

Abstract -- Wireless sensor networks have emerged
recently as an effective way of monitoring remote or
inhospitable physical environments. One of the major challenges
in devising such networks lies in the constrained energy and
computational resources available to sensor nodes. These
constraints must be taken into account at all levels of system
hierarchy.

The deployment of sensor nodes is the first step in
establishing a sensor network. Since sensor networks contain a
large number of sensor nodes, the nodes must be deployed in
clusters, where the location of each particular node cannot be
fully guaranteed a priori. Therefore, the number of nodes that
must be deployed in order to completely cover the whole
monitored area is often higher than if a deterministic procedure
were used. In networks with stochastically placed nodes,
activating only the necessary number of sensor nodes at any
particular moment can save energy. We introduce a heuristic
that selects mutually exclusive sets of sensor nodes, where the
members of each of those sets together completely cover the
monitored area. The intervals of activity are the same for all
sets, and only one of the sets is active at any time. The
experimental results demonstrate that by using only a subset of
sensor nodes at each moment, we achieve a significant energy
savings while fully preserving coverage.

I. INTRODUCTION
Sensor networks are wireless networks comprised of a

large number of miniscule devices equipped with one or more
sensors, some processing circuits, and a wireless transceiver.
Such devices are called sensor nodes. The dimensions of a
sensor node are small enough to allow easy deployment of a
large number of nodes into remote and inhospitable areas.
Once deployed, sensor nodes organize a network, so that they
can combine their partial observations of the environment. By
combining those partial observations, a network offers to a
user a global view of a monitored area.

The source of energy for a node is most often an attached
battery cell . Since the size of a cell i s limited, the amount of
available energy is also limited. Therefore, sensor network
architectures and applications, as well as deployment
strategies, must be developed with low energy consumption
as one of the important requirements.

We study the problem of the placement of sensor nodes
into a monitored area and their organization so that the full
coverage is achieved with minimal energy consumption.
Specifically, we have developed a heuristic that organizes the
available sensor nodes into mutually exclusive sets where the
members of each of those sets completely cover the
monitored area. Only one such set is active and consumes
power at any moment. After a specified interval another set is
activated, while the first one is deactivated. In one round all
sets are used, and then the whole process repeats until the
sensors are out of power. The li fetime of the whole system
directly corresponds to the number of allocated sets;
therefore, the goal of the algorithm is to maximize the
number of the sets.

The first phase of the algorithm determines how many
different sensor nodes cover the different parts of the
monitored area. The second phase allocates sensor nodes into
mutually independent sets. For simulation purposes, we
assume that the sensing area of a sensor is a circle with the

radius of the circle equal to the sensing range of a sensor.
However, the heuristic does not require a circular sensing
range. The heuristic is based on the assumption that for each
sensor the sensing range of any shape can be either
determined before the deployment as a static approximation
of the sensor’s capabiliti es or as a function of a specific
location and surrounding environment after the deployment
of a sensor node. Furthermore, the sensing range may depend
on the observed target, e.g. a seismic sensor can detect a tank
at a larger distance than it can detect a soldier on foot.

II . RELATED WORK
Research in sensor networks is motivated by the capabili ty

of sensor networks to closely connect the physical world and
the existing Internet infrastructure, as described in [1][2][3].
To create such networks, the low power hardware
components and customized system architectures are
necessary. The issue of low power consumption in sensor
networks is denoted as one of the most important
requirements for sensor networks in [4][5][6]. Low power
hardware components and general sensor network
architecture are developed in WINS project [6][7] at UCLA.
Low power sensing and processing are achieved by taking
into account specifics of sensor networks, namely higher
tolerance to latency and low sampling rates. Besides sensor
node platforms based on radio communication, the
“SmartDust” project [4] uses motes, small size devices with
optical communication capabiliti es. New low power network
protocols and architectures customized for sensor networks
are proposed in [5][8][9].

In the last decade, techniques for low power design and
compilation have been attracting a great deal of attention.
Numerous techniques for reducing power consumption using
either architecture and integrated circuit design approaches or
compilation and operating system schemes have been
proposed [10]. The most relevant result to our approach is
that batteries have approximately twice as long life time, if
they are discharged in short bursts with significant off time
than in the continuous mode of operation [11]. Therefore, a
mode of operation of a network where sensor nodes
frequently oscill ate between an active and an inactive state
extends a battery lifetime.

The problem of efficient coverage of an indoor area with
base stations for wireless networks resembles the problem of
covering an area with sensor nodes. Optimal positions of base
stations are acquired by running subsequent simulations
beginning with an initial placement of stations and then using
genetic algorithms [12] or simulated annealing [13] to
generate new sets of positions until one solution is accepted.
However, there are significant differences that do not allow
straightforward implementation of the given procedure in
sensor networks. The number of sensor nodes is significantly
higher than the number of the stations. Also, the sensor nodes
are chosen from the set of already existing locations, while in
mentioned works the locations can be chosen freely.

Since we are modeling an area where a sensor detects
objects as a circle, the problem can be seen as an instance of
the circle covering problem discussed in [14][15]. The

Sasa Slij epcevic, Miodrag Potkonjak
Power Efficient Organization of Wireless Sensor Networks

Los Angeles, CA 90095-1596
Computer Science Department, University of California, Los Angeles

solution for that problem requires solving complex equations
[14] and it can be done in a reasonable time for only a small
number of circles [15].

III. MOTIVATION

A. Controlled vs. Random Node Placement
There are two main reasons why a deterministic placement

of sensor nodes is impractical:
• Sensor networks are often deployed in

remote or inhospitable areas, which prevent
individual sensor node deployment. Also,
the current state-of-the-art sensor nodes are
not capable of dynamic adjustment of their
positions.

• The number of sensor nodes in a network is
large, so the deterministic placement is
associated with increased cost and latency
in the deployment of the network.

Therefore, the preferred method of sensor placement is
bulk dispersion of sensor nodes from an aircraft [9]. Still, it is
instructive to consider the deterministic case when we can
control placement of nodes since it provides the lowest bound
on the required number of nodes needed to cover the area.

Fig. 1. shows the optimal regular placement of nodes, so
that the whole area is covered with the minimal number of
nodes. The minimal number of sensor nodes is given by the
equation [16]:

27

22 ππ =∗
AREAP

rN ,

where PAREA is the size of the monitored area, N is the
minimal number of nodes needed to cover the area, and r is
the sensing range of a sensor in a sensor node. It is assumed
that the sensing range of the nodes is significantly smaller
than the dimensions of the monitored area.
B. Motivational Example

Here, we further clarify the problem discussed in this paper
using the following example. Let us assume that the
monitored area is divided into five fields. (A detailed
description of a field is given in the following section.) Let F
be a set of those parts: { F1, F2, F3, F4, F5} . In a general case,
each sensor covers one or more of these fields and each field
is observed by at least one sensor node. In our example, we
have six nodes, denoted by Si, 1≤i≤6. The sensors cover the
following fields: S1={ F1, F2, F3, F4} , S2={ F1, F2, F5} , S3={ F2,
F3, F4, F5} , S4={ F2, F3, F5} , S5={ F1, F3, F5} , and S6={ F3, F4,
F5} .

We allocate sensor nodes into covers, mutuall y exclusive
sets of sensor nodes, where each cover Ci, i=1…N, completely
covers the area A. Our goal is to maximize the cardinali ty of
the set of covers C = { C1,…,CN} . For this simple example,
the optimal solution is found using the exhaustive search:

C1 = { S1, S4} , C2 = { S3, S5} , C3 = { S2, S6} .
The heuristic we developed to solve the problem is based

on the maximally constrained – minimally constraining
paradigm. We first try to cover fields that are covered by a
small number of sensors. In the example, the fields that are
covered by the minimal number of sensors are F1 and F4.
Only three nodes cover each of those fields. Later we try to
avoid including into the same cover the sensors that cover
those sparsely covered fields. The detailed description of the
heuristic is given in the following section.

IV. COVERAGE OPTIMIZATION
In this section we present the SET K-COVER problem,

which is a generalization of the coverage problem described
in Section III . In the first subsection, we introduce the
preliminaries, and provide relevant definitions. In the second
subsection, we present the heuristic approach for solving the
SET K-COVER problem.
A. Problem Formulation

The first step in solving the problem is to identify the parts
of the area covered by different sensor nodes. A
straightforward approach to the question would be to treat
each point in the area (assuming some finite resolution) as a
distinctive part of the area. In that case a sensor node would
be characterized by a list of all points it covers. In order to
reduce dimensionali ty of the problem, we introduce notion of
the field, defined in the following way:

DEFINITION: A field is a set of points. Two points belong
to the same field iff they are covered by the same set of
sensors.

An example how points are organized in fields is given in
Fig. 2. The part of the algorithm that determines fields is
shown in Fig. 3. The algorithm uses the locations of the
nodes as the input, and allocates the points in the area into
fields. Whenever a new sensor is added to the set of sensors,
the status of all points covered by that sensor is examined.
The new sensor may cover some points that were not
previously covered by any sensor, as well as points already
belonging to some established fields. All points previously
not covered belong to one new field. A part of an existing
field or a whole existing field covered by the new sensor
becomes a new field, whose covering set consists of the
covering set of sensors for the original old field with addition
of the new sensor.

1
2 3

4
5

6
7

8

1

2 3
S

1 S
2

r

Fig. 1. Sensor nodes with a sensing range r placed in a regular structure that
ensures the coverage of the whole area with a minimal number of nodes.
The lines connecting three nodes whose sensing ranges intersect form an
equilateral triangle. The side of the triangle is r 3 .

Fig. 2. After the locations of four sensor nodes are known, the area is
divided in eight fields, where each field contains points covered by a
same set of sensors.

After the fields are established, for each sensor a list of all
fields covered by that sensor is created. The set of all fields in
the area is denoted as A, and set of sensors as C. We can now
formally define the SET K-COVER problem:

PROBLEM: SET K-COVER
INSTANCE: Collection C of subsets of a set A, positive

integer K.
QUESTION: Does C contain K disjoint covers for A, i.e.

covers C1, C2,..., Ck, where Ci ⊆ C such that every element of
A belongs to at least one member of each of Ci?

We have proved that the SET K-COVER is NP-complete
problem using polynomial time transformation from the
minimum cover problem [17]. For the sake of brevity the
proof is omitted.
B. Most Constrained – Minimally Constraining Covering

Heuristic
In this subsection we present a heuristic solution for the

SET K-COVER problem, first at the intuitive level and then
with all the main technical details. The theoretical analyses of
the heuristic indicate that the worst runtime is O(N2), where
N is the number of deployed sensor nodes.

The basic idea of the heuristic is to minimize the coverage
of sparsely covered areas within one cover. Such areas are
identified using the notion of the critical element.

DEFINITION: A Critical element is such element from A
that is a member of the minimal number of the sets in C.

A critical element determines an upper bound on K, the
number of covers. During the execution of the heuristic,
whenever a cover is selected, all members of that cover are
removed from the C. Therefore, the coverage of the elements
from A changes and a new critical element must be
determined. If there is more than one candidate for the
critical element, any of them can be selected.

A critical element is determined at the beginning of each
step of the heuristic. For each set from C that covers the
current critical element, a value of the objective function is
calculated. A value of the objective function for a set
measures the likelihood that if the set is chosen into the
current cover Ci, Ci will redundantly cover some of the
sparsely covered parts of the area. A higher value of the
objective function means that the likelihood is lower.

Therefore, the sets with higher value of the objective function
are selected into the current cover. The number of other sets
from C that cover the elements from the set whose objective
function is evaluated approximates that likelihood.

The pseudocode of the heuristic is shown in Fig. 4. The
solution is given as a set of covers Ci, (i=1, 2,…). One cover
is selected from the collection C in each pass. All sets from C
belonging to the chosen cover are removed from C after each
pass (line 20). Remaining members of C represent a pool for
the following pass.

At the beginning of the pass i of the heuristic, the set of
unmarked elements U contains all elements from A, and all
current members of C are selected into V, the set of available
sets (line 3). Members of V can be selected into the cover Ci.

At each step within the pass i (lines 4-20), as long as there
are unmarked elements in U, one member of V is chosen into
the cover Ci. A critical element emin, which is the member of
the smallest number of the available sets from V, is selected
from U at line 5. For all sets V i from V that contain emin,
values of the objective function f are calculated (lines 7-15).
The objective function for a set V i is given as

The first sum within the objective function for V i adds the
value M for each uncovered element from A that is a member
of V i. Also, for each element from V i, the number of other
available sets covering that element is taken into account. The
number of available sets that an uncovered element is a
member of decreases the value of the objective function for
V i. The purpose of such approach is to select a set that will
cover a largest number of sparsely covered elements.

The second sum subtracts the value N from the objective
function for each element that is already covered, i.e. is not
an element of the set U. The second part of the second sum
measures how many stil l available sets are covering the
elements that the set V i will redundantly cover if chosen into
Ci. If some elements have to be covered by more than one
element from Ci, it is better to redundantly cover elements

for each sensor {
 go through all points covered by that sensor {
 if (the point was not previously covered) {
 if (a field for previously uncovered points doesn't exist)
 add new field that will cover previously uncovered points;
 add the point to the field that covers previously uncovered points;
 }
 else if (the point already belongs to some of existing fields) {
 if (no new field corresponding to old field that contains the point)
 add new field for that old field;
 add the point to the new field corresponding to the old field
 that contains the point;
 }
 }
 add all new fields to the list of the fields covered by the new sensor;
 for all new fields {
 add to the list of sensors covering that field all sensors
 covering the old field corresponding to that new field;
 add new sensor to the list of sensors covering that field;
 }
}

Fig. 3. The algorithm that organizes points into fields.

∑

∑

≠∉
∈∈

∈−∈−

−

≠∈
∈∈

∈∈−=

min

min

,
,,

)}| of#(*{

}

,
,,

)| of#(*{)(

eeUe
VeAe

VeCCVLN

eeUe
VeAe

VeVVKMVf

i

jij

i

jji

1) Given A, C, i = 1
2) while (each element from A covered by a set from C)
3) Ci = ∅; U = A; V = C
4) while (U ≠ ∅)
5) find emin ∈ U such that emin is the member of minimal sets from V
6) max = - MAXINT
7) for each V i ∈ V such that emin ∈ V i

8) f(V i) = 0
9) for each ei ∈ V i
10) if (ei ∈ U)
11) then f(V i) = f(V i) + M - K*(# of V j ∈ V such that ei ∈ V j)
12) else f(V i) = f(V i) - N + L*(# of V j ∈ C-Ci such that ei ∈ V j)
13) end for
14) if f(V i) > max then Vmax = V i; max = f(V i);
15) V = V – Vi

16) end for
17) Ci = Ci + Vmax
18) U = U – (∀e ∈ Vmax)
19) end while
20) C = C – Ci i = i + 1
21) end while

Fig. 4. The heuristic that determines the covers.

that are covered by many other available sets in C. Such
elements are unlikely to become critical elements in the
following passes of the heuristic.

The incentive of such objective function is to (1) favor sets
that cover a high number of uncovered elements by adding
the value M for each uncovered element, (2) favor sets that
cover more sparsely covered elements by subtracting number
of available sets for a particular element, where for sparsely
covered elements a subtracted value will be low, (3) favor
sets that do not cover the area redundantly by subtracting N
for each already covered element, and (4) favor sets that
redundantly cover the elements that do not belong to sparsely
covered areas, by adding number of sets that can cover that
element in the following covers.

The set that contains the element emin and has a maximum
value of the objective function is chosen into the cover Ci
(line 20) after the evaluation of the objective function. All
elements from the chosen set are deleted from the set of the
unmarked elements U (line 21). All sets covering the critical
element are marked as unavailable for that cover (line 18).
Therefore, all sets containing any of the elements that were
critical elements in previous steps of generating the current
cover are unavailable in following steps during one pass of
the heuristic.

Let us prove now that the given heuristic generates a cover
if at the beginning of a pass for each of the elements from A
there is a set from V covering that element. A selected
critical element at any step of the heuristics has k sets that
cover that element, k>0. All other still uncovered elements of
A are covered by k or more sets. After a set is chosen, all k
sets containing the critical element are marked as unavailable.
If there is another element that was covered by the same
number of sets as the critical element, that another element
must have had at least one set that covers that element, but
not the critical element. All other elements covered by more
than k sets must have at least one set available after k sets are
marked unavailable. The one that have the minimal number
of available sets and is not covered by chosen set is chosen as
the next critical element. Therefore, after each step for each
element is true that a) that element is already covered, or b)
there is an available set in C that covers that element.
Consequently, if at the beginning of the pass for each element
there is a set that covers that element, the heuristic can create
a cover Ci.

When the set of the unmarked elements U is empty, one
pass of the heuristic is finished, and the cover Ci covers all
elements from A. All members of the cover Ci are deleted
from C (line 23). The heuristic exits if at the beginning of a
pass there is an element from A that is not covered by any of
the members of C.

V. EXPERIMENTAL RESULTS
The performance of the heuristic in solving the SET

K-COVER problem is compared to the performance of an
implementation of simulated annealing [18]. In this section
we describe that implementation, the simulation environment,
and the simulation results.
A. Simulated Annealing - Parameters

Since we are not aware of any other algorithm or a
heuristic that solves the SET K-COVER problem, we have
developed a simulated annealing based heuristic to get an
approximate measurement of efficiency of the most

constrained – minimally constraining heuristic. An execution
j of the simulated annealing heuristic allocates the sets from
C into nj subcollections where nj is constant for the jth
execution. The number of subcollections that completely
cover the set A measures the quali ty of the solution of the
simulated annealing based heuristic.

An initial state of the system is generated by a random
distribution of the sets from C into nj subcollections C1, C2, ...
Cnj. One move of simulated annealing is implemented by
choosing randomly one of the nj subcollections and by
choosing a set from that subcollection. The chosen set is
moved to another randomly selected subcollection. The cost
function of a state is given as:

∑∑
+==

⋅+⋅=
nj

ki
i

kj

i
mbaCF

11

11

where the subcollections i=1,..,kj are those that cover all
elements from A. For the subcollections i=kj+1,..,nj that do
not cover all elements from A, the number of uncovered
elements from A mi is calculated. If a new solution has a
higher value of the cost function than the current solution, the
new solution is accepted. If the value of the cost function for
the new solution is lower than the value for the current
solution, the new solution is accepted as a current solution
with a probabili ty that decreases with the temperature of the
system. According to the simulated annealing strategy, the
temperature of the system is highest at the beginning and then
gradually decreases. When the system cools down, the final
solution is accepted as the best solution for that execution of
simulated annealing. The motivation for such cost function is
that those subcollections that do not cover the set A should
add to the value of the cost function depending on the number
of elements of A that are not covered by that subcollection.

After an execution of the simulated annealing algorithm,
the number of subcollections nj+1 that is attempted in the next
execution depends on:

• kj, the number of the subcollections from
the jth execution that cover the set A,

• kmax, the maximum number of the
subcollections achieved in all previous
executions,

• upperBound, the number of sets from the
collection C containing the element
covered by minimum number of sets, emin,

in the following way:
)2,min(1j jjj nupperBoundnnk ⋅=⇒= +

)1,
2

max(max 1j ++=⇒< + k
nk

nnk
jj

jj

If the number of the subcollections covering A is equal to
nj, the next execution attempts to achieve higher number of
the subcollections that cover A, while in the case where kj is
smaller than nj, the attempted number of subcollections for
the next execution of simulated annealing is decreased, but
never below an already achieved best result kmax. The
simulation stops if after limit number of attempts kmax, the
achieved number of subcollections covering A, does not
change.
B. Simulation Environment and Results

The simulations were performed on Ultra5 Sun
Workstation running SunOS 5.7 with 128M of RAM memory
and 256M of swap space and UltraSparc-II i processor on

333MHhz. The simulation code is written in Java. The size of
the simulator code is around 1500 lines.

Table I shows the results of the first set of simulations. The
monitored area is a 500x500 units square. The sensor nodes
coordinates are randomly generated using the pseudouniform
distribution. The column SA denotes the average number of
covers that simulated annealing achieves, while the column H
denotes the average number of covers that the heuristic
described in this paper achieves. The column |C| shows the
number of sensors, while |A| shows the number of fields.

The most constrained – minimally constraining heuristic
achieves significantly better results than the implementation
of the simulated annealing, although the simulated annealing
is running for a significantly longer time. Another
observation is that the heuristic approaches the upper bound
in all cases. The explanation for such results is that the fields
in the central part of the monitored area are covered by
significantly more sensors than the fields near the edge of the
area. The heuristic easily generates a maximum number of
covers having an abundance of the sensors covering non-
critical fields to combine with the sensors covering critical
fields. However, given distribution results in a low number of
covers and a high number of unused sensors.

For the second set of simulations, whose results are shown
in Table II , the conditions are changed in order to increase the
number of covers. An additional space 70 units wide is added
around the edges of the square, so the sensors are distributed
over a 570x570 units area. However, only the 500x500 area is
taken into account when the covers are selected. Another
improvement implemented in the second set of simulations is
that sensors are distributed in several stages. The density of
the sensor nodes in different parts of the area is measured
after a certain number of nodes are deployed. Additional
sensor nodes are deployed in areas where the density is below
a certain limit. From the comparison of the Tables I and II
can be seen that for the same number of sensors, the number
of sets that cover whole area increases when the given
improvements in the deployment of the nodes are utilized.

VI. CONCLUSION
Wireless sensor networks enable efficient monitoring of

physical environments. The main operating constraint is
available energy. In order to maximize efficient use of
batteries used by randomly placed sensors, we propose an
organization of a sensor network, where the nodes are divided
in mutually exclusive sets. One such set is active at any time.

 We developed the most-constrained least-constraining
heuristic and demonstrated her effectiveness on variety of
simulated scenarios. From the simulation results can be
concluded that the initial distribution of the sensor nodes in
the monitored area determines the possible utilization of the

available sensor nodes. Our future work will explore the
possible strategies of sensor networks deployment that will
ensure the best coverage of the monitored area.

REFERENCES
[1] D. Estrin, R. Govindan, J. Heidemann, “Embedding the Internet:

Introduction,” Communications of the ACM, vol.43, no.5, pp.38-41,
May 2000.

[2] D. Tennenhouse, “Embedding the Internet: Proactive computing,”
Communications of the ACM, vol.43, no.5, pp.43-50, May 2000.

[3] G.J. Pottie, W.J. Kaiser, “Embedding the Internet: Wireless integrated
network sensors,” Communications of the ACM, vol.43, no.5,
pp.51-58, May 2000.

[4] J. M. Kahn, R. H. Katz, K. S. J. Pister, “Next century challenges:
Mobile networking for ‘Smart Dust’ ,” In Proceedings of International
Conference on Mobile Computing and Networking (MobiCom 99),
Seattle, WA, USA, Aug 1999.

[5] W. Rabiner Heinzelman, A. Chandrakasan, H. Balakrishnan,
“Energy-eff icient communication protocol for wireless microsensor
networks,” Proceedings of the 33rd International Conference on System
Sciences (HICSS ' 00), January 2000.

[6] G. Asada, M. Dong, T.S. Lin, F. Newberg, G. Pottie, W.J. Kaiser, H.O.
Marcy, “Wireless integrated network sensors: Low power systems on a
chip,” Proceedings of the 24th IEEE European Solid State Circuits
Conference, 1998.

[7] T.-H. Lin, H. Sanchez, H.O. Marcy, W.J. Kaiser, “Wireless integrated
network sensors for tactical information systems,” Proceedings of the
1998 Government Microcircuit Applications Conference.

[8] J. Elson, D. Estrin, “An address-free architecture for dynamic sensor
networks,” Technical Report 00-724, CS Dept, USC, January 2000.

[9] D. Estrin, R. Govindan, J. Heidemann, S. Kumar, “Next century
challenges: Scalable coordination in sensor networks,” In Proceedings
of International Conference on Mobile Computing and Networks
(MobiCom 99), Seattle, WA, USA, Aug 1999.

[10] “Low power design methodologies,” edited by Jan M. Rabaey and
Massoud Pedram, Boston, Kluwer Academic Publishers, 1996.

[11] L. Benini, G. Castell i, A. Macii, E. Macii , et al., “A discrete-time
battery model for high-level power estimation,” Design, Automation
and Test in Europe Conference, pp.35-39, 2000.

[12] M. Adickes, R. Billo, B. Norman, S. Banerjee, B. Nnaji , J. Rajgopal,
“Optimization of indoor wireless communication network layouts,”
Technical Report No. TR 99-5, Department of Industrial Engineering,
University of Pittsburgh.

[13] D. Stamatelos, A. Ephremides, “Spectral eff iciency and optimal base
placement for indoor wireless networks,” IEEE Journal on Selected
Areas in Communications, pp. 651-661, May 1996.

[14] J. B. M. Melissen, P. C. Schuur, “ Improved coverings of a square with
six and eight equal circles,” Electronic Journal of Combinatorics, vol.3,
no.1, 1996.

[15] K. J. Nurmela, P. R. J. Östergård, “Covering a square with up to 30
equal circles,” Research Report A62, Laboratory for Theoretical
Computer Science, Helsinki University of Technology, 2000.

[16] R. Will iams, “The geometrical foundation of natural structure: A
source book of design,” Dover Pub. Inc., New York, pp. 51-52, 1979.

[17] M. R. Garey, D. S. Johnson, “Computers and intractability: A guide to
the theory of NP-Completeness,” Freeman, New York, 1979.

[18] S. Kirkpatrick, C. Gelatt, M. D. Vecchi, “Optimisation by simulated
annealing,” Science, Vol. 220, No. 4598, pp. 671-680, May 1983.

Number of
covers

Runtime
|C|

|A|

Radius

SA H SA H

upper
bound

100 5403 200 6.8 9.7 5h:30 1m:30 9.7
120 8135 200 7 11.5 11h:15 5m 11.5
150 11454 200 10.5 18.5 14h:08 13m:30 18.5
180 13646 150 2.9 6.6 23h 7m 6.6
300 13510 80 2.6 4.3 27h:14 3m:36 4.3
400 24932 80 3.2 4.5 48h 10m 4.7

Number of
covers

Runtime
|C|

|A|

Radius

SA H SA H

upper
bound

100 3888 200 8.2 15.1 1h:08 1m:09 15.1
120 5916 200 8 16 8h:12 12m 16
150 7965 200 10.7 19.2 8h:42 13m:50 19.2
180 8106 150 8 15 12h:30 8m:34 16
300 11470 80 2.5 5.5 13h:45 5m 6.2
400 18230 80 4.2 8.1 52h 9m 9.1

TABLE I
 RESULTS OF SIMULATIONS FOR 500x500 AREA

TABLE II
RESULTS OF SIMULATIONS FOR EXTENDED DEPLOYMENT AREA

