σ respectively, and the correspond-

ing parameters are optimized and matched by grid search. In

this process, to scale up to over 100 countries or regions,

multi-thread parallelization is adopted to speed up the search.

Computation task of each country is pushed into a message

queue and each consumer thread runs the pipeline of search,

simulate and error calculation for one country.

Prediction. The loss is calculated in the parameter search

process, then is sorted in ascending order, and the set of param-

eters with minimum loss is selected as the final parameters for

this country or region. After the parameters of each region are

obtained, the epidemic trend in that region can be predicted

by running the simulation on future dates. The predicted of

number of confirmed cases, recovered cases and fatalities are

obtained as features for downstream regression model.
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Fig. 5. The System of Epidemic Prediction with Event-Centric Knowledge Graphs.

IV. PREDICTION WITH EVENT-CENTRIC KNOWLEDGE

GRAPHS

Along with the SEIR models fit on global data to predict

the evolution of the pandemic, as shown in Fig. 5, an Event-

Centric system is introduced to calibrate the prediction error

for spreading of COVID-19. First of all, Twitter posts are

pulled from the official API to build pieces of Event-Centric

Knowledge Graphs over the week before the prediction date.

Then the sizes of graphs for the top trends are fed into an

XGBoost model as features along with factors such as country,

region, date, SEIR prediction of confirmed number, SEIR

prediction of suspected number, etc. Finally, the established

epidemic prediction model is verified by prediction error of

number of confirmed cases and number of fatalities.

A. Event-Centric Knowledge Graphs

Event Detection. At the beginning of event detection

pipeline, Twitter posts are first filtered by topic. In our

experiments, 1500 of posts per day are randomly pulled

from Twitter by searching COVID-19 related keywords such

as ’COVID-19’, ’Coronavirus’, etc. Following the system

definition introduced in [1], we view event as fragmented

knowledge consisting of entities and vectors of their co-

occurrence in Twitter posts. In another word, an event is a

piece of knowledge graph with entities frequently occur in the

same set of Twitter posts as nodes. In our definition, an entity

should meet either one of the following two criterion: 1) it is a

hash tag; 2) it has the same boundaries as an output of named

entity by Stanford Corenlp [44] under one of the following

four entity types: ORG, PERSON, LOCATION, MISC. We do

the entity recognition step for a batch of posts and for each

batch an entity-document co-occurrence matrix is build for

clustering using DBSCAN [45]. In our experiments, a batch

size of 100 posts are used and the average number of identified

entities is 230-260, the average number of clusters is about 60

and the number of outliers is roughly between 5-10.

Event Evolution. Each entity cluster a.k.a Event-Centric

Knowledge Graph is then linked to clusters formed by the

previous batch to form an event trend by an algorithm based on

bipartite graph matching proposed in [1]. With Twitter stream

comes into the pipeline in the form of batches, the size of each

graph grow with time. In our experiments with data from Apr

1st to Apr 13rd, a total number of 77 graphs are formed. The

average number of entities in each graph per day deviates by

two standard deviations and there is an average of 4 entities

per graph per day.

B. Prediction Model

XGBoost [46] is an iterative regression tree algorithm and

software package, which is an improved variant of Gradient

Boost Decision Tree algorithm. XGBoost supports multi-

threaded concurrent tasks because the feature columns are

sorted and stored in memory as blocks that can be reused

in iterations. XGBoost allows specification of the default

direction of the branch for missing or specified values, which

improves the efficiency of the algorithm. XGBoost also con-

tains a large number of CART regression trees internally and

an internal regularization over-fitting technique ensures the

model’s robustness. We choose the XGBoost package because

of its robustness and efficiency.

In our model, SEIR prediction is included to capture a

common understanding to the transmission mechanisms of

viruses, including COVID-19. Moreover, the predicted indexes

can be extracted from them as the features of our model. The

purpose of event trends detection is to make up for the SEIR

model when it fails to response to emergent events.

As shown in the Table III & IV, there are 6 families of

features in total and they can be divided into three sets:

features from the original data, features from SEIR model

prediction, and features from top event trends. Features from

the original data include State (City), Country (Region), Date.

For date, the month, day are extracted and converted into

numeric codes. Features from SEIR model prediction include:

prediction of susceptible, prediction of confirmed infected,

prediction of recovered, and prediction of fatalities. Features

from top event trends are cluster sizes of top 10 event trends

on the day to be predicted.

C. Parameter Tuning

Cross validation is used to solve the problem of high

deviation or high variance in model training. Its working
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TABLE III
SETTINGS FOR PREDICTION MODEL

Hyper-parameters of XGBoost
Name Learning Rate Max Depth N Estimators

0.1 6 200
Feature1 Prediction Date
Feature2 Prediction of susceptible
Feature3 Prediction of confirmed infected
Feature4 Prediction of recovered
Feature5 Prediction of fatalities
Feature6 Graph Size of Top 1− 10 Trend

principle is to take part of the original data as the training set,

and the rest as the validation set, then use the validation set to

test the model obtained from the training set to evaluate the

performance of the model. In order to reduce the variability

of the validation results, the original data set is divided for

multiple times to obtain complementary subsets and conduct

multiple cross-validation. Worth mentioning, the cross valida-

tion not only take the training error into consideration but also

the generalization error.

In our experiment, k cross-validation method is adopted to

divide the original data sets into 5 groups. Each data subset is

verified once, and the rest 4 subset data is used as the training

set. The mean prediction accuracy of the final verification set

of 5 models is used to evaluate the performance indicators of

the model so as to effectively avoid over-fitting and under-

fitting. The optimal hyper-parameters are shown in Table III.

D. Experiment Setting

In our experiment, the XGBoost algorithm is used to train

the model in the COVID-19 epidemic data set, mainly to fit the

residual of the prediction results and we use Mean Squared

Error as the training objective as well as evaluation metric.

Because there are two columns to be predicted: the confirmed

cases and the number of fatalities, for scoring criteria we have

to evaluate the two targets respectively, and then calculate the

average of two targets’ evaluation metrics. Based on the above

experimental Settings, the specific steps of our experiments are

as follows and their results are shown in Table IV.

• Data cleaning: completion of missing values.

• Feature extraction: optimally selected for confirmed

cases prediction and fatalities prediction respectively, see

’E. Result Analysis’.

• Data division: both the training data and the test data are

divided by country and province.

• Model training: search for the optimal model hyper-

parameters by training on each training segment then

using the trained model to predict the corresponding test

segment, then combine the final results and output.

• Evaluation: MSE and RMSLE are used as the metric to

score the test set.

The results shown in Table IV are obtained using XGBoost

algorithm as the regression model and 5 fold cross-validation

to tune the hyper-parameters. All metrics are computed from

the best model on the test set.

TABLE IV
PREDICTION ERROR WITH DIFFERENT FEATURE SETS

MSE
Feature Sets Fatalities Confirmed Mean
Single Model 1498356 43859940 22679148

Original + SEIR 5862 220317 113089
Original + SEIR + Event 5862 210240 108051

E. Result Analysis

Three experiments are conducted and their results are shown

in Table IV.

• V0: Single model for all countries or regions with original

data and SEIR prediction as features.

• V1: Separate training models by country and province

and make predictions with original data , and SEIR model

prediction as features.

• V2: Separate training models by country and province

and make predictions with original data, event trends, and

SEIR model prediction as features.

By comparing the above experimental results, we have

observations as follows:

• Compared with V0, V1 is divided into separate training

models according to country and province for prediction.

The model accuracy is significantly improved, and both

MSE and RMSLE are smaller.

• Compared with V1, V2 introduces the features from event

trend detection and the error of prediction of fatalities

changed little, meanwhile after the introduction of fea-

tures related to Twitter posts, the prediction of confirmed

cases is faced with a much smaller MSE value, and

RMSLE slightly larger, indicating that the model error

of the number of confirmed patients is reduced, but the

number of confirmed patients is slightly higher.

To sum up, in prediction of fatalities, the original data and

SEIR model prediction are good enough to build a decent

prediction model. For prediction of confirmed cases, our

experiments show that the event trends drive an significant

improvement on prediction accuracy and thus worthy of fur-

ther investigation.

V. CASE STUDY: ESTIMATE THE OPTIMAL DAY OF

RETURN TO WORK

From December 9th, 2019, when COVID-19 virus was first

detected, to the official announcement of the new pneumonia

on December 31st, 2019, and as of 16:21 on February 4th,

2020, there were 20,503 confirmed cases and 426 deaths in

China. The virus was spreading at five times the rate of SARS

in 2003, and some have even compared its severity to that of

the 1918 Spanish flu.

As of Feburary 4th, a few epidemic experts claimed the turn-

ing point would come on the 15th day of the first lunar month

(February 8th). Xien Gui, a well-known epidemic expert,

predicted that the COVID-19 outbreak before the fifteenth day

of the month may appear inflection point. Professor Wenhong
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Zhang, head of the Shanghai medical treatment expert group,

asserted that the main battle to control a COVID-19 should end

within February and come to an end in March. Based on latest

statistics published by the national centers for disease control

and prevention (CDC) as of Feburary 4th, our system predicted

based on SEIR model that the spread rate might peak and then

begin to decline on February 11th through the time-varying

curve of the number of exposed patient. The conclusion was

used to guide the planning of return-to-work for an enterprise

with more than 3000 employees and reported by The People’s

Daily2.

A. The Lurker’s Curve

Basic regeneration number (R0) refers to the number of

second-generation cases that can be infected by a virus carrier

after entering a susceptible population. According to the

estimation of Kermack and McKendric [2], when the basic

regeneration number R0 continues to be less than 1, the newly

added infection number will eventually converge to 0 over

time. In other words, the virus will die on its own at this time

and no longer pose a threat of infectious diseases.

Basic formula of basic reproduction number [3]:

R0 = r · c · d
where r is the virus transmission (the probability that the virus

carrier will transmit the virus to the contact person), c is the

average contact rate between the susceptible population and

the virus carrier, and d is the expected duration of the infection.

Based on the policy in China, we have reason to believe

that all discovered infected victims have been quarantined,

and the quarantined virus carriers are not within the possible

contact area, which means all we need to pay attention to are

undiscovered viruses carriers a.k.a the un-quarantined exposed.

Assuming that the virus exposed is quarantined the first time

it is discovered, we used the curve of un-quarantined exposed

rate over time (the lurker’s curve) as an estimation of change

in the number of exposed over time.

If we do not take into account: 1) environmental changes of

employees’ exposure to the virus and 2) protective methods

used during the simulation time, then we can assume that virus

transmission (r) does not change with time and the expected

duration of infection (d) is a fixed value. Therefore, the change

in the basic regeneration number (R0) of undiscovered virus

carriers is consistent with the average contact rate (c) between

susceptible people and virus carriers. It is assumed that the

average exposure rate (c) between the susceptible population

and the virus carrier is consistent with the un-quarantined

exposed ratio of the unexposed virus carriers (Un-quarantined

Exposed Rate), combining assumption made above, we can

conclude that the basic regeneration number (R0) curve of

undiscovered virus carrier is consistent with the lurker’s curve.

B. The Passenger’s Curve

If the contact between susceptible people and virus carriers

in public transportation environment can be viewed as a

2https://wap.peopleapp.com/article/5220507/5122857

Bernoulli test in which M passengers encounter each other

with a fixed probability q and the un-quaranted exposed expo-

sure Rate (u) ’s curve equals the lurker’s curve divided by M .

Then the average exposure Rate (c) between susceptible people

and virus carriers can be considered as the expectation of

binomial distribution which approximately equals to q ·u ·M2.

Since q does not change with time, the risk of employees’ virus

infection in public transportation environment can be depicted

by the product of the lurker’s curve and the square of the

passenger flow curve of provinces returning to Beijing. We

name it as the passenger’s curve.

To estimate the lurker’s curve, we first collected the number

of infected, deaths, and recovered from January 1st, 2020 to

February 3rd, 2020. Then our prediction system were applied.

In order to estimate the number of passengers returning to

Beijing from various provinces this year, we first calculated

the passenger volume curve of returning to Beijing during

the Spring Festival travel rush by the total passenger volume

of each date and the proportion of passenger volume of

railway during each Spring Festival travel rush period of

previous years. Then through the Spring Festival transport total

passenger volume report, we obtained the passenger flow of

each date of this year to predict the passenger flow of each

province returning to Beijing after February 4th.

Finally, by scrutinizing the trend of the passenger’s curve,

we reached a conclusion that the optimal day of return-to-work

was before the 15th day of the first lunar month (February 8th).

VI. CONCLUSION

The contributions of this work are three folds. First, a

pipeline for detecting and representing COVID-19 related

event trends are designed and implemented. Second, graph

statistics from its results are applied to the prediction of

number of confirmed cases and fatalities by combining epi-

demic dynamic model with top event trends using XGBoost

regression model. Lastly, the prediction system we proposed

is proved to be effective in real-world practice by planning

optimal day for return to work. Controlled experiments showed

preliminary results about the effectiveness of incorporating

events into epidemic prediction models. For future work, more

types of relationships between entities have to be constructed

to enrich the feature set obtained from the Event-Centric

Knowledge Graphs.
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