
 

Abstract -- Wireless sensor networks have emerged 
recently as an effective way of monitoring remote or 
inhospitable physical environments. One of the major challenges 
in devising such networks lies in the constrained energy and 
computational resources available to sensor nodes. These 
constraints must be taken into account at all levels of system 
hierarchy. 

The deployment of sensor nodes is the first step in 
establishing a sensor network. Since sensor networks contain a 
large number of sensor nodes, the nodes must be deployed in 
clusters, where the location of each particular node cannot be 
fully guaranteed a priori. Therefore, the number of nodes that 
must be deployed in order to completely cover the whole 
monitored area is often higher than if a deterministic procedure 
were used. In networks with stochastically placed nodes, 
activating only the necessary number of sensor nodes at any 
particular moment can save energy. We introduce a heuristic 
that selects mutually exclusive sets of sensor nodes, where the 
members of each of those sets together completely cover the 
monitored area. The intervals of activity are the same for all 
sets, and only one of the sets is active at any time. The 
experimental results demonstrate that by using only a subset of 
sensor nodes at each moment, we achieve a significant energy 
savings while fully preserving coverage. 

I. INTRODUCTION 
Sensor networks are wireless networks comprised of a 

large number of miniscule devices equipped with one or more 
sensors, some processing circuits, and a wireless transceiver. 
Such devices are called sensor nodes. The dimensions of a 
sensor node are small enough to allow easy deployment of a 
large number of nodes into remote and inhospitable areas. 
Once deployed, sensor nodes organize a network, so that they 
can combine their partial observations of the environment. By 
combining those partial observations, a network offers to a 
user a global view of a monitored area. 

The source of energy for a node is most often an attached 
battery cell . Since the size of a cell i s limited, the amount of 
available energy is also limited. Therefore, sensor network 
architectures and applications, as well as deployment 
strategies, must be developed with low energy consumption 
as one of the important requirements. 

We study the problem of the placement of sensor nodes 
into a monitored area and their organization so that the full 
coverage is achieved with minimal energy consumption.  
Specifically, we have developed a heuristic that organizes the 
available sensor nodes into mutually exclusive sets where the 
members of each of those sets completely cover the 
monitored area. Only one such set is active and consumes 
power at any moment. After a specified interval another set is 
activated, while the first one is deactivated. In one round all 
sets are used, and then the whole process repeats until the 
sensors are out of power. The li fetime of the whole system 
directly corresponds to the number of allocated sets; 
therefore, the goal of the algorithm is to maximize the 
number of the sets. 

The first phase of the algorithm determines how many 
different sensor nodes cover the different parts of the 
monitored area. The second phase allocates sensor nodes into 
mutually independent sets. For simulation purposes, we 
assume that the sensing area of a sensor is a circle with the 

radius of the circle equal to the sensing range of a sensor. 
However, the heuristic does not require a circular sensing 
range. The heuristic is based on the assumption that for each 
sensor the sensing range of any shape can be either 
determined before the deployment as a static approximation 
of the sensor’s capabiliti es or as a function of a specific 
location and surrounding environment after the deployment 
of a sensor node. Furthermore, the sensing range may depend 
on the observed target, e.g. a seismic sensor can detect a tank 
at a larger distance than it can detect a soldier on foot. 

II . RELATED WORK 
Research in sensor networks is motivated by the capabili ty 

of sensor networks to closely connect the physical world and 
the existing Internet infrastructure, as described in [1][2][3]. 
To create such networks, the low power hardware 
components and customized system architectures are 
necessary. The issue of low power consumption in sensor 
networks is denoted as one of the most important 
requirements for sensor networks in [4][5][6]. Low power 
hardware components and general sensor network 
architecture are developed in WINS project [6][7] at UCLA. 
Low power sensing and processing are achieved by taking 
into account specifics of sensor networks, namely higher 
tolerance to latency and low sampling rates. Besides sensor 
node platforms based on radio communication, the 
“SmartDust” project [4] uses motes, small size devices with 
optical communication capabiliti es. New low power network 
protocols and architectures customized for sensor networks 
are proposed in [5][8][9]. 

In the last decade, techniques for low power design and 
compilation have been attracting a great deal of attention. 
Numerous techniques for reducing power consumption using 
either architecture and integrated circuit design approaches or 
compilation and operating system schemes have been 
proposed [10]. The most relevant result to our approach is 
that batteries have approximately twice as long life time, if 
they are discharged in short bursts with significant off time 
than in the continuous mode of operation [11]. Therefore, a 
mode of operation of a network where sensor nodes 
frequently oscill ate between an active and an inactive state 
extends a battery lifetime. 

The problem of efficient coverage of an indoor area with 
base stations for wireless networks resembles the problem of 
covering an area with sensor nodes. Optimal positions of base 
stations are acquired by running subsequent simulations 
beginning with an initial placement of stations and then using 
genetic algorithms [12] or simulated annealing [13] to 
generate new sets of positions until one solution is accepted. 
However, there are significant differences that do not allow 
straightforward implementation of the given procedure in 
sensor networks. The number of sensor nodes is significantly 
higher than the number of the stations. Also, the sensor nodes 
are chosen from the set of already existing locations, while in 
mentioned works the locations can be chosen freely. 

Since we are modeling an area where a sensor detects 
objects as a circle, the problem can be seen as an instance of 
the circle covering problem discussed in [14][15]. The 
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solution for that problem requires solving complex equations 
[14] and it can be done in a reasonable time for only a small 
number of circles [15]. 

III. MOTIVATION 

A. Controlled vs. Random Node Placement 
There are two main reasons why a deterministic placement 

of sensor nodes is impractical: 
• Sensor networks are often deployed in 

remote or inhospitable areas, which prevent 
individual sensor node deployment. Also, 
the current state-of-the-art sensor nodes are 
not capable of dynamic adjustment of their 
positions.  

• The number of sensor nodes in a network is 
large, so the deterministic placement is 
associated with increased cost and latency 
in the deployment of the network.  

Therefore, the preferred method of sensor placement is 
bulk dispersion of sensor nodes from an aircraft [9]. Still, it is 
instructive to consider the deterministic case when we can 
control placement of nodes since it provides the lowest bound 
on the required number of nodes needed to cover the area. 

Fig. 1. shows the optimal regular placement of nodes, so 
that the whole area is covered with the minimal number of 
nodes. The minimal number of sensor nodes is given by the 
equation [16]: 
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where PAREA is the size of the monitored area, N is the 
minimal number of nodes needed to cover the area, and r is 
the sensing range of a sensor in a sensor node. It is assumed 
that the sensing range of the nodes is significantly smaller 
than the dimensions of the monitored area. 
B. Motivational Example 

Here, we further clarify the problem discussed in this paper 
using the following example. Let us assume that the 
monitored area is divided into five fields. (A detailed 
description of a field is given in the following section.) Let F 
be a set of those parts: { F1, F2, F3, F4, F5} . In a general case, 
each sensor covers one or more of these fields and each field 
is observed by at least one sensor node. In our example, we 
have six nodes, denoted by Si, 1≤i≤6. The sensors cover the 
following fields: S1={ F1, F2, F3, F4} , S2={ F1, F2, F5} , S3={ F2, 
F3, F4, F5} , S4={ F2, F3, F5} , S5={ F1, F3, F5} , and S6={ F3, F4, 
F5} . 

We allocate sensor nodes into covers, mutuall y exclusive 
sets of sensor nodes, where each cover Ci, i=1…N, completely 
covers the area A. Our goal is to maximize the cardinali ty of 
the set of covers C = { C1,…,CN} . For this simple example, 
the optimal solution is found using the exhaustive search: 

C1 = { S1, S4} , C2 = { S3, S5} , C3 = { S2, S6} . 
The heuristic we developed to solve the problem is based 

on the maximally constrained – minimally constraining 
paradigm. We first try to cover fields that are covered by a 
small number of sensors. In the example, the fields that are 
covered by the minimal number of sensors are F1 and F4. 
Only three nodes cover each of those fields. Later we try to 
avoid including into the same cover the sensors that cover 
those sparsely covered fields. The detailed description of the 
heuristic is given in the following section. 

IV. COVERAGE OPTIMIZATION 
In this section we present the SET K-COVER problem, 

which is a generalization of the coverage problem described 
in Section III . In the first subsection, we introduce the 
preliminaries, and provide relevant definitions. In the second 
subsection, we present the heuristic approach for solving the 
SET K-COVER problem. 
A. Problem Formulation 

The first step in solving the problem is to identify the parts 
of the area covered by different sensor nodes. A 
straightforward approach to the question would be to treat 
each point in the area (assuming some finite resolution) as a 
distinctive part of the area. In that case a sensor node would 
be characterized by a list of all points it covers. In order to 
reduce dimensionali ty of the problem, we introduce notion of 
the field, defined in the following way: 

DEFINITION: A field is a set of points. Two points belong 
to the same field iff they are covered by the same set of 
sensors.  

An example how points are organized in fields is given in 
Fig. 2. The part of the algorithm that determines fields is 
shown in Fig. 3. The algorithm uses the locations of the 
nodes as the input, and allocates the points in the area into 
fields. Whenever a new sensor is added to the set of sensors, 
the status of all points covered by that sensor is examined. 
The new sensor may cover some points that were not 
previously covered by any sensor, as well as points already 
belonging to some established fields. All points previously 
not covered belong to one new field. A part of an existing 
field or a whole existing field covered by the new sensor 
becomes a new field, whose covering set consists of the 
covering set of sensors for the original old field with addition 
of the new sensor. 
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Fig. 1. Sensor nodes with a sensing range r placed in a regular structure that 
ensures the coverage of the whole area with a minimal number of nodes. 
The lines connecting three nodes whose sensing ranges intersect form an 
equilateral triangle. The side of the triangle is r 3 . 

Fig. 2. After the locations of four sensor nodes are known, the area is 
divided in eight fields, where each field contains points covered by a 
same set of sensors. 



 

After the fields are established, for each sensor a list of all 
fields covered by that sensor is created. The set of all fields in 
the area is denoted as A, and set of sensors as C. We can now 
formally define the SET K-COVER problem: 

PROBLEM: SET K-COVER 
INSTANCE: Collection C of subsets of a set A, positive 

integer K. 
QUESTION: Does C contain K disjoint covers for A, i.e. 

covers C1, C2,..., Ck, where Ci ⊆ C such that every element of 
A belongs to at least one member of each of Ci? 

We have proved that the SET K-COVER is NP-complete 
problem using polynomial time transformation from the 
minimum cover problem [17]. For the sake of brevity the 
proof is omitted. 
B. Most Constrained – Minimally Constraining Covering 

Heuristic 
In this subsection we present a heuristic solution for the 

SET K-COVER problem, first at the intuitive level and then 
with all the main technical details. The theoretical analyses of 
the heuristic indicate that the worst runtime is O(N2), where 
N is the number of deployed sensor nodes. 

The basic idea of the heuristic is to minimize the coverage 
of sparsely covered areas within one cover. Such areas are 
identified using the notion of the critical element.  

DEFINITION: A Critical element is such element from A 
that is a member of the minimal number of the sets in C.  

A critical element determines an upper bound on K, the 
number of covers. During the execution of the heuristic, 
whenever a cover is selected, all members of that cover are 
removed from the C. Therefore, the coverage of the elements 
from A changes and a new critical element must be 
determined. If there is more than one candidate for the 
critical element, any of them can be selected. 

A critical element is determined at the beginning of each 
step of the heuristic. For each set from C that covers the 
current critical element, a value of the objective function is 
calculated. A value of the objective function for a set 
measures the likelihood that if the set is chosen into the 
current cover Ci, Ci will redundantly cover some of the 
sparsely covered parts of the area. A higher value of the 
objective function means that the likelihood is lower. 

Therefore, the sets with higher value of the objective function 
are selected into the current cover. The number of other sets 
from C that cover the elements from the set whose objective 
function is evaluated approximates that likelihood. 

The pseudocode of the heuristic is shown in Fig. 4. The 
solution is given as a set of covers Ci, (i=1, 2,…). One cover 
is selected from the collection C in each pass. All sets from C 
belonging to the chosen cover are removed from C after each 
pass (line 20). Remaining members of C represent a pool for 
the following pass. 

At the beginning of the pass i of the heuristic, the set of 
unmarked elements U contains all elements from A, and all 
current members of C are selected into V, the set of available 
sets (line 3). Members of V can be selected into the cover Ci.  

At each step within the pass i (lines 4-20), as long as there 
are unmarked elements in U, one member of V is chosen into 
the cover Ci. A critical element emin, which is the member of 
the smallest number of the available sets from V, is selected 
from U at line 5. For all sets V i from V that contain emin, 
values of the objective function f are calculated (lines 7-15). 
The objective function for a set V i is given as 

The first sum within the objective function for V i adds the 
value M for each uncovered element from A that is a member 
of V i. Also, for each element from V i, the number of other 
available sets covering that element is taken into account. The 
number of available sets that an uncovered element is a 
member of decreases the value of the objective function for 
V i. The purpose of such approach is to select a set that will 
cover a largest number of sparsely covered elements. 

The second sum subtracts the value N from the objective 
function for each element that is already covered, i.e. is not 
an element of the set U. The second part of the second sum 
measures how many stil l available sets are covering the 
elements that the set V i will redundantly cover if chosen into 
Ci. If some elements have to be covered by more than one 
element from Ci, it is better to redundantly cover elements 

for each sensor {  
  go through all points covered by that sensor {  
      if (the point was not previously covered) {  
          if (a field for previously uncovered points doesn't exist) 
             add new field that will cover previously uncovered points; 
          add the point to the field that covers previously uncovered points; 
      }  
      else if (the point already belongs to some of existing fields) {  
         if (no new field corresponding to old field that contains the point)  
               add new field for that old field; 
         add the point to the new field corresponding to the old field  
             that contains the point; 
      }  
  }  
  add all new fields to the list of the fields covered by the new sensor; 
  for all new fields {  
       add to the list of sensors covering that field all sensors  
            covering the old field corresponding to that new field; 
       add new sensor to the list of sensors covering that field;                 
  }  
}  

Fig. 3. The algorithm that organizes points into fields. 
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1) Given A, C, i = 1 
2) while (each element from A covered by a set from C) 
3)   Ci = ∅; U = A; V = C 
4)   while (U ≠ ∅) 
5)       find emin ∈ U such that emin is the member of minimal sets from V  
6)       max = - MAXINT 
7)       for each V i ∈ V such that emin ∈ V i 

8)           f(V i) = 0  
9)           for each ei ∈ V i  
10)              if (ei  ∈ U) 
11)              then f(V i) = f(V i) + M - K*(# of V j  ∈ V such that ei ∈ V j) 
12)              else f(V i) = f(V i) - N + L*(# of V j  ∈ C-Ci such that ei ∈ V j) 
13)           end for 
14)           if f(V i) > max then Vmax = V i; max = f(V i); 
15)           V = V – Vi 

16)       end for  
17)       Ci = Ci + Vmax 
18)       U = U – (∀e ∈ Vmax) 
19)   end while    
20)   C = C – Ci i = i + 1 
21) end while 

Fig. 4. The heuristic that determines the covers. 



 

that are covered by many other available sets in C. Such 
elements are unlikely to become critical elements in the 
following passes of the heuristic. 

The incentive of such objective function is to (1) favor sets 
that cover a high number of uncovered elements by adding 
the value M for each uncovered element, (2) favor sets that 
cover more sparsely covered elements by subtracting number 
of available sets for a particular element, where for sparsely 
covered elements a subtracted value will be low, (3) favor 
sets that do not cover the area redundantly by subtracting N 
for each already covered element, and (4) favor sets that 
redundantly cover the elements that do not belong to sparsely 
covered areas, by adding number of sets that can cover that 
element in the following covers.  

The set that contains the element emin and has a maximum 
value of the objective function is chosen into the cover Ci 
(line 20) after the evaluation of the objective function. All 
elements from the chosen set are deleted from the set of the 
unmarked elements U (line 21). All sets covering the critical 
element are marked as unavailable for that cover (line 18). 
Therefore, all sets containing any of the elements that were 
critical elements in previous steps of generating the current 
cover are unavailable in following steps during one pass of 
the heuristic. 

Let us prove now that the given heuristic generates a cover 
if at the beginning of a pass for each of the elements from A 
there is a set from V covering that element. A selected 
critical element at any step of the heuristics has k sets that 
cover that element, k>0. All other still uncovered elements of 
A are covered by k or more sets. After a set is chosen, all k 
sets containing the critical element are marked as unavailable. 
If there is another element that was covered by the same 
number of sets as the critical element, that another element 
must have had at least one set that covers that element, but 
not the critical element. All other elements covered by more 
than k sets must have at least one set available after k sets are 
marked unavailable. The one that have the minimal number 
of available sets and is not covered by chosen set is chosen as 
the next critical element. Therefore, after each step for each 
element is true that a) that element is already covered, or b) 
there is an available set in C that covers that element. 
Consequently, if at the beginning of the pass for each element 
there is a set that covers that element, the heuristic can create 
a cover Ci. 

When the set of the unmarked elements U is empty, one 
pass of the heuristic is finished, and the cover Ci covers all 
elements from A. All members of the cover Ci are deleted 
from C (line 23). The heuristic exits if at the beginning of a 
pass there is an element from A that is not covered by any of 
the members of C. 

V. EXPERIMENTAL RESULTS  
The performance of the heuristic in solving the SET 

K-COVER problem is compared to the performance of an 
implementation of simulated annealing [18]. In this section 
we describe that implementation, the simulation environment, 
and the simulation results.  
A. Simulated Annealing - Parameters  

Since we are not aware of any other algorithm or a 
heuristic that solves the SET K-COVER problem, we have 
developed a simulated annealing based heuristic to get an 
approximate measurement of efficiency of the most 

constrained – minimally constraining heuristic. An execution 
j of the simulated annealing heuristic allocates the sets from 
C into nj subcollections where nj is constant for the jth 
execution. The number of subcollections that completely 
cover the set A measures the quali ty of the solution of the 
simulated annealing based heuristic. 

An initial state of the system is generated by a random 
distribution of the sets from C into nj subcollections C1, C2, ... 
Cnj. One move of simulated annealing is implemented by 
choosing randomly one of the nj subcollections and by 
choosing a set from that subcollection. The chosen set is 
moved to another randomly selected subcollection. The cost 
function of a state is given as: 
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where the subcollections i=1,..,kj are those that cover all 
elements from A. For the subcollections i=kj+1,..,nj that do 
not cover all elements from A, the number of uncovered 
elements from A mi is calculated. If a new solution has a 
higher value of the cost function than the current solution, the 
new solution is accepted. If the value of the cost function for 
the new solution is lower than the value for the current 
solution, the new solution is accepted as a current solution 
with a probabili ty that decreases with the temperature of the 
system. According to the simulated annealing strategy, the 
temperature of the system is highest at the beginning and then 
gradually decreases. When the system cools down, the final 
solution is accepted as the best solution for that execution of 
simulated annealing. The motivation for such cost function is 
that those subcollections that do not cover the set A should 
add to the value of the cost function depending on the number 
of elements of A that are not covered by that subcollection. 

After an execution of the simulated annealing algorithm, 
the number of subcollections nj+1 that is attempted in the next 
execution depends on: 

• kj, the number of the subcollections from 
the jth execution that cover the set A,  

• kmax, the maximum number of the 
subcollections achieved in all previous 
executions, 

• upperBound, the number of sets from the 
collection C containing the element 
covered by minimum number of sets, emin, 

in the following way: 
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If the number of the subcollections covering A is equal to 
nj, the next execution attempts to achieve higher number of 
the subcollections that cover A, while in the case where kj is 
smaller than nj, the attempted number of subcollections for 
the next execution of simulated annealing is decreased, but 
never below an already achieved best result kmax. The 
simulation stops if after limit number of attempts kmax, the 
achieved number of subcollections covering A, does not 
change. 
B. Simulation Environment and Results 

The simulations were performed on Ultra5 Sun 
Workstation running SunOS 5.7 with 128M of RAM memory 
and 256M of swap space and UltraSparc-II i processor on 



 

333MHhz. The simulation code is written in Java. The size of 
the simulator code is around 1500 lines.  

Table I shows the results of the first set of simulations. The 
monitored area is a 500x500 units square. The sensor nodes 
coordinates are randomly generated using the pseudouniform 
distribution. The column SA denotes the average number of 
covers that simulated annealing achieves, while the column H 
denotes the average number of covers that the heuristic 
described in this paper achieves. The column |C| shows the 
number of sensors, while |A| shows the number of fields. 

The most constrained – minimally constraining heuristic 
achieves significantly better results than the implementation 
of the simulated annealing, although the simulated annealing 
is running for a significantly longer time. Another 
observation is that the heuristic approaches the upper bound 
in all cases. The explanation for such results is that the fields 
in the central part of the monitored area are covered by 
significantly more sensors than the fields near the edge of the 
area. The heuristic easily generates a maximum number of 
covers having an abundance of the sensors covering non-
critical fields to combine with the sensors covering critical 
fields. However, given distribution results in a low number of 
covers and a high number of unused sensors. 

For the second set of simulations, whose results are shown 
in Table II , the conditions are changed in order to increase the 
number of covers. An additional space 70 units wide is added 
around the edges of the square, so the sensors are distributed 
over a 570x570 units area. However, only the 500x500 area is 
taken into account when the covers are selected.  Another 
improvement implemented in the second set of simulations is 
that sensors are distributed in several stages. The density of 
the sensor nodes in different parts of the area is measured 
after a certain number of nodes are deployed. Additional 
sensor nodes are deployed in areas where the density is below 
a certain limit. From the comparison of the Tables I and II 
can be seen that for the same number of sensors, the number 
of sets that cover whole area increases when the given 
improvements in the deployment of the nodes are utilized. 

VI. CONCLUSION 
Wireless sensor networks enable efficient monitoring of 

physical environments. The main operating constraint is 
available energy. In order to maximize efficient use of 
batteries used by randomly placed sensors, we propose an 
organization of a sensor network, where the nodes are divided 
in mutually exclusive sets. One such set is active at any time. 

 We developed the most-constrained least-constraining 
heuristic and demonstrated her effectiveness on variety of 
simulated scenarios. From the simulation results can be 
concluded that the initial distribution of the sensor nodes in 
the monitored area determines the possible utilization of the 

available sensor nodes. Our future work will explore the 
possible strategies of sensor networks deployment that will 
ensure the best coverage of the monitored area. 
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Number of 
covers 

Runtime  
|C| 

 
|A| 

 
Radius 

SA H SA H 

 
upper 
bound 

100 5403 200 6.8 9.7 5h:30 1m:30 9.7 
120 8135 200 7 11.5 11h:15 5m 11.5 
150 11454 200 10.5 18.5 14h:08 13m:30 18.5 
180 13646 150 2.9 6.6 23h 7m 6.6 
300 13510 80 2.6 4.3 27h:14 3m:36 4.3 
400 24932 80 3.2 4.5 48h 10m 4.7 

Number of 
covers 

Runtime  
|C| 

 
|A| 

 
Radius 

SA H SA H 

 
upper 
bound 

100 3888 200 8.2 15.1 1h:08 1m:09 15.1 
120 5916 200 8 16 8h:12 12m 16 
150 7965 200 10.7 19.2 8h:42 13m:50 19.2 
180 8106 150 8 15 12h:30 8m:34 16 
300 11470 80 2.5 5.5 13h:45 5m 6.2 
400 18230 80 4.2 8.1 52h 9m 9.1 

TABLE I 
 RESULTS OF SIMULATIONS FOR 500x500 AREA 

 

TABLE II 
RESULTS OF SIMULATIONS FOR EXTENDED DEPLOYMENT AREA 


