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Ahtracr- This paper investigates encoders optimization for 
Hamming weight after periodic puncturing, rind discusses mini- 
mality issues that may affect the performanoe of the punctured 
encoders. Periodically puncturing a minimal encoder produces a 
higher rate encoder that may or may not be minimal. If it is not 
minimal, it may have a zero-output loop and it may be Catastrophic. 
A code search can use a fast algorithm to determine whether an en- 
coder’s state diagram has a zero-output loop under periodic sym- 
bol puncturing, and a proposed method to assess the performance 
of codes with a zero-output loop that are not catastrophic. As an 
example, the paper optimizes rate-l/4 unpuctured codes for Ham- 
ming weight under both bit-wise and symbol-wise periodic punc- 
turing. Code tables and simulation results are included. 

I .  INTRODUCTION 

Trellis codes can be designed to offer reliable perfor- 
mance under periodic puncturing, that may occur either at 
the transmitter to achieve rate variability. or over periodic 
erasure channels. Such channels arise fix example from 
partial-band interference in frequency-hopped or multi- 
carrier transmission, that is dispersed hy a block inter- 
leaver. Lapidoth [l] and Wesel [2] describe techniques 
for the analysis and design of convolulional codes and 
trellis codes respectively, that can offer consistent perfor- 
mance over a set of periodic erasure patlems. This paper 
deals with minimality issues that may arise when punc- 
turing periodically. These issues are of interest during 
exhaustive searches. 

A general description of a convolutional encoder with 
k inputs, n outputs, and m memory elements is given by 
the state-space equations over GF(2) 

sj+1 = sjA + u ~ B  
xj = sjC +ujD, 

where sj is the state vector of dimension 1 x m, xj is 
the output vector of dimension 1 x n and uj is the input 
vector of dimension 1 x k .  

Periodic symbol puncturing [ 3 ]  with period p can be 
described by a p-element vector Q = [al . . .up ] ,  ai E 
(0, l}, applied to the output of a convolutional encoder 

Y j  = U ( j % p ) x j i  

where % denotes the modulo operation, and y j  is the out- 
put after puncturing. A p - q erasure pattern has q zero 
values ai = 0 (erased), and p - q nonzero values ai = 1 
(unerased). A code under periodic symbol puncturing is 
periodically time-variant, in the sense that the output cor- 
responding to a specific encoder state arid input depends 
on the element i of the puncturing pattern. 
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Periodic bit puncturing with the period equal to the 
number of output bits n can be described by 

y j  = xj 0 6, 

where 0 stands for the element by element multiplication 
of vectors xj and 5. Bit puncturing with a p - q punctur- 
ing pattern amounts to ignoring q out of p outputs of the 
initial code, and thus leads to a time-invariant code of a 
higher rate. 

Among all encoders that produce the same set of out- 
put sequences, the encoder that uses the smallest number 
of memory elements is called minimal [4]. A minimal en- 
coder is ourput observable (and vice versa) [ 5 ] ,  [6], [7 ] ,  
that is, the knowledge of the output sequence for a finite 
number of steps, is sufficient to determine the initial state 
SO and thus the corresponding state sequence. 

Assume that the encoder {A,B,C,D} is minimal. Punc- 
turing creates a higher rate encoder, that may or may not 
be output observable, depending on whether puncturing 
has left enough structure to the output sequences to de- 
termine the corresponding state sequences. If the punc- 
tured encoder is not output observable, then two different 
semi-infinite state sequences are mapped to the same out- 
put sequence. From linearity this implies that either the 
state diagram has a zero-output loop different than the 
self-loop around the zero state, or there exists a non-zero 
state with a zero-output path (forward or backward) to the 
zero state [ t i ] .  

If there exists a zero-output loop with non-zero input, 
the encoder is catastrophic. A catastrophic code maps an 
infinite input weight sequence to a finite output weight 
sequence, which causes the code to fail. If there exists 
a zero-input zero-output loop, special care is needed to 
calculate the distance characteristics of this code. Thus, 
during a search for codes under periodic puncturing, we 
need to examine whether an encoder has a zero-output 
loop under the different puncturing patterns. 

This paper deals with only this form of non-minimality 
(zero-output loop) that is of special interest during ex- 
haustive searches. Section I1 discusses the appropriate 
search space for the code search. Section I11 introduces a 
fast algorithm to check whether an encoder has a zero- 
output loop under a specific puncturing pattern. Sec- 
tion IV proposes a method to assess the performance of 
the encoders containing such a loop. As an application, 
Section V optimizes rate 1/4 encoders employing BPSK 
for Hamming weight, under both symbol-wise and bit- 
wise periodic puncturing with period p = 4. Code tables 
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and simulation results are included. Finally Section VI 
concludes the paper. 

11. SEARCH SPACE 

An exhaustive search maximizing free distance over all 
minimal encoders of a given rate and number of memory 
elements yields codes with better distance properties than 
any non-minimal encoder with the same complexity can 
achieve. To achieve optimal performance under a single 
specific periodic puncturing pattern, an exhaustive search 
can safely exclude any non-minimal encoders under this 
pattern. 

However, searching for a single code that performs 
well under a family of periodic puncturing patterns is a 
multi-criterion optimization problem [2], that does not 
necessarily have a unique solution. Often, no single code 
gives the best possible performance for all puncturing 
patterns. The search may instead identify a set of en- 
coders that offer reasonable performance over the whole 
family of puncturing patterns. This set may include en- 
coders that become non-minimal under one or more of 
the puncturing patterns. 

As a result, an exhaustive search considering several 
puncturing patterns, cannot safely exclude encoders that 
do not retain minimality under all puncturing patterns. 
For example, when punctured to rate one (no redundancy) 
an encoder is always non-minimal, since the minimal en- 
coder in this case contains no memory elements. Still 
such a pattern might be of interest in a partial-band jam- 
ming application. 

A typical search space for trellis codes is the set of 
encoders that are range distinct to each other. Two en- 
coders are called range equivalent [9] if they have the 
same set of output sequences, and range distinct if they 
are not range equivalent. This is Forney’s notion of equiv- 
alence [4]. For non-minimal encoders the mapping from 
input to output sequences plays an important role. If 
the non-minimal encoder has a zero-output loop, the in- 
put sequence mapped to the zero-output loop determines 
whether the encoder is catastrophic or not, which has a 
dramatic effect in performance. Thus the set of range 
distinct encoders is not sufficient for an exhaustive search 
that considers a family of puncturing patterns. 

A sufficient search space that includes all encoders of 
interest is an exhaustive set of encoders that are strictly 
distinct. Two encoders are called strictly equivalent [9] 
if they map the same input sequence to the same output 
sequence. If two encoders are not strictly equivalent we 
say they are strictly distinct. The rational form theorem in 
[ 101 provides a method for identifying an exhaustive set 
of strictly distinct encoders. A group theoretic approach 
in [I  13 provides a different way of identifying such a set. 

111. ALGORITHM TO DETERMINE ZERO-OUTPUT 
LOOPS UNDER SYMBOL PUNCTURING 

The straightforward method described in [2] to deter- 
mine whether a puncturing pattern causes an encoder’s 
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state diagram to have a zero-output loop, is to start from 
all the states, coupled with all the the distinct phases of 
the puncturing pattern, and check if they belong to a zero- 
output loop. As phases we refer to the p possible cyclic 
shifts of a p - q puncturing pattern. 

Assume that after puncturing the state-space diagram 
contains a loop that has only zero outputs. This loop, be- 
fore puncturing, must have at least one zero output. Oth- 
erwise, if all the loop outputs were different than zero, 
since they cannot all be punctured (at least one ai is 
nonzero) a non-punctured output would eventually add 
distance to the loop. Thus the non-punctured outputs of 
the zero-output loop have to be zero. 

This observation leads to the proposed algorithm. To 
check for zero-output loops, start from the states that have 
a zero output before puncturing, coupled with the distinct 
phases of the puncturing pattern such that a1 = 1, i.e. the 
first (every p )  symbol is not punctured. That is, align the 
zero output with a nonzero ai. 

For example, for an encoder with six memory elements 
under the p - q = 4 - 2 puncturing pattern [0 1 0 11, 
instead of starting from all the 64 states coupled with the 
two distinct phases [0 1 0 11 and [l 0 1 01, it is sufficient 
to start from the three states that have a zero output (don’t 
need to include the zero-output at the self-loop around the 
zero state) coupled with phase 11 0 1 01. This amounts to 
a reduction by approximately 97% of the search space. 

Iv. PERFORMANCE OF ENCODERS WITH A 

ZERO-INPUT ZERO-OUTPUT LOOP 

The performance of a code over an AWGN channel is 
determined by its free distance. For codes optimized for 
periodic puncturing, the corresponding metric is residual 
distance. Residual distance [2] indicates how much out- 
put distance is provided by the code after periodic atten- 
uation. In other words, residual distance is the free dis- 
tance of the punctured code. 

Consider a non-minimal encoder with a zero-input 
zero-output loop, decoded with the standard Viterbi al- 
gorithm. The free distance is not necessarily equal to the 
minimum output distance associated with the encoder’s 
error events. As error events we refer to the trellis paths 
of finite length that leave the zero state once and return to 
it only once ([I21 pg. 61). 

However, the free distance is equal to that of a strictly 
equivalent minimal encoder, and for minimal encoders 
free distance is the minimum distance associated with the 
encoder’s error events. This minimal strictly equivalent 
encoder may also be used to compute transfer function 
bounds. A reduced complexity transfer function bound 
and a method for calculating the transfer function bound 
for codes under periodic erasures, are described in [ 2 ] ,  
[W. 

As an example, consider the non-minimal encoder 
{AI, B1, C1, D1) that contains a zero-input zero-output 
loop 
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where s = [sl 52 53 541, U = [u1 112 us] and x = 
[XI 2 2  2 3  241. This encoder is strictly equivalent to the 
minimal encoder {Az, Bz, Cz, D2} 

Ba Aa -- 
Da C a  

where s = [SI s2]. The encoder {A2, Ba, CZ, Dz} may 
be used to calculate the free distance and the transfer 
function bounds for the encoder {AI,&, C1, Dl}. 

The following theorem allows determination of the 
free distance of an encoder with a zero-output loop in its 
state diagram without converting it to a minimal equiva- 
lent encoder: 
Theorem 1 The free distance of a code with a zero- 
output loop, is equal to the minimum output distance of 
all paths that start and end in the zero state, and all paths 
that start in the zero state and end in the zero-output loop. 

The non-minimal encoder {A, B, C, D} 
is not output observable. Thus there exists a state vec- 
tor equivalence transformation d j  = Psj, where P is a 
nonsingular matrix determined by the observability ma- 
trix 0 = [C CA ... CA"-l] [14], that leads to an 
algebraically equivalent encoder of the form 

Proofi 

v- 
A B - 

C 

where the m-dimensional state vector s is divided into 
an observable part so and and a not observable part s,,. 
Dropping the not observable state vector s,,, we obtain 
an observable state equation of lower dimension, that cor- 
responds to a strictly equivalent observable encoder. 

Assuming C is full rank, the zero-input zero-output 
loop is described by the state equations so = 0, s,, = 
Ano2sno. That is, for the strictly equivalent observable 
encoder, the zero-input zero-output loop is mapped to the 
self-loop around the zero state. Error events that start and 
end in the zero state so = 0 for the minimal encoder, 
may start or end in the zero loop for the non-minimal 
encoder. 

v. CODE SEARCH AND SIMULATION RESULTS 

In this section we present code tables and simulation 
results for rate 1/4 codes employing BPSK with m = 
6 memory elements, optimized for periodic puncturing 
with period p = 4. To identify good codes we examined 
both symbol-wise and bit-wise puncturing. 

To describe an encoder we give in octal notation the 
feedback polynomial f (D), the IC = 1 row bl of matrix 
B, the n = 4 columns {CI . . . cq} of matrix C, and the 
k = 1 row dl of matrix D. The last row of matrix A 
contains the coefficients: [fo . . . fs] of the encoders feed- 
back polynomial f ( D )  = D6 + f5D5 +. . . + fo. We use 
this notation for the codes presented in all the following 
tables. For example, code CS in Table 111, described by 
the polynomials (0140, 040, 054, 062, 052, 013, 07) 
has the {A, B, C, D} state-space description 

0 1 0 0 0 0  
0 0 1 0 0 0  
0 0 0 1 0 0  

Sj+l = s j  [I a I I t ]  
\ / * 

A 

+ U j [  \ 1 0 0 .- 0 0 0 1  J 

B 

C 

A. Bit-wise Puncturing 

For periodic bit puncturing an exhaustive search exam- 
ined all strictly distinct rate 1/4 feedback encoders such 
that, when punctured to uncoded, all resulting 1/1 en- 
coders are non-catastrophic. The search was restricted 
to feedback encoders, since all rate 1/1 feedforward en- 
coders are catastrophic, (with the exception of the 1/1 
codes with generator polynomials [Ilk], k = 1 . . . m). 

Table I presents three codes, each achieving the highest 
residual Hamming distance for a puncturing pattern, in 
octal notation as described previously. 

TABLE I 
CODES WITH m = 6 MEMORY ELEMENTS, k = 1 INPUT, A N D  

n = 4 OUTPUTS, OPTIMIZEDFOR HAMMING DISTANCE UNDER 

BIT-WISE PERIODIC PUNCTURING, WITH PERIOD P d .  

Table I1 provides in detail the distance characteristics 
of the codes presented in Table I. In the second row: the 
d, subscript denotes the unpunctured output bits. For ex- 
ample, dl2 stands for the residual distance when the two 
most significant (MSB) bit outputs are not punctured and 

302 0-7803-7097-1/01/$10.00 02001 IEEE 



the two least significant (LSB) outputs are punctured and 
d1234 stands for the free distance when no output bit is 
punctured. 

The number given in parenthesis is Nb. For no punc- 
turing Nb would be the total number of input bits of all 
error events that have output distance equal to the free 
distance, divided by the number of input bits. For codes 
under periodic puncturing, Nb is the natural extension of 
this idea, as is described in [ 2 ] .  The notation ‘‘(A)” indi- 
cates that the encoder has a zero-input zero-output loop, 
and the distance from the zero state to this loop deter- 
mines the residual distance. 

TABLE I1 
ANALYTIC DISTANCE PROPERTIES OF CODES IN TABLE I .  

B. Symbol-wise puncturing 
For periodic symbol puncturing, we performed a par- 

tial search over a set of strictly distinct feedback en- 
coders. Feedback encoders were chosen as more resilient 
to catastrophicity. As noted in [ 2 ]  a catastrophic feed- 
forward encoder may lead to a non-catastrophic range- 
equivalent feedback code, while a catastrophic feed- 
back code always leads to a catastrophic range-equivalent 
feedforward code. The search was partial in that it did not 
exhaust the set of strictly distinct encoders due to com- 
putational limitations, but it included a full set of range 
distinct encoders. 

Puncturing with period four leads to one 4 - 3 pattern 
(OOOl), two 4 - 2 puncturing patterns (0011 and OlOl), 
and one 4 - 1 puncturing pattern (Olll), with associated 
minimum (among all phases) free distance denoted by 

Tree, do;,,, and do;,,, respectively. Puncturing 
to rate one (uncoded) for non-catastrophic encoders al- 
ways implies distance dof:,, = l. The free distance of 
the unpuctured code is denoted by d:,,. 

Table I11 presents encoders that are non-catastrophic 
when punctured to uncoded, and offer consistent per- 
formance under the different puncturing patterns. The 
metrics presented in the third and fourth column are 
calculated [2 ]  as JdB = Cj  1010g1,,(4(d$r,,)2) and 
J M I  = cj 7 10g2(4(djfT,,)2), where the summa- 
tion is over all puncturing patterns iij, 4(d3free)2 is the 
squared Euclidean distance corresponding to Hamming 
distance d j  and BPSK constellation normalized to unit 
energy (E, = l), and qj is the number of punctured sym- 
bols for the p - qj puncturing pattern I j .  Table IV gives 
the residual distance characteristics of these codes. LL) 

is the natural extension of traceback depth for codes un- 
der periodic erasures. Both Nb and LD are described in 
detail in [ 2 ] .  

TABLE I11 
CODES WITH m = 6 MEMORY ELEMENTS, k = 1 INPUT, AND 

n = 4 OUTPUTS, OPTIMIZED FOR HAMMING DISTANCE UNDER 

SYMBOL-WISE PERIODIC PUNCTURING, WITH PERIOD P=4.  

TABLE IV 
RESIDUAL DISTANCE FOR CODES IN TABLE 111 U N D E R p  = 4. 
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The codes in Table IV achieve much higher residual 
Hamming distance than the codes in Table 11: for 4 - 0 
puncturing (unpunctured) they achieve (distance up to 20 
as opposed to 14, for 4 - 1 puncturing they achieve dis- 
tance up to 14 as opposed to 8, and for 4 - 2 punctur- 
ing they achieve distance up to 8 as opposed to 4. The 
reason is that the set of non-catastrophic codes under 
bit-wise puncturing is much smaller than the set of non- 
catastrophic codes under symbol-wise puncturing. The 
limited number of non-catastrophic codes incurs much 
smaller achievable distance for the rest aof the puncturing 
patterns. 
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Fig. 1. Performance of codes Cz and Cg under periodic symbol punc- 
turing with period p = 4, over AWGN channel. 

Fig. 1 plots the performance of codes C2 and C g  in 
BER vs. SNR (in dB), for all possible periodic punctur- 
ing patterns. Code C2 offers better performance when 
unpunctured (pattern 11 1 l), and code Cg better perfor- 
mance for the 4 - 2 puncturing patterns (0101 and 0011). 
The same figure plots the performance of uncoded BPSK, 
and of the best rate-1/2 code with six memory elements. 
The Viterbi decoder used traceback depth LO = 40. 

Fig. 2 plots BER vs. mutual information (in bits per 
channel use) for the code C2. Mutual information is cal- 
culated as 7 log, (1 + SNR) for a p - q puncturing pat- 
tern, This plot allows one to examine proximity to capac- 
ity for each puncturing pattern. Code C2 for BER=1OP5 
requires a consistent excess mutual information between 
0.77 - 0.885 for all five erasure patterns. This amount 
of excess mutual information is very similar to the one 
required in [2] for rate-1/3 8-PSK codes. 

VI. CONCLUSIONS 

A minimal encoder when periodically punctured leads 
to a higher rate encoder that may or may not be mini- 
mal. This paper, discusses the appropriate search space 
for codes optimized to offer consistent performance un- 
der periodic puncturing. We propose a fast algorithm to 
determine whether an encoder under a specific puncturing 
pattern has a zero-output loop, and introduce a method to 

1 o-6 

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 
Channel Mutual lnfonation (bitslchannel use) 

Fig. 2. Performance of code CZ vs. mutual information under periodic 
symbol puncturing with period p = 4. Transmitted rate is 0.25 bits 
per channel use. 

assess the performance of codes containing such a loop. 
The paper also provides simulation results and code ta- 
bles for rate-1/4 codes optimized for Hamming weight 
under both bit-wise and symbol-wise puncturing. 
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