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Abstract|Multimedia 
ows are inherently inho-

mogenous, i.e. packets within a 
ow are of di�er-

ent importance for actual user perception. When

transmitting such 
ows with real-time constraints in

networks like the Internet which o�er no reliability

of transmission, some packet loss is inevitable. The

perceptual impact of these losses is then ampli�ed

by the arbitrary distribution of packet losses within

the 
ow which impairs the reconstruction of appli-

cation data units (ADUs) at the receiver, as well as

the performance of end-to-end loss recovery mecha-

nisms. To control the loss distribution within a 
ow

(\intra-
ow" QoS) typically �ltering higher-layer in-

formation within the network is proposed, which is

both expensive in terms of resources, as well as un-

desirable with regard to network security. We com-

pare two novel queue management algorithms which

improve the intra-
ow QoS without higher-layer �l-

tering. The �rst algorithm is called Di�RED (Di�er-

ential Random Early Detection). It di�erentiates be-

tween packets marked by the sender as either more or

less eligible to be dropped in comparison to unmarked

packets without keeping any per-
ow state. On the

contrary, the other algorithm called PLoP (Predictive

Loss Pattern) operates without per-packet marking,

yet with keeping partial per-
ow state. We intro-

duce simple metrics to describe the loss process of

individual 
ows and present simulation results with

voice as foreground tra�c using the proposed meth-

ods in a multi-hop topology. We �nd that both algo-

rithms do not have a signi�cant impact on the back-

ground tra�c. For the given scenario algorithms us-

ing packet marking are found to be superior because

for the foreground tra�c a high probability for short

bursts with potentially high perceptual impact can be

traded against a higher probability for isolated losses

as well as higher (but acceptable) probability for very

long loss bursts.

To appear in Proceedings of International Conference on Com-
munications (ICC 2000), New Orleans, LA, June 2000

I. Introduction

Recently, we have seen research e�orts on how to use
information on a 
ow's structure (e.g. the association of
packets to frames in an Application Data Unit - ADU)
to allow a graceful degradation of the 
ow when no
mechanisms for di�erentiation between 
ows are present
(\best e�ort" Internet). We describe these mechanisms
with the term \intra-
ow" QoS enhancement (as op-
posed to \inter-
ow" QoS where di�erentiation between

ows takes place). For video tra�c there have been
several proposals (e.g. Frame-Induced Packet Discard-
ing [1], Transcoding, Transform Coe�cient Filters), some
of which also include an alignment with inter-
ow QoS
mechanisms [2], [3]. However, these application-level ap-
proaches typically su�er from adding signi�cant complex-
ity to nodes interior to the network, contradict with net-
work security constraints and are generally very depen-
dent on the supported payload types which are subject to
change over time.

Due to the low per-
ow bandwidth for real-time voice,
most of the approaches mentioned above for video do not
apply. A low-bitrate voice stream typically can neither
be source-rate-adaptive nor easily be �ltered/transcoded
further. Thus, in the absence of inter-
ow protection,
it needs to be augmented with end-to-end loss recovery.
Due to real-time constraints, open-loop error control is
used (FEC, [4], [5]), in particular by adding an additional
lower quality low bitrate source coding [6]. Alternatively
or in combination with FEC, we can exploit long-term
correlation within the speech signal for concealment of
the signal degradation [7], [8].

However, FEC and loss concealment are limited in the
number of consecutive packet losses which can be treated.
For FEC, the limitation lies in the additional data and de-
lay overhead necessary to detect and recover consecutive
losses. For concealment, the limitation is due to the as-
sumption of quasi-stationarity for speech. This is only
valid for a time period typically equivalent to one or two
packets. Given these constraints, concealment and for-
ward error recovery approaches become much less e�cient
as the loss burstiness increases, as shown e.g. in [9], [10].

The previous arguments underline the importance of
mapping application requirements with regard to their
ADU format and end-to-end quality enhancement capa-
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Fig. 1. Gilbert Model

bilities to network mechanisms e�ectively controlling the
distribution of losses within a 
ow.
We compare simple network mechanisms which al-

lows loss control on a per-
ow basis which bridge the
huge gap between just employing end-to-end loss recov-
ery mechanisms and full deployment of service di�erentia-
tion/reservation in the network including admission con-
trol, negotiation of service level agreements and charg-
ing/accounting. We show how applying the algorithms to
best-e�ort voice 
ows signi�cantly improves application-
level QoS without impairing the quality of other 
ows.
The structure of the paper is as follows: Section II.

introduces simple metrics to describe the loss process. In
section III. we present the Di�RED [11] algorithm which
is an extension to the Random Early Detection (RED,
[12]) concept. Section IV. introduces the PLoP algorithm
[13]. Then, in section V. we compare both algorithms
for a multi-hop scenario by simulation. In section VI. we
summarize our �ndings and conclude the paper.

II. Simple intra-flow loss metrics

Intra-
ow loss metrics1 introduced up to now (see, e.g.,
[14], [15]) have been mainly used for admission control, i.e.
in the access control path of multiplexers. In contrast, we
consider a "best e�ort" Internet scenario where real-time

ows can start and end at any time without explicit setup,
i.e. the network has no a-priori knowledge of connections,
and thus intra-
ow QoS has to be enforced in the data
path.
To characterize the behaviour of the network as seen by

one 
ow, we use the well-known Gilbert model (Fig. 1).
The system can be completely described by the probabil-
ity p01 for a transition from state 0 (no loss) to state 1
(loss) and the probability p11 to remain in state 1. The
probability p11 represents the conditional loss probability
clp. The probability of being in state 1, representing the
mean loss, is called unconditional loss probability ulp and
can be computed as follows [16]:

ulp =
p01

1� p11 + p01
(1)

1\Intra-
ow" loss probabilities are also refered to as \short-term"
loss probabilities because they are typically using random variables
describing "close" loss events in terms of the packet sequence.
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Fig. 2. Conditional Loss Probability vs. Unconditional Loss Proba-
bility: Gilbert Model, clp-bound clpdet and simulations of Drop-Tail
and RED algorithms for foreground tra�c

The Gilbert model implies a geometric distribution of the
probability for the number of consecutive losses k, (1 �
clp)clpk�1, which is known to approximate well the head
of the loss distribution of actual traces. (The tail of the
distribution is typically dominated by few events, caused
e.g. by link outages and route 
appings, and cannot be
captured by a simple model [16], [17].) Fig. 2 shows how
the (clp, ulp) space is covered by the Gilbert model using
p01 as a parameter.
If losses of one 
ow are correlated (i.e. the loss probabil-

ity of an arriving packet is in
uenced by the contribution
to the state of the queue by a previous packet of the same

ow and/or both the previous and the current packet see
bursty arrivals of other tra�c, [18]) we have p01 � clp
and thus ulp � clp (upper half of Fig. 2). For p01 = clp
the Gilbert model is equivalent to a 1-state (Bernouilli)
model with ulp = clp (no loss correlation).
Fig. 2 leads us to the conclusion that simple queue man-

agement algorithms can be designed that allow the ad-
justment of the conditional loss probability for individual

ows2, while keeping the unconditional loss probability
within a controlled bound around the value that is de-

2Note that by modifying the queue management algorithm, we
cannot cannot change the conditional loss probability clp below a
theoretical limit. This limit can be explained as follows: clearly the
clp can be zero up to ulp = 0:5. Then, a deterministic loss pattern
with every other packet lost is reached. When further increasing the
loss rate, even when considering a deterministic loss pattern, burst
losses cannot be avoided. This lower bound is thus given by the
deterministic conditional loss probability clpdet :

clpdet =

n
0: 0 � ulp < 0:5

2ulp� 1: 0:5 � ulp � 1
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sizes

termined by the background tra�c load, bu�er size, and
scheduling policy, but not necessarily by the queue man-
agement algorithm itself. In the following we call 
ows
sharing a queue under the control of such an algorithm
foreground tra�c (FT) and the remaining 
ows in that
queue background tra�c (BT).
With the RED [12] algorithm there exists already a

queue management algorithm whose modi�cations to the
queue behaviour can be described with the Gilbert model
parameters previously introduced. To be able to acco-
modate bursts in the queue, as well as not to over-react
during transient congestion, the instantaneous queue size
is low-pass �ltered resulting in an average queue size (avg)
which is used to compute the drop probability. By em-
ploying RED, the parameter p01 of the queue is thus in-
creased by gradually increasing the packet drop probabil-
ity (according to the measured average queue size) before
the queue is completely �lled. RED was designed to sig-
nal congestion to adaptive 
ows (TCP) and to reduce the
average delay independently of the association of packets
to 
ows. However, being interested in the clp, we know
that for a given ulp, increasing p01 amounts to a reduction
in the clp. This e�ect can be seen in Fig. 2 for simulations
we conducted with parameters detailed in the appendix
(over a single gateway). For all ulp values, the conditional
loss probability when using RED is below that for a Drop
Tail queue. Only under heavy overload (when the RED
algorithm is also just tail dropping most of the time), the
RED curve approaches the Drop Tail one.

III. The Differential RED (DiffRED)
Algorithm

One approach to realize inter-
ow service di�erentiation
using a single queue is RIO ('RED with IN and OUT',
[19]). With RIO, two average queue sizes are computed:

one just for the IN packets and another for both IN and
OUT packets. Packets marked as OUT are dropped ear-
lier (in terms of the average queue size) than IN packets.
RIO has been designed to decrease the ulp seen by par-

ticular 
ows at the expense of other 
ows. In this work
however, we want to keep the ulp as given by other pa-
rameters while modifying the clp parameter for the fore-
ground tra�c. Fig. 3 shows the conventional RED drop
probability curve (p0 as a function of the average queue
size for all arrivals avg), which is applied to all unmarked
(\0") tra�c (background tra�c: BT). Foreground tra�c
(FT) packets marked as less eligible for a drop (\+1") are
dropped with a probability as given by the lower thick
line. This lower probability is compensated by the higher
drop probability for the foreground tra�c packets marked
as (\�1"), i.e. packets more eligible for a drop. This
implies that the initial ratio of +1 to �1 packets of a

ow must be 1. Therefore in addition to the conventional
RED behaviour, the Di�RED implementation should also
monitor the +1 and �1 arrival processes [11]. If the ra-
tio of +1 to �1 packets at a gateway is not 1 (either
due to misbehaving 
ows or a signi�cant number of 
ows
which have already experienced loss at earlier hops) the
�1 loss probability is decreased and the +1 probability is
increased at the same time thus degrading the service for
all users3. The shaded areas above and below the p0(avg)
curve (Fig. 3) show the operating area when this correc-
tion is added.
In [11] it has been shown that using only the conven-

tional RED average queue size avg for Di�RED operation
is not su�cient. This is due to the potentially missing cor-
relation of the computed avg value between consecutive
+1 and �1 arrivals, especially when the share of the FT
tra�c is low. As this might result in a unfair distribution
of losses between the FT and BT fractions, a speci�c avg1
value is computed by sampling the queue size only at FT
arrival instants.
In summary the key di�erences between Di�RED and

RIO are

� \Di�erential" loss probability curves (a higher loss
probability of one packet is compensated by a lower
loss probability for another packet)

� Sub-sampling of the queue length value on FT ar-
rival instants to allow for a fair distribution of losses
between FT and BT

� Monitoring of the ratio between +1/�1 arrivals to
adjust their loss probabilities in case a mismatch (ra-
tio 6= 1) between them exists

Thus, a service di�erentiation for foreground tra�c is
possible which does not di�er from conventional RED be-
haviour in the long term average (i.e. in the ulp). Ad-

3Another option, yet with signi�cantly higher overhead, would
be to identify and deny access to the misbehaving 
ows [20].
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ditionally, packets of one 
ow carrying di�erent markers
are not reordered.

IV. The Predictive Loss Pattern (PLoP)
Algorithm

The PLoP algorithm aims at equally distributing nec-
essary packets drops within a single queue between 
ows
belonging to a certain group of 
ows with similar proper-
ties and QoS requirements (foreground tra�c: FT). This
is done to minimize violations of the given advance char-
acterization of the 
ow's sensitivity to burst losses (\drop
pro�les"). The task of a \drop pro�le" is to translate the
applications' end-to-end QoS requirements (i.e. the min-
imization of the conditional packet loss probabilityin our
case) to a per-packet behaviour of a queue management
algorithm at a single node.
For voice tra�c we de�ne a simple pro�le of the con-

ditional drop probability PD(xjx � 1) = x mod 2; x > 0.
PD(xjx�1) gives the probability used in a drop experiment
(i.e. a random number is generated and compared against
PD(xjx � 1)). Note that this pro�le does not designate
consecutive packets (sequence number) of the 
ow, but
packets consecutively subject to a drop experiment. Thus
the pro�le describes rather the worst case, where during
times of congestion every packet of a 
ow is subject to a
drop experiment. If this pro�le is successfully enforced at
a node for a 
ow which previously experienced no losses,
the resulting conditional loss probability for that 
ow at
the node is 0.

A. Description of the algorithm

When the queue length exceeds its threshold, a packet
is selected to be dropped. After the �rst drop of a packet
of a particular FT 
ow, the 
ow ID and the index referring
to a corresponding drop probability of the pro�le for the
next drop are recorded in the 
ow table. The 
ow ID is
the [protocol ID, src addr/port, dst addr/port] tuple for
IPv4. With IPv6 the 
ow label can be used.

When another FT packet should be dropped a drop
experiment is performed. The table is checked, whether
the ID of the selected packet has already been stored. If
true, a random number is generated and the packet is
dropped with a probability as found in the table record
and the index into the pro�le within the 
ow table is up-
dated. If this drop experiment does not result in an actual
drop, the packet is marked as a \survivor" and the next
packet matching the FT requirement is searched for in
the queue (\force drop", see [13] for the algorithm pseudo
code). This procedure is repeated until an actual drop has
taken place. If the end of the queue is reached (i.e. no
adequate replacement packet for the original packet was
found: \force failure"), the original packet is dropped.

V. Results

We employ the same simulation environment as in sec-
tion II. with the parameters as given in the appendix,
however using a network of several hops (Fig. 4 shows the
used topology). Foreground tra�c consists of several 
ows
which have voice data characteristics (to enable Di�RED
operation, every voice source marked its packets alternat-
ingly with +1 and �1). The foreground tra�c share of
the o�ered load �FT

�
was set to 10%. Details of the back-

ground tra�c are described in the appendix. The tra�c
intensity at every hop is �xed at � = 1:0. In the follow-
ing, four algorithms are evaluated (the queue length is 20
packets for all algorithms):

� Drop Tail (DT),

� Predictive Loss Pattern (PLoP),

� Optimal Predictive Loss Pattern (OPLP) and

� Di�erential RED (Di�RED).

The OPLP algorithm works exactly as the PLoP algo-
rithm, however it keeps state about the sequence numbers
of packets of a 
ow seen (see section IV.). OPLP thus
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gives a good impression where the performance limit of
algorithms working only locally (without inter-hop com-
munication by e.g. packet marking) is, yet this algorithm
does not seem viable in real high-speed network environ-
ments (due to performance and security constraints).
The performance of the respective algorithms on one

isolated hop has been evaluated in [11] and [13]. In this
work we will also look at the behaviour along a multi-hop
path. The foreground tra�c consists of 
ows which pass
through the whole path and are our main focus of interest
(FT0) and 
ows which simulate cross tra�c (FTx). The
share of cross FT within the FT is 50%. Routers and BT
sources and destinations are identi�ed by Rx and BTx
respectively where x is a number for the path from the
source x to the destination x. At every node also new
background cross tra�c is injected. Flow monitors count
all packet arrivals, packet drops, length of loss bursts and
observe the sequence numbers of the 
ows.
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Fig. 5. Burst probability as a function of burst length k after 9 hops

Figure 5 shows the burst probability dependent on the
burst length k for a nine-hop topology. The given results
are the mean values of all FT0 
ows. We also plot error
bars giving the standard deviation for the averaged values
(this is to verify that every 
ow of a group has identical
behaviour seen over the entire simulation time).
We can observe that Di�RED shapes the burst prob-

ability curve in the desired way: most of the probabil-
ity mass is concentrated at isolated losses (k = 1) and
all burst probabilities for k > 1 are at least three or-
der of magnitude smaller. The other three algorithms
show (roughly) only an exponentially decreasing burst loss
probability with increasing burst length (with di�erent
slopes demonstrating the quality versus state tradeo�).
Thus, considering voice as the foreground tra�c of in-
terest, with Di�RED a large number of short annoying
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Fig. 6. Development of FT ulp and clp on the transmission path

bursts can be traded against a larger number of isolated
losses as well as very long loss bursts. Avoiding longer
loss bursts which are perceived as outages [21] is however
better achieved by PLoP and OPLP.
For a complete discussion of the loss process in
uenced

by the respective algorithms, we also have to look at the
unconditional loss probability (obviously the ulp when us-
ing di�erent algorithms needs to be approximately equal
to allow a fair comparison between algorithms). The con-
ditional loss probability (clp) then allows us to describe
the performance with regard to burst loss in a compre-
hensive way.
Figure 6 shows how the unconditional loss probability

and conditional loss probability of the foreground tra�c
develop through the path. The ulp values for all algo-
rithms di�er only insigni�cantly as desired for a mean-
ingful comparison of the burst loss properties. However
the clp results are very di�erent for every method. On
every hop Di�RED can protect "+1" packets by early-
dropping "-1" packets using avg1 as "memory" about the
FT 
ows. OPLP even with keeping individual state on
the sequence numbers can only choose among the packets
currently present in the queue (the "memory", though be-
ing per-
ow orientated, is limited to the queue size) and
might not �nd an adequate victim (force failure). The
Di�RED algorithm thus provides a path orientated pro-
tection through the packet marking: an increasing num-
ber of losses along the path increase the ulp but the clp
decreases.
To explain this we introduce the occurence ok of a burst

length k [16]. Thus for a given number of packet ar-
rivals a (experiencing d =

P
1

k=1 kok drops) of a 
ow we

have the mean loss rate (ulp for a ! 1) pL = d
a
. With

b =
P
1

k=1(k � 1)ok being the frequency of \two consecu-
tive packets lost", we calculate a conditional loss rate as
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pL;cond =
b
d
(clp for d!1). Using Di�RED at every hop

"+1" packets are dropped with lower probability than "-
1" packets. The occurring losses are concentrated on the
"-1" packets. Thus it happens that the denominator of
pL;cond increases faster than the enumerator, resulting in
a decreasing clp simultaneously to an increasing ulp.
Another interesting issue is the behaviour of the algo-

rithm relative to the background tra�c 
ows, i.e. the
fairness to uncontrolled tra�c. Figure 7 shows the values
for ulp and clp at every hop (we averaged the results for
one 
ow group (H-type BT)). These values are not cumu-
lative values but computed only for one hop because this
cross tra�c uses only one hop of the path respectively.
The almost identical ulp curve of DT, PLoP and OPLP

shows that all three algorithms have only minor in
uence
on the background tra�c. The Di�RED algorithm re-
trieves some of its performance from the BT but at a
tolerable level.

VI. Conclusions

We have introduced simple metrics to describe the loss
process of individual 
ows and presented simulation re-
sults in a multi-hop topology for a voice service using
queue management algorithms for burst loss control. Two
classes of algorithms have been compared: the �rst class
uses packet marking to designate drop preference without
keeping local per-
ow state. The second class on the con-
trary operates purely local (the sender or other nodes are
not involved in the scheme), but keeps state for the pro-
tected 
ows. We �nd that both types of algorithms do not
have a signi�cant impact on conventional tra�c. It is pos-
sible to control the loss characteristics of individual 
ows
while keeping their unconditional loss probability within
a controlled bound around the value expected using con-

ventional Drop Tail or RED algorithms. For the given
scenario algorithms using packet marking are found to be
superior because a high probability for short bursts with
potentially high perceptual impact can be traded against
a higher probability for isolated losses as well as higher
(but acceptable) probability for very long loss bursts.

Appendix

We implemented the PLoP, OPLP and Di�RED algo-
rithms into a modi�ed version of the NS-2 network simu-
lator [22], which allows tracing of the occurence of burst
losses for individual 
ows. In our simulation the bottle-
neck links (i.e. the capacity of the routers' egress in-
terface) have a link-level bandwidth of � = 1920kbit=s.
Flows are fed to the routers over 10Mbit=s links.
We used the same tra�c model as in [11] and [13], that

re
ects results from various recent Internet Access-LAN
and Internet backbone measurements [23]{[25]: the ma-
jority of tra�c (in terms of 
ows and volume) are http
transfers (\H-type" background tra�c). The rest are
mostly short-lived 
ows dominated by DNS tra�c (\D-
type" background tra�c), which has a relatively large
share of the active 
ows, yet only a small share of the
tra�c volume4. The values we chose for modeling of in-
dividual sources are shown in Table I. To model Web
tra�c we use a Pareto distribution [26] both for the ON
and OFF periods of the source. By using a variance-time
(var(X(m))�m) plot [27], describing the variance of the
process of arrivals X dependent on the scale of averaging
m, we determined that the aggregation of the described
background tra�c sources produces long-range dependent
tra�c. As the Di�RED algorithm tries to in
uence the
loss burstiness of individual 
ows, it is crucial to re
ect
the existing \burstiness on all time scales" of the aggre-
gate arrival process in the model. To model voice sources
with silence detection, we employed a model widely used
in the literature (see e.g. [15]) where ON (talkspurt) and
OFF periods are exponentially distributed with a speaker
activity of 36%. Every voice source marks its stream with
a +1;�1;+1;�1; ::: pro�le.

Table I also gives \raw" peak bandwidth and packet
sizes (i.e. including packet header overhead5). Packet
inter-departure times within a burst are uniformly dis-
tributed in the interval [0:95I; 1:05I ] (with I being the
packet inter-departure time calculated from the values of
Table I) to avoid phase e�ects caused by the exact timing
of packet arrivals in the simulator.
We found a simulation time of 5 �104 seconds (13.9 hrs.6

with the number of packet arrivals ranging from 16 � 106

4The small per-
ow bandwidth of the D-type BT allows us to set
the background tra�c load with a relatively �ne granularity.

5We assume 8 bytes link level overhead and 20, 20, 8, 12 bytes
IP-, TCP-, UDP-, RTP-packet overhead respectively.

6The initial 104 s were discarded from the datasets.
6



TABLE I

Source model parameters

Tra�c type H-BT D-BT FT (voice)


ow share (%) of BT 75 25 -
peak bandwidth (kbit

s
) 256 32 83:2

packet size (bytes) 560 128 208
on/o� distribution Pareto Expo. Expo.
shape parameter 1:9 � �
mean burst (packets) 20 4 18
mean ontime (s) 0:35 0:13 0:36
mean o�time (s) 0:7 0:13 0:64

to 27 � 106) su�cient for the Pareto sources to "warm up"
and thus to guarantee that the tra�c shows long-range
dependence as well as to result in a statistically relevant
number of drop events even for low loss rates as a basis
for performance measures (pL;cond).

The (Di�)RED parameters used for all simulations are
as follows: minth = 5, maxth = 15, maxp = 0:1 and
wq = wq;1 = 0:002 [11].
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