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Abstract: Traditional turbo-codes with BPSK modu-
lation scheme, use Equal Error Protection (EEP) for the
turbo-encoder output bits. In this paper, it is shown that
the role of the encoder output bits is not necessarily the
same in determining the code performance. Imposing Un-
equal Error Protection (UEP) on the output bits can result
in improvement of the turbo-code performance.

1 Introduction

Turbo-codes, introduced in 1993 [1], are composed of the
parallel concatenation of two (or more) Recursive Sys-
tematic Convolutional (RSC) component codes, connected
through an interleaver. The output bits corresponding to
the kth input bit, dy, are the systematic bit, z}* (which is
equal to di), and the two parity check bits, z,? and z}?,
which are the outputs of the first and the second encoders,
respectively. The encoders are terminated to the all-zero
state at the end of each block of input data, and con-
sequently turbo-code is equivalent to a linear block code.
The Maximum Likelihood (ML) decoding of turbo-codes is
highly complex for large interleaver lengths. Thus, turbo-
codes employ a sub-optimum iterative decoding scheme
with much less complexity [1, 2].

As usual, the performance of the code is determined by
its distance properties. However, due to the presence of
the interleaver, it is very difficult to enumerate the exact
welght distribution of a turbo-code. The idea of averag-
ing the performance of the code over the structure of the
interleaver (uniform interleaver) is introduced in [3]. This
is based on a structure in which a hypothetical interleaver
produces all the possible permutations of the input with
equal probabilities. Using this technique, one can compute
an “Average Weight Enumerating Function (AWEF)” for
the code, which is independent of the structure of the spe-
cific interleaver used.

Conventional turbo-codes assign an equal amount of en-
ergy to the three encoder output bits when BPSK modu-
lation is employed for transmission. However, as we will
see later, the role of these bits in the weight distribution
of the code is not necessarily the same. In this article the
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problem of “Unequal Error Protection (UEP)” of turbo-
encoder output bits is considered. This problem has been
previously brought up in [4], where combined turbo-code
and modulation was considered. In that case, UEP is im-
posed on the encoder output bits by the structure of the
signal constellation.

In order to achieve UEP, for the BPSK case, the output
bits are provided with different noise margins by dividing
the bit energy unequally among them. As will be shown,
UEP can result in an improvement in the code performance
at no extra cost in energy, rate, or complexity.

The outline of the article is as follows. In Section 2, the
theoretical aspects of UEP for turbo-encoder output bits
are discussed. Section 3, includes some simulation results
which show how UEP can be beneficial in performance im-
provement for turbo-codes, and finally, Section 4 is devoted
to some concluding remarks.

2 Unequal Error Protection of
Turbo-Encoder Output Bits

For any linear block code used over an AWGN channel,
the minimum weight codewords (for the asymptotic case)
or the first few lowest weight codewords (for lower SNR’s)
are dominant in determining the code performance. For a
turbo-code, each codeword consists of two groups, the sys-
tematic and the parity check bits. The role of these two
different groups is not necessarily the same in the weight
distribution of the dominant codewords. If one group has a
higher contribution in the weight of these dominant code-
words, by increasing the energy assigned to this group (and
decreasing the energy assigned to the other group), the dis-
tance properties, and consequently, the performance of the
code can be improved. The following example further il-
lustrates the above discussion.

Ezample: Counsider the very simple case of a turbo-code
with interleaver length N = 3 and two identical RSC com-
ponent codes with one memory unit and generator polyno-
mials (1,3). The interleaver maps the input block (a, b, ¢),
to (b,¢,a), where a,b,c = 0 or 1. Both RSC codes are
terminated at the end of each input block by adding one
tail bit. The equivalent (3,12) block code then includes the
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following codewords:

0000 0000 0000, 001100100110, 01010110 1110,
0110 0100 1000, 1001 11100010, 1010 1100 0100,
1100 1000 1100, 111110101010

where in each codeword the first four bits are the system-
atic and the last eight bits are the parity check bits. Sup-
pose that one unit of energy is assigned to every encoded
bit. The Euclidean distances of the 2nd through 8th code-
words from the origin (the all-zero codeword) are,/20,
V28, /16, /24, /20, /20, and /32, respectively. Now
suppose that the systematic bits are protected more than
the parity bits, such that, each systematic bit receives 2
units of energy and consequently each parity check bit re-
ceives 0.5 unit of energy. This time, the distances of the
codewords will be, v/22, v/26, /20, v/24, /22, v/22, and
V40, in the same order as before. As can be seen, ex-
cept for the codeword 0101 0110 1110, the distance of each
codeword has either increased, or remained the same. The
minimum distance of the code has increased from /16 to
v/20, and the overall distance property of the code has im-
proved. Furthermore, if all the energy is assigned to the
systematic bits the distances of the first six codewords will
become equal to v/24 and the distance of the last code-
word will become equal to v/48. As is expected and simu-
lation results confirm, the best performance of the code is
achieved at this level of UEP, which means that the parity
check bits are incurring damage in this code.

For the more general case, assume a turbo-code of rate
r = 1/3, with two identical RSC codes and interleaver
length N. The Weight Enumerating Function (WEF) of
the code has the following form:

AW, 2) =) Ai,W'Z,
i

(1)

where A; ; is the number of codewords having ¢ and j 1’s
in the systematic and the parity check parts, respectively,
and the dummy variables W and Z correspond to the sys-
tematic and parity bits, respectively.

If the systematic and parity check bits are equally pro-
tected in transmission through the channel, a 1 in the sys-
tematic part of a codeword will have the same effect in
the distance of that codeword, as a 1 in the parity part.
Thus, both W and Z in Eq. 1 can be replaced by the same
variable, e.g. w, to result in:

Alw) =Y A ju'H, 2)
i

where (i + j) is the overall weight of the corresponding
codeword.

Now, suppose that the bit-energy FEj is divided unequally
between the systematic and the parity check bits, such that
the energy assigned to each systematic bit is equal to E, =
zZ: and the energies given to the first and second parity

3
check bits are equal to E, = ( )%—”, where z € [0, 3]

33—z
2
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(x=1 results in Equal Error Protection (EEP)) . In this
case, W and Z in Eq. 1 should be replaced with w® and
w=2)/2 regpectively. A codeword of the original form
WiZ7 is now equivalent to a codeword of distance iz +
i( :"‘T”) This will result in the following weight distribution
as a function of z:

A('w, iI}) ZA,',jwmwj(a_Tm)
i

> Dmw™,
m
where in the second equality D,, is defined as:

2

i,diz+i (35

A

D, = A,',j.

)=m

(4)

It should be noted that in Eq. 3, m can take non-integer
values for z # 1.

These weight distributions can be compared to each other
to give a theoretical explanation for the performance of the
code for different levels of UEP in practice. For large in-
terleaver lengths, the WEF is replaced with the AWEF as
in [3]. This is because it is practically very difficult to eval-
uate the WEF corresponding to a specific interleaver for
large block lengths. The AWEF enumerates the codewords
corresponding to every possible permutation in the same
form as in Eq. 1. However, in this function the coefficient
of each codeword W*Z7, is equal to the expected value
of the number of codewords of this form. Thus, although
the AWEF does not correspond to the specific interleaver
which is employed, it can still be used to give an estima-
tion of the code performance for different levels of UEP,
on the average.

In order to show how the AWEF can be used in explaining
the code behavior when UEP is employed, in the follow-
ing, we consider two turbo-codes with different interleaver
lengths. The codes consist of identical (5,7) RSC compo-
nent codes and interleaver lengths 20 and 760. The mul-
tiplicities of the first few lowest weight codewords in the
AWEF’s of these two codes are shown in Table 1.

As can be seen from the table, for both codes, the expected
value of the number of codewords in which the contribution
of the systematic bits is higher (§ < 24, in a codeword the
form W*Z7) is less than those in which the contribution
of the parity bits is higher (j > 2¢). This effect is much
stronger for N = 760 as compared to N = 20. This agrees
with the fact that a larger interleaver reduces the proba-
bility that a low weight input block of data results in low
weight outputs in both component codes, simultaneously.
Next, we consider the effect of the UEP on the weight dis-
tribution of these codes. Fig. 1 shows the weight distribu-
tion of the first few codewords in AWEF’s corresponding
to three different levels of error protection for N = 760,
and N = 20. In the diagrams corresponding to the same

1The exact bit energy is equal to M—},—"!Eb, where M is the num-
ber of required terminating bits. However, this does not affect our
discussion.



Code | N=| N= Code N=|N=
word 20 760 word 20 760
w3z%¥10.34 | 0.01 || wéz%* | 0.01 | 0.00
w3251 0.00 | 0.01 || W2Z° | 0.00 | 3.99
w?z¢ | 0231} 0.00 || w328 } 6.13 | 0.20
Wz% | 0.08 | 0.00 || W%Z7 | 0.00 | 0.07
w376 | 1.96 | 0.05 || W°Z¢ | 0.46 | 0.01
W*Z°% | 0.00 | 0.01 || W22 | 481 | 5.98
w%z% | 0.03 | 0.00 || W3Z° | 0.00 | 2.30
W?2z8 | 2.58 | 2.00 || W%Z® | 4.96 | 0.15
w3Zz7 | 0.00 | 0.10 || W®Z" | 0.00 | 0.05
W4Z6 | 0.95 | 0.02 || Wéz° | 0.34 | 0.00
W52% | 0.00 | 0.01 || -

Table 1: The multiplicities of the codewords of the form W*Z?,
where 7+ 7 < 12, in the AWEF’s corresponding to N = 20 and
N = 760.

interleaver length, the total number of codewords is the
same. For N = 760, it is easy to see that the distribution
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Figure 1: Weight distributions corresponding to different levels
of error protection for N = 760 and N = 20.

of the codewords gets nearer to the origin for z = 1.4 and
further from the origin for = 0.6 (with respect to the dis-
tribution corresponding to EEP). For N = 20 however, in
both levels of UEP the distribution gets diffusive in both
directions.

We can also find the average performance bounds (union
bounds), for different levels of UEP using the AWEF. This
is obtained from following formula:

m{z)

2

M=M pmin(2)

22)

N)’

o

Py(z) < Dperfc(y/m

(5)

N

where Py(z) is the probability of bit error and is a function
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of z, and D,, is defined as:
1
N

)=m

~

D 2

2

f,diat (352

Aij- (6)

The factor ﬁ', where N is the interleaver length, is multi-
plied by each sentence in order to incorporate the measure
of Bit Error Rate (BER). In Eq. 5, r is the code rate, here
equal to 1/3, and m min(2) is the minimum value of m cor-
responding to z. In choosing m(z), two different criteria

were considered. The first criterion is to choose m(x) such
that the value Zm(m) wnin Dm., is almost equal for different

m=m
values of z, and the second criterion is to choose the same
m(z) for all values of z. The results for N = 760 with
Ey/Ny = 2 (dB) and for N = 20 with E;/Ny = 3 (dB)
are shown in Table 2. In obtaining these results, m(1) is
chosen such that the bound is close enough to the corre-

sponding simulation result. For N = 760, the WEF’s

N =760,E/No =2 (dB) || N =20,E,/No =3 (dB)

x Criterion 1 | Criterion 2 Criterion 1 | Criterion 2

141 12x107° | 1.7x10°° 71x107* | 7.2x107°¢
1.2 ] 9.5x107% | 9.5x10"® 6.4x10~* | 6.1x10™*
1 | 76x107% | 7.6 x10"® 58x107* | 5.8x107*

08| 6.3x107% | 3.4x%x10°°® 56 x107* | 5.8x 107*
0.6 | 53x107% | 2.9x10°® 1.1 x10™% | 1.1 x 103
04| 46x107% | 1.1x10® 6.9 x10"* | 6.7x10™*
02| 41x107% | 1.3x10° 8.6 x 107* | 9.4x10™*
0 | 28x107% | 1.5 x10°° 1.3x107% | 1.8 x 1073

Table 2: Average performance bounds for N = 760 and N =
20.

corresponding to every branch in the hyper-trellis of the
turbo code (see [3]) have been approximated by the WEF
corresponding to the branch which connects the all-zero
states in both component codes.. Also, in order to limit
the amount of computations in developing the AWEF, the
transfer function corresponding to the component codes
has to be truncated to codewords of Hamming weights less
than a threshold. Since codewords of large weights are not
incorporated in developing the average bound, this limi-
tation does not affect this bound for ¢z = 1. However, for
¢ # 1, there might exist codewords which would have been
encountered in the summation if they were included in the
component transfer function. For this reason, the thresh-
old should be appropriately selected to reduce this effect.
Here, we’ve enumerated codewords of Hamming weights
less than or equal to 75 in the component transfer func-
tion. Only the bounds corresponding to z < 0.2 will be
affected by this limitation, thus in Table 2, the average
bound for z = 0 is an under estimation. For N = 20,
no approximation has been used and the component wise
transfer function has been evaluated completely.

As can be seen from Table 2, for N = 760, performance
improvement is achieved by reducing the protection of the
systematic bits. The two criteria show slightly different



behavior for z < 0.4. For N = 20, the best performance is
achieved by EEP, or very near to EEP. In Section 3, the
average of these two criteria is shown for comparison with
the simulation results.

Before we proceed to the next section, it should be noted
that although in this discussion the energies assigned to the
parity check bits of both component codes are considered
to be equal, the role of the two parity check bits is not
necessarily the same in determining the performance of the
code. However, when a uniform interleaver is considered
these two bits will have the exact same role in the AWEF
and the effect of unequally protecting them won’t be shown
by this function.

3 Simulation Results

Simulations are shown for turbo-codes of rate » = 1/3, em-
ploying two identical RSC codes. The channel is modeled
as AWGN. Both encoders are terminated at the end of each
block of input data. The component decoders employ the
Bahl et al algorithm and the decoding procedure is similar
to [2]. Figs. 2 and 3 show the logarithm of Bit Error Rate
(BER) versus z, the factor already defined in Section 2. In
Fig. 2, the simulation results correspond to a turbo-code
with component codes (21,37), interleaver length N = 16,
and SNR=2 (dB), and a code with component codes (5,7),
interleaver length N = 20, and SNR=3 (dB). As can be
seen, the performance for these two cases gets slightly bet-
ter when the systematic bits are higher protected than the
parity bits (z > 1). For N = 20, the theoretical bound is
depicted in dashed line. This bound is the average of the
bounds corresponding to the two criteria shown in Table 2.

Fig. 3 shows the results corresponding to a turbo-code
consisting of component codes (5,7)and SNR=2 (dB), for
N =380, N = 760, and N = 1000. For larger interleaver
lengths, better performance is achieved when the system-
atic bits are protected less than the parity check bits and
this effect gets stronger as the block length increases. In
this figure, the theoretical bound for N = 760 is depicted in
dashed line. This bound is again the average of the bounds
corresponding to the two criteria shown in Table 2. The
theoretical bound agrees with the simulation results until
z = 0.2,

For small values of z, there is a sudden rise in the BER
in all three simulation curves. This degradation is due
to the sub-optimum decoding scheme employed in turbo-
decoding. The overall protection over the information
given to the first component decoder (systematic and first
parity check information) gets less than the case of EEP
as = decreases, and consequently the extrinsic information
passed to the second component decoder gets less reliable.
For very small values of z, and consequently very unreliable
extrinsic information, the iterative decoding procedure will
no more converge to the ML solution, and this results in
performance degradation.
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Figure 2: Results corresponding to turbo-code of component
codes (21,37), Ey/No = 3 (dB), and N = 16, and turbo-code of
component codes (5,7), Es/No = 3 (dB), and N = 20.
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Figure 3: Results corresponding to turbo-code of component
codes (5,7), Es/No = 2 (dB), with N = 380, N = 760, and
N = 1000.



4 Conclusion

The role of the two groups of turbo-encoder output bits,
namely the systematic and the parity check bits, in deter-
mining the code performance is studied in this article. It is
shown that, when binary modulation is employed, the code
performance can be improved by applying UEP to these
two groups of information. For turbo-codes of very short
interleaver lengths, the protection over the systematic in-
formation should be more than the parity information, for
performance improvement. Studying the AWEF, suggests
that as the interleaver length gets larger, the contribu-
tion of the parity check bits in the distances of the low
weight codewords, increases. Thus, for large interleaver
lengths, higher protection of these bits will improve the
code performance. Some theoretical bounds have been ob-
tained for different levels of UEP, using the AWEF, and it
is shown that these bounds agree with the simulation re-
sults for a wide range of UEP. Improvements of about 0.5
in the log,((BER) can be achieved by selecting the proper
level of UEP,over EEP. This is approximately equivalent to
0.5 (dB) improvement in the Signal to Noise Ratio (SNR),
in the range of the BER’s of interest. This improvement
is achieved at no extra cost in energy or rate.
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