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Abstract -- Wireless sensor networks have emerged
recently as an effective way of monitoring remote or
inhospitable physical environments. One of the major challenges
in devising such networks lies in the constrained energy and
computational resources available to sensor nodes. These
constraints must be taken into account at all levels of system
hierarchy.

The deployment of sensor nodes is the first step in
establishing a sensor network. Since sensor networks contain a
large number of sensor nodes, the nodes must be deployed in
clusters, where the location of each particular node cannot be
fully guaranteed a priori. Therefore, the number of nodes that
must be deployed in order to completely cover the whole
monitored area is often higher than if a deterministic procedure
were used. In networks with stochastically placed nodes,
activating only the necessary number of sensor nodes at any
particular moment can save energy. We introduce a heuristic
that selects mutually exclusive sets of sensor nodes, where the
members of each of those sets together completely cover the
monitored area. The intervals of activity are the same for all
sets, and only one of the sets is active at any time. The
experimental results demonstrate that by using only a subset of
sensor nodes at each moment, we achieve a significant energy
savingswhile fully preserving coverage.

I. INTRODUCTION

Sensor networks are wireless networks comprised of a
large number of miniscule devices equipped with one or more
Sensors, some processng circuits, and a wireless transceiver.
Such devices are cdled sensor nodes. The dimensions of a
sensor node ae small enough to allow easy deployment of a
large number of nodes into remote and inhospitable aeas.
Once deployed, sensor nodes organize anetwork, so that they
can combine their partial observations of the environment. By
combining those partial observations, a network offers to a
user aglobal view of amonitored area

The source of energy for a node is most often an attached
battery cdl. Sincethe size of a cdl is limited, the amount of
available energy is aso limited. Therefore, sensor network
architedures and applications, as well as deployment
strategies, must be developed with low energy consumption
as one of the important requirements.

We study the problem of the placement of sensor nodes
into a monitored area and their organization so that the full
coverage is achieved with minimal energy consumption.
Spedficdly, we have developed a heuristic that organizes the
avail able sensor nodes into mutually exclusive sets where the
members of eadr o those sets completely cover the
monitored area Only one such set is adive axd consumes
power at any moment. After a spedfied interval another set is
adivated, whil e the first one is deadivated. In one round all
sets are used, and then the whole process repeds until the
sensors are out of power. The lifetime of the whole system
diredly corresponds to the number of allocaed sets;
therefore, the goal of the dgorithm is to maximize the
number of the sets.

The first phase of the dgorithm determines how many
different sensor nodes cover the different parts of the
monitored area The seand phase dlocaes snsor nodes into
mutually independent sets. For simulation purposes, we
assume that the sensing area of a sensor is a drcle with the

radius of the circle equal to the sensing range of a sensor.
However, the heuristic does not require a ércular sensing
range. The heuristic is based on the assumption that for eat
sensor the sensing range of any shape can be ather
determined before the deployment as a static goproximation
of the sensor’'s cagpabilities or as a function of a spedfic
locaion and surrounding environment after the deployment
of a sensor node. Furthermore, the sensing range may depend
on the observed target, e.g. a seismic sensor can deted a tank
at alarger distancethan it can deted a soldier on foat.

Il. RELATED WORK

Reseach in sensor networks is motivated by the capabili ty
of sensor networks to closely conned the physicd world and
the existing Internet infrastructure, as described in [1][2][3].
To creade such nretworks, the low power hardware
components and customized system architedures are
necessary. The issue of low power consumption in sensor
networks is denoted as one of the most important
requirements for sensor networks in [4][5][6]. Low power
hardware @mponents and general sensor network
architedure ae developed in WINS projed [6][7] at UCLA.
Low power sensing and processng are adieved by taking
into acount spedfics of sensor networks, namely higher
tolerance to latency and low sampling rates. Besides sensor
node platforms based on radio communicdion, the
“SmartDust” projed [4] uses motes, small size devices with
opticd communication cgpabiliti es. New low power network
protocols and architedures customized for sensor networks
are proposed in [5][8][9].

In the last decale, techniques for low power design and
compilation have been attrading a grea ded of attention.
Numerous techniques for reducing power consumption using
either architedure and integrated circuit design approaches or
compilation and operating system schemes have been
proposed [10]. The most relevant result to our approac is
that batteries have gproximately twice & long life time, if
they are discharged in short bursts with significant off time
than in the continuous mode of operation [11]. Therefore, a
mode of operation of a network where sensor nodes
frequently oscill ate between an adive and an inadive state
extends a battery lifetime.

The problem of efficient coverage of an indoar areawith
base stations for wireless networks resembles the problem of
covering an areawith sensor nodes. Optimal positions of base
stations are aquired by running subsequent simulations
beginning with an initial placement of stations and then using
genetic dgorithms [12] or simulated annealing [13] to
generate new sets of positions until one solution is accepted.
However, there ae significant differences that do not allow
straightforward implementation of the given procedure in
sensor networks. The number of sensor nodes is sgnificantly
higher than the number of the stations. Also, the sensor nodes
are dhosen from the set of already existing locaions, whilein
mentioned works the locaions can be chosen fredy.

Since we ae modeling an area where a sensor deteds
objeds as a drcle, the problem can be seen as an instance of
the drcle covering problem discussed in [14][15]. The



solution for that problem requires solving complex equations
[14] and it can be done in a reasonable time for only a small
number of circles[15].

I11. MOTIVATION

A. Controlled vs. Random Node Placement
There are two main reasons why a deterministic placement
of sensor nodesisimpractical:

* Sensor networks are often deployed in
remote or inhospitable areas, which prevent
individual sensor node deployment. Also,
the current state-of-the-art sensor nodes are
not capable of dynamic adjustment of their
positions.

*  The number of sensor nodes in a network is
large, so the deterministic placement is
associated with increased cost and latency
in the deployment of the network.

Therefore, the preferred method of sensor placement is
bulk dispersion of sensor nodes from an aircraft [9]. Still, itis
instructive to consider the deterministic case when we can
control placement of nodes since it provides the lowest bound
on the required number of nodes needed to cover the area.

Fig. 1. shows the optimal regular placement of nodes, so
that the whole area is covered with the minimal number of
nodes. The minimal number of sensor nodes is given by the
equation [16]:
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where Pagea is the size of the monitored areg N is the
minimal number of nodes needed to cover the aea and r is
the sensing range of a sensor in a sensor node. It is assumed
that the sensing range of the nodes is sgnificantly smaller
than the dimensions of the monitored area

B. Motivational Example

Here, we further clarify the problem discussed in this paper
using the following example. Let us assume that the
monitored area is divided into five fields. (A detaled
description of afield is given in the following sedion.) Let F
be aset of those parts: {Fi, F,, Fs, F4, Fs}. In a general case,
ead sensor covers one or more of these fields and ead field
is observed by at leest one sensor node. In our example, we
have six nodes, denoted by S, 1<i<6. The sensors cover the
foll owi ng fields: S]_:{ Fla Fz, F3, F4}, SQ:{ Fla Fz, F5}, 83:{ F2,
llz?n} F41 F5}, 84:{ FZ! F31 F5}, 85:{ F]_, F31 F5}, and 56:{ F31 F41

5 -

Fig. 1. Sensor nodes with a sensing ranger placed in aregular structure that
ensures the coverage of the whole aea with a minimal number of nodes.
The lines connecting three nodes whose sensing ranges intersect form an
equilateral triangle. The side of thetriangleisr /3.

We dlocate sensor nodes into covers, mutualy exclusive
sets of sensor nodes, where each cover G, i=;. N cOmpletely
covers the aeaA. Our goa isto maximize the cadinality of
the set of covers C = {Cy,...,C\}. For this simple example,
the optimal solution isfound using the exhaustive seach:

C1:{S_|_,_S4},C2:{Sg, S:J},ng{Sz,Ss}. .

The heuristic we developed to solve the problem is based
on the maximally constrained — minimally constraining
paradigm. We first try to cover fields that are covered by a
small number of sensors. In the example, the fields that are
covered by the minimal number of sensors are F; and F,.
Only three nodes cover each of those fields. Later we try to
avoid including into the same @ver the sensors that cover
those sparsely covered fields. The detailed description of the
heuristic is given in the following sedion.

V. COVERAGE OPTIMIZATION

In this sdion we present the SET K-COVER problem,
which is a generalization of the cverage problem described
in Sedion Ill. In the first subsedion, we introduce the
preliminaries, and provide relevant definitions. In the second
subsedion, we present the heuristic goproach for solving the
SET K-COVER problem.

A. Problem Formulation

The first step in solving the problem is to identify the parts
of the aea overed by different sensor nodes. A
straightforward approach to the question would be to trea
ead point in the aea (assuming some finite resolution) as a
distinctive part of the aea In that case asensor node would
be tharacerized by alist of al points it covers. In order to
reduce dimensionality of the problem, we introduce notion of
the field, defined in the foll owing way:

DEFINITION: A field is a set of points. Two points belong
to the same field iff they are covered by the same set of
SENSors.

An example how points are organized in fields is given in
Fig. 2. The part of the dgorithm that determines fields is
shown in Fig. 3. The dgorithm uses the locaions of the
nodes as the input, and all ocates the points in the aeainto
fields. Whenever a new sensor is added to the set of sensors,
the status of all paints covered by that sensor is examined.
The new sensor may cover some points that were not
previously covered by any sensor, as well as points arealy
belonging to some established fields. All points previously
not covered belong to one new field. A part of an existing
field or a whole existing field covered by the new sensor
becomes a new field, whose vering set consists of the
covering set of sensors for the original old field with addition

of the new sensor.

Fig. 2. After the locaions of four sensor nodes are known, the area i<
divided in eight fields, where each field contains points covered by &
same set of sensors.



for each sensor {
gothrough al points covered by that sensor {
if (the point was not previously covered) {
if (afield for previously uncovered points doesn't exist)
add new field that will cover previously uncovered points;
add the point to the field that covers previously uncovered points;

}
eseif (the point aready belongs to some of existing fields) {
if (no new field corresponding to dd field that contains the point)
add new field for that old field;
add the point to the new field corresponding to the old field
that contains the point;
}

}
add al new fidldsto thelist of the fields covered by the new sensor;
for al new fields{
add to thelist of sensors covering that field all sensors
covering the old field corresponding to that new field;
add new sensor to the list of sensors covering that field;

}

Fig. 3. The algorithm that organizes pointsinto fields.

After the fields are established, for ead sensor alist of all
fields covered by that sensor is creaed. The set of al fieldsin
the aeais denoted as A, and set of sensors as C. We @an now
formally define the SET K-COVER problem:

PROBLEM: SET K-COVER

INSTANCE: Colledion C of subsets of a set A, positive
integer K.

QUESTION: Does C contain K digoint covers for A, i.e.
covers Cy, C,,..., Cy, where C; O C such that every element of
A belongsto at least one member of ead of C;?

We have proved that the SET K-COVER is NP-complete
problem using polynomia time transformation from the
minimum cover problem [17]. For the sake of brevity the
proof is omitted.

B. Most Constrained — Minimally Constraining Covering
Heuristic

In this subsection we present a heuristic solution for the
SET K-COVER problem, first at the intuitive level and then
with al the main technicd details. The theoreticd analyses of
the heuristic indicate that the worst runtime is O(N?), where
N is the number of deployed sensor nodes.

The basic ideaof the heurigtic is to minimize the mverage
of sparsely covered areas within one cver. Such aress are
identified using the notion of the critical element.

DEFINITION: A Critical element is such element from A
that isa member of the minimal number of the setsin C.

A critical element determines an upper bound on K, the
number of covers. During the execution of the heuristic,
whenever a @ver is €leded, al members of that cover are
removed from the C. Therefore, the coverage of the dements
from A changes and a new critical element must be
determined. If there is more than one candidate for the
critical element, any of them can be seleded.

A critical element is determined at the beginning of each
step o the heuristic. For each set from C that covers the
current critical element, a value of the objedive function is
cdculated. A value of the objedive function for a set
measures the likelihood that if the set is chosen into the
current cover C;, C; will redundantly cover some of the
sparsely covered parts of the aea A higher value of the
objedive function means that the likelihood is lower.

Therefore, the sets with higher value of the objedive function
are seleded into the arrent cover. The number of other sets
from C that cover the dements from the set whose objedive
function is evaluated approximates that likelihood

The pseudocode of the heuristic is wown in Fig. 4. The
solution is given as a set of covers Ci, (i=1, 2,...). One wver
is #lected from the wlledion C in each pass. All setsfrom C
belonging to the chosen cover are removed from C after eah
pass (line 20). Remaining members of C represent a pod for
the foll owing pass

At the beginning of the pass i of the heuristic, the set of
unmarked elements U contains all elements from A, and all
current members of C are selected into V, the set of available
sets (line 3). Members of V can be seleded into the cover C.

At each step within the passi (lines 4-20), as long as there
are unmarked elementsin U, one member of V is chosen into
the cover Ci. A critical element ey, which is the member of
the smallest number of the available sets from V, is ®leded
from U at line 5. For al sets V; from V that contain en,
values of the objedive function f are cdculated (lines 7-15).
The objedive function for aset V; isgiven as

f (Vi) = %{M - K *(#of ViOV |eDV;)} -
eJA,ellVi,
eduU ,€ % €min
%{N - L*(#of ViOC -Ci|leOV))}
el A,ellVi,
elU ,e# emn

The first sum within the objective function for V; adds the
value M for ead uncovered element from A that is a member
of V,. Also, for eath element from V,, the number of other
avalil able sets covering that element istaken into account. The
number of available sets that an uncovered element is a
member of deaeases the value of the objedive function for
V. The purpose of such approac is to seled a set that will
cover alargest number of sparsely covered elements.

The second sum subtrads the value N from the objedive
function for eat element that is arealy covered, i.e. is not
an element of the set U. The secnd part of the second sum
measures how many still available sets are @vering the
elements that the set V; will redundantly cover if chosen into
Ci. If some dements have to be mvered by more than one
element from Ci, it is better to redundantly cover elements

1) GivenA,C,i=1

2) while (each element from A covered by a set from C)

3) C=0;U=A;V=C

4) while(U#0)

5) find emin 0 U such that enin isthe member of minimal sets from V
6) max = - MAXINT

7) for each Vi OV such that eyin 0 Vi

8) f(vi)=0

9) foreache OV,

10 if (& OU)

11) then f(Vi) =f(Vi) + M - K*(# of V; OV suchthat ¢ O V))
12) dsef(Vi) =f(Vi) - N+ L*(# of V; O C-C; such that e 0 V))
13) end for

14) if f(Vi) > max then Ve = Vi; max = f(Vj);

15) V=V-V

16) end for

17) Ci = Ci + Vmax

18) U=U-(OedVm)
19) end while

200 C=C-Ci=i+1
21) endwhile

Fig. 4. The heuristic that determines the covers.



that are covered by many other available sets in C. Such
elements are unlikely to become aiticd elements in the
following passes of the heuristic.

The incentive of such oljedive function isto (1) favor sets
that cover a high number of uncovered elements by adding
the value M for ead urcovered element, (2) favor sets that
cover more sparsely covered elements by subtrading number
of available sets for a particular element, where for sparsely
covered elements a subtraded value will be low, (3) favor
sets that do not cover the aea redundantly by subtrading N
for eat already covered element, and (4) favor sets that
redundantly cover the dements that do not belong to sparsely
covered aress, by adding number of sets that can cover that
element in the foll owing covers.

The set that contains the element e, and has a maximum
value of the objedive function is chosen into the cover Ci
(line 20) after the evaluation d the objedive function. All
elements from the chosen set are deleted from the set of the
unmarked elements U (line 21). All sets covering the critical
element are marked as unavailable for that cover (line 18).
Therefore, al sets containing any of the dements that were
critical elements in previous deps of generating the current
cover are unavailable in following steps during one pass of
the heuristic.

Let us prove now that the given heuristic generates a cover
if at the beginning of a passfor eat of the dements from A
there is a set from V covering that element. A seleded
critical element at any step of the heuristics has k sets that
cover that element, k>0. All other still uncovered elements of
A are mvered by k or more sets. After a set is chosen, al k
sets containing the critica element are marked as unavail able.
If there is another element that was covered by the same
number of sets as the critical element, that another element
must have had at least one set that covers that element, but
not the critical element. All other elements covered by more
than k sets must have & least one set avail able after k sets are
marked unavailable. The one that have the minimal number
of avail able sets and is not covered by chosen set is chosen as
the next critical element. Therefore, after eat step for each
element is true that a) that element is already covered, or b)
there is an available set in C that covers that element.
Consequently, if at the beginning of the pass for ead element
there is a set that covers that element, the heuristic can creae
a over C;.

When the set of the unmarked elements U is empty, one
pass of the heuristic is finished, and the cover C; covers all
elements from A. All members of the mver C; are deleted
from C (line 23). The heuristic exits if at the beginning of a
passthere is an element from A that is not covered by any of
the members of C.

V. EXPERIMENTAL RESULTS

The performance of the heuristic in solving the SET
K-COVER problem is compared to the performance of an
implementation of simulated anneding [18]. In this sction
we describe that implementation, the simulation environment,
and the smulation results.

A. Smulated Annealing - Parameters

Since we are not aware of any other agorithm or a
heurigtic that solves the SET K-COVER problem, we have
developed a simulated annealing based heuristic to get an
approximate measurement of efficiency of the most

constrained — minimally constraining heuristic. An execution
j of the smulated anneding heuristic dl ocates the sets from
C into n; subcolledions where n; is congtant for the j"
exeadtion. The number of subcolledlons that completely
cover the set A measures the quality of the solution of the
simulated anneding based heuristic.

An initial state of the system is generated by a random
distribution of the sets from C into n; subcolledions C,, C, ...
C,. One move of simulated anneding is implemented by
choosing randomly one of the n; subcolledions and by
choosing a set from that subcolledion. The dcosen set is
moved to another randomly seleded subcolledion. The st
function of astate isgiven as

CF=a DZl+ b DZ %n

where the subcolledions i=1,..k are those that cover all
elements from A. For the subcolledions i=k+1,..,n; that do
not cover all elements from A, the number of uncovered
elements from A m is cdculated. If a new solution hes a
higher value of the mst function than the current solution, the
new solution is accepted. If the value of the aost function for
the new solution is lower than the value for the current
solution, the new solution is accepted as a aurrent solution
with a probability that deaeases with the temperature of the
system. According to the simulated anneding strategy, the
temperature of the system is highest at the beginning and then
gradually decaeases. When the system coals down, the final
solution is accepted as the best solution for that execution o
simulated anneding. The motivation for such cost function is
that those subcolledions that do not cover the set A should
add to the value of the cost function depending on the number
of elements of A that are not covered by that subcoll edtion.

After an execution of the simulated annealing algorithm,
the number of subcolledions nj,, that is attempted in the next
exeaution depends on:

ki the number of the subcolledions from
the j™ execution that cover the set A,

e ki the maximum number of the
subcolledions adiieved in al previous
exeautions,

e upperBound, the number of sets from the
colledion C containing the dement
covered by minimum number of sets, yp,

in the following way:
k=m0 n+1= min(upperBound 2h)

k]<nj|:| nJ+1—maX( kmax+l)

If the number of the subcoll ections covering A is equa to
n;, the next execution attempts to achieve higher number of
the subcolledions that cover A, while in the cae where k; is
smaller than n;, the attempted number of subcolledions for
the next execution of simulated anneding is deaeased, but
never below an arealy achieved best result k.. The
simulation stops if after limit number of attempts Kqu, the
achieved number of subcolledions covering A, does not
change.

B. Smulation Environment and Results

The smulations were performed on Ultrab Sun
Workstation running SunOS 5.7 with 128V of RAM memory
and 256V of swap space ad UltraSparc-lli processor on



333V Hhz. The simulation code is written in Java. The size of
the simulator codeis around 1500lines.

Table | shows the results of the first set of smulations. The
monitored areais a 50x500 units square. The sensor nodes
coordinates are randomly generated using the pseudouniform
distribution. The clumn SA denotes the average number of
covers that simulated annealing achieves, while the clumn H
denotes the average number of covers that the heuristic
described in this paper achieves. The @lumn |C| shows the
number of sensors, while |A| shows the number of fields.

The most constrained — minimally constraining heuristic
achieves sgnificantly better results than the implementation
of the ssimulated annealing, although the simulated anneding
is running for a significantly longer time. Another
observation is that the heuristic goproaches the upper bound
in all cases. The explanation for such results is that the fields
in the central part of the monitored area ae covered by
significantly more sensors than the fields nea the elge of the
area The heuristic eaily generates a maximum number of
covers having an abundance of the sensors covering non-
criticd fields to combine with the sensors covering critical
fields. However, given distribution results in alow number of
covers and a high number of unused sensors.

For the second set of simulations, whose results are shown
in Tablell, the conditions are changed in order to increase the
number of covers. An additional space 70 units wide is added
around the elges of the sguare, so the sensors are distributed
over a57x570units area However, only the 50x500areais
taken into acount when the covers are seleded. Another
improvement implemented in the second set of simulationsis
that sensors are distributed in several stages. The density of
the sensor nodes in different parts of the aeais measured
after a cetain number of nodes are deployed. Additional
sensor nodes are deployed in areas where the density is below
a crtain limit. From the comparison of the Tables | and Il
can be seen that for the same number of sensors, the number
of sets that cover whole aea increases when the given
improvements in the deployment of the nodes are utili zed.

V1. CONCLUSION

Wireless ensor networks enable dficient monitoring of
physicd environments. The main operating constraint is
available energy. In order to maximize dficient use of
batteries used by randomly placeal sensors, we propcse an
organization of a sensor network, where the nodes are divided
in mutually exclusive sets. One such set isadive & any time.

We developed the most-constrained least-constraining
heuristic and demonstrated her effectiveness on variety of
simulated scenarios. From the simulation results can be
concluded that the initial distribution of the sensor nodes in
the monitored area determines the posshble utilizaion of the

TABLEI
RESULTS OF SIMULATIONS FOR 500x500 AREA
Number of Runtime
IC| |A] | Radius covers upper
SA H SA H bound
100 | 5403 | 200 6.8 9.7 5h:30 | Im:30 | 9.7
120 | 8135 | 200 7 115 | 11h:15| 5m 11.5
150 | 11454 | 200 10.5 | 185 | 14h:08 [13m:30| 185
180 | 13646 | 150 29 6.6 23h 7m 6.6
300 | 13510| 80 2.6 43 | 27h:14 | 3m:36 | 4.3
400 | 24932 | 80 3.2 45 48h 10m 4.7

TABLE Il
RESULTS OF SIMULATIONS FOR EXTENDED DEPLOYMENT AREA
Number of Runtime
IC| |A] | Radius covers upper
SA H SA H bound
100 | 3888 | 200 8.2 151 | 1h08 | 1m:09 | 15.1
120 | 5916 | 200 8 16 8h:12 | 12m 16
150 | 7965 | 200 10.7 | 19.2 | 8h42 [13m:50| 19.2
180 | 8106 | 150 8 15 | 12h:30 | 8m:34 | 16
300 | 11470| 80 25 55 |13hi45| 5m 6.2
400 | 18230 | 80 4.2 8.1 52h 9m 9.1

available sensor nodes. Our future work will explore the
posshle strategies of sensor networks deployment that will
ensure the best coverage of the monitored area
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