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Abstract

Throughput maximization of an adaptive transmission system with a finite number
of transmitted power levels and code rates for communication over slow fading channels
is analyzed based on the concept of information outage. Properties of throughput
maximizing policies lead to an iterative algorithm which suggests good system designs.
Numerical results show that carefully designed discrete adaptive transmission systems
with a small number of power levels and code rates can achieve throughput values close
to ergodic capacity.

1 Introduction

In third generation cellular systems (see [1–3] and [4]), adaptation on the transmitter side is
one of the core technologies leading to power efficient designs of wireless data communication
systems. The seminal work [5] shows that the ergodic capacity of a fading channel can be
achieved by employing an adaptive transmission system with variable transmitted power and
variable code rate assignment.

An optimal adaptive transmission system [5] requires knowledge of the current channel
state at the transmitter. In addition, both transmitted power and code rate assignments
must adapt continuously to changes in the channel state. Both of these requirements have
been widely adopted in further work on information theoretic aspects of communication over
fading channels [6, 7]. Unfortunately, these requirements are hard to satisfy in practice. In
order to simplify an adaptive transmission system, an adaptive M-ary quadrature amplitude
modulation (MQAM) with a finite number of modulation levels and an adaptive trellis-coded
modulation (TCM) scheme with a finite number of code rates are proposed in [8] and [9],
respectively. More recently, an adaptive transmission design based on outdated channel
information and either MQAM or TCM is proposed in [10].
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Since the performance improvement offered by an adaptive approach is promising, this
paper examines throughput maximization of an adaptive system with a finite number of
power levels and code rates. In this problem, the challenge is twofold. First, the throughput
maximization problem for a discrete adaptive system is hard to formulate, especially when
channel coding is involved. Second, the problem requires joint optimization of a number of
parameters.

We assume a slow multiplicative fading environment where the channel is constant dur-
ing the transmission of a codeword and the channel state space is partitioned into a finite
number of quantization intervals. It is assumed that, instead of the exact channel state, the
transmitter learns the quantization interval of the current channel state. From this informa-
tion, the transmitter selects a corresponding pair from a finite set of code rate and power
level pairs to encode and transmit the information message, respectively. For convenience,
we only consider the case where the number of quantization levels, code rates, and power
levels are equal even though it is possible for these to differ in a specific system design.

For a multiplicative fading channel with AWGN, the coding theorem in [5] states that
an adaptive transmission system can achieve ergodic capacity by using the water-filling
power assignment and channel codes which achieve the maximum mutual information at
each channel state. Hence, we employ the same class of codes at each quantization level
as [5] and for these codes, there are a number of related coding theorem references [11–13].

For the proposed discrete system, it is possible that the instantaneous mutual informa-
tion corresponding to a channel state is less than the assigned code rate. In this case, an
information outage event occurs. The information outage is an intrinsic characteristic of
slow fading channels and due to this, the strict sense Shannon capacity is zero in slow fading
channels [14]. During an outage, a transmission is not considered reliable and, thus, it is
frequently convenient to assume that the transmitted data can be ignored [11]. This assump-
tion leads to the capacity versus outage problem, which focuses on the tradeoff between the
outage probability and the supportable rate [7, 15]. The practice of ignoring data received
during an outage is supported by the fact that the outage probability matches well the error
probability of actual codes [16] and [17]. Therefore, we characterize the performance of a
system design by the average reliable throughput, defined as the average of the data rate as-
suming zero rate when the channel is in outage. Henceforth, our central topic is finding the
maximum average reliable throughput, also termed capacity, of a discrete adaptive system
communicating over a slow fading channel.

Following the formulation of the finite-level design problem, we focus on exploring the
optimal (capacity-achieving) policies where a policy is defined as an ensemble of the channel
state space partition and corresponding power and rate allocations. In this work, we will show
that that for an optimal policy, outages occur only for a set of worst channel states within
the first quantization interval. In other quantization intervals, we will see that the assigned
rates will support the worst channel state of that interval. We will find that an optimal
policy can be uniquely characterized by the channel state space partition, first interval rate
assignment, and the power level assignments. The optimal power level assignment has a
water-filling character. When the number of levels approaches infinity, reasonably designed
discrete adaptive transmission schemes with a water-filling power assignment and an equal
probability partition of the channel state space can achieve the ergodic capacity.

We emphasize that finding an optimal policy is still a challenging non-convex optimiza-
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tion problem. Since brute force searching over a space of all possible policies at a high
resolution has complexity that increases exponentially with the number of quantization lev-
els, we present an iterative algorithm that numerically evaluates capacity lower bounds and
determines corresponding suboptimal policies. The computation complexity of the algorithm
is linear in the number of levels and the achieved lower bounds can be very close to the true
capacity.

2 System Model and Problem Formulation

We consider a multiplicative flat fading channel model similar to that in [5]. The complex
received signal

Y =
√

SX + W, (1)

where S is the channel (fading) state, X is the complex transmitted signal, and W is a
circularly symmetric additive white Gaussian noise (AWGN) with variance N0. The channel
state S is a real random variable of unit mean with a probability density function (PDF)
f(s), a cumulative density function (CDF) F (s), and a domain S = {s|s ≥ 0}. It is also
assumed that the fading is sufficiently slow that the channel state is constant during the
transmission of a codeword.

The proposed adaptive transmission system quantizes any channel state s to one of L
levels v0 < v1 < . . . < vL−1, where v0 = 0. The L channel state quantization intervals
are denoted by Vl = [vl, vl+1) for l = 0, . . . , L − 1, where vL = ∞. Note that the set
{V0, . . . ,VL−1} partitions S. When the channel state s ∈ Vl, the encoder at the transmitter
generates codewords of a code rate rl and the codewords are transmitted at a power level
pl = E {|X|2 |s ∈ Vl}, where E {·} denotes expectation. Since (1) is an AWGN channel for
any given s ∈ S, the corresponding maximum mutual information is given by log(1+pls/N0).
Adopting the notation R(φ) = log(1 + φ/N0), the maximum mutual information associated
with any state s ∈ Vl is R(pls).

The set of quantization levels {vl} and the corresponding set of power and rate assignment
pairs {(pl, rl)} define an adaptive transmission policy. More precisely, the triple of L by 1
vectors

(p,v, r) = ([p0, . . . , pL−1]
�, [v0, . . . , vL−1]

�, [r0, . . . , rL−1]
�) (2)

specifies a transmission policy. For any s ∈ Vl, given a power level and code rate assign-
ment pair (pl, rl), it is not guaranteed that the information will be successfully received if
R(pls) < rl. Hence, following the established outage probability definition [15], we define
the conditional outage probability as

Pout(rl, pl|l) = Pr [R(pls) < rl|s ∈ Vl] . (3)

In other words, Pout(rl, pl|l) is the probability that the assigned rate rl is not achievable with
the power level pl given that s ∈ Vl.

Given a policy (p,v, r), the average reliable throughput is

RL(p,v, r) =

L−1∑
l=0

Pr [s ∈ Vl] [1 − Pout(rl, pl|l)] rl. (4)
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Note that this definition hinges on the assumption that no information is successfully received
during an outage. Here, we adopt the following convention: pl = 0 implies that rl = 0 and,
consequently, there is no decoding error and no outage when no transmission is attempted.
Employing the notation F (s1, s2) = F (s2)−F (s1) = Pr [s1 ≤ S < s2], the average power for
the policy (p,v, r) is

ρ(p,v, r) =
L−1∑
l=0

F (vl, vl+1)pl. (5)

If the average power is constrained to be upper bounded by p, the set of feasible L-level
transmission policies is

πL(p) = {(p,v, r)| ρ(p,v, r) ≤ p} . (6)

We define the maximum average reliable throughput over all L-level policies to be

CL = max
(p,v,r)∈πL(p)

RL(p,v, r). (7)

A corresponding capacity achieving policy is referred to as an optimal policy (p∗,v∗, r∗).
The theme of this paper is finding the capacity CL and the properties of the corresponding
optimal policy (p∗,v∗, r∗) given a fading distribution.

3 Properties of Optimal Policies

In this section, we present sketches of power allocations as a function of the channel state
and illustrate a number of useful properties of optimal policies. These properties are helpful
in simplifying the optimization problem (7). One possible policy assignment is depicted in
Fig. 1, where the heights of boxes indicate the power levels assigned to their respective quan-
tization intervals. Within each interval Vl, the shaded region indicates the outage interval
where the channel state does not support reliable communication with the assigned rate rl

given implicitly through ql, as is explained later in this section.
Any outage interval is contiguous within its respective quantization interval Vl and would

include the left end point vl of Vl. Specifically, if a channel state s1 ∈ Vl does not support
reliable communication at rate rl, no channel state s < s1 in Vl will support reliable com-
munication at rate rl. Thus, there can be at most L outage intervals. In the following, we
develop an implicit characterization of the assigned rates for an optimal policy.

Lemma 1 For an optimal policy (p∗,v∗, r∗), we have that

r∗l ∈ [ R(p∗l v
∗
l ), R(p∗l v

∗
l+1)

)
. (8)

This proof, as well as proofs of other lemmas and theorems, can be found in Appendix A.
Without loss of generality, we assume that any policy of interest (p,v, r) also satisfies the

condition (8). Consequently, for any policy (p,v, r) for which (8) holds and any quantization
interval Vl, strict monotonicity of R(·) implies that we can find a unique channel state
ql ∈ Vl such that rl = R(plql). This defines a one to one mapping between channel states
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Figure 1: Illustration of an arbitrary power assignment. The rate assignment is implicitly
shown through ql. The shaded regions are the channel outage intervals.

{q0, . . . , qL−1} and the respective rate assignments {r0, . . . , rL−1} for a given power policy.
Hence, ql is the worst channel state in Vl that still allows for reliable communication at a
rate rl. Therefore, it will be more convenient to redefine transmission policies of interest as
vector triples (p,v,q). Accordingly, such a policy assignment can be illustrated by using a
plot such as the one in Fig. 1, where all vector parameters are depicted.

With the introduction of q, the conditional outage probability in (3) can be interpreted
as the probability that s ∈ Vl is worse than the worst reliable channel ql, i.e.,

Pout(rl, pl|l) = Pr [R(pls) < R(plql)|s ∈ Vl] (9)

= F (vl, ql)/F (vl, vl+1). (10)

With (4) and (10), the average rate can be expressed in terms of the vector q as

RL(p,v,q) =
L−1∑
l=0

F (ql, vl+1)R(plql). (11)

The next lemma, which follows from the monotonicity of R(plql) with respect to pl, says that
an optimal policy meets the average power constraint with equality.

Lemma 2 For an optimal policy (p∗,v∗,q∗), we have that

ρ(p∗,v∗,q∗) =

L∑
l=0

F (v∗
l , v

∗
l+1)p

∗
l = p. (12)

As apparent from (11) and Fig. 1, an outage interval does not contribute to the overall
average rate. Thus, one could intuitively assume that an optimal policy should minimize
such intervals. An extreme case is ql = vl, which implies that there is no outage interval.

Theorem 1 Given an arbitrary policy (p,v,q), there exists a policy (p′,v′,q) such that
v′

l = ql for all l > 0 and RL(p′,v′,q) ≥ RL(p,v,q).
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Figure 2: The policy achieves CL will have q1 = v1 and q3 = v3.

In the special case when a policy has an increasing power allocation depicted in Fig. 2,
it is relatively simple to demonstrate Theorem 1. As noted earlier from (11) and Fig. 1,
if vl+1 < ql+1, then channel states s in the outage interval [vl+1, ql+1) do not contribute to
the average reliable throughput. Thus, we can increase vl+1 to eliminate the outage interval
without changing the value of pl. In this case, the average reliable throughput increases, while
the average transmitted power remains unchanged. Since this procedure can be applied to
any interval l > 0, for an optimal policy, an outage can occur only in the V0 interval. In the
general case of arbitrary power levels, Theorem 1 is due to the concavity and monotonicity
of R(·); the proof appears in Appendix A.

Theorem 1 demonstrates that policies of interest are fully determined by vectors p and
q with the quantization intervals given by

Vl =

{
[0, q1) l = 0
[ql, ql+1) 1 ≤ l ≤ L − 1

(13)

where we assume the convention qL = ∞.
In the following, we assume that the CDF F (s) is a strictly increasing function of s

and, instead of optimizing the policy (p,q), we equivalently optimize a policy (p, a), where
al = F (ql) for all l. Using the shorthand q(a) = F−1(a), the average reliable throughput in
terms of the pair (p, a) has the form:

RL(p, a) =
L−1∑
l=0

(al+1 − al)R(plq(al)). (14)

The average power constraint is

ρ(p, a) = a0p0 +

L−1∑
l=0

(al+1 − al)pl ≤ p. (15)

Among the set of L-level policies,

πL(p) = {(p, a)|ρ(p, a) = p} , (16)
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a feasible policy from (16) is an optimal policy if it achieves the L-level capacity

CL = max
(p,a)∈πL(p)

RL(p, a). (17)

Hence, Theorem 1 now implies the following corollary.

Corollary 1 For an optimal policy (p∗, a∗), either only V∗
0 includes an outage interval

[0, q(a∗
0)) or p∗0 = 0.

Although the new optimization problem (17) is somewhat simpler than (7), it is still non-
convex and difficult to solve in the general case. The following theorem provides a further
characterization of the optimal policies. It shows that, given any adaptation partition now
defined by q, the optimal power assignment is a water-filling assignment [12].

Theorem 2 Given a partition a, the optimal power allocation is water-filling,

pl =

⎧⎨
⎩
(

a1−a0

λa1
− N0

q(a0)

)+

l = 0(
1
λ
− N0

q(al)

)+

l > 0
, (18)

where the water-filling level λ is chosen to satisfy the average power constraint ρ(p, a) = p.

Note that the powers pl allocated according to Theorem 2 are non-decreasing in l. Also, given
an arbitrary partition a, water-filling may result a collection of l′ > 1 intervals {Vl|l ≤ l′}
with power pl = 0. However, there is no benefit in terms of the average reliable throughput
to design policies with more than one zero power interval. The following lemma shows that
the average reliable throughput will increase by dividing an interval with non-zero power.

Lemma 3 A quantization interval [al, al+1) with pl > 0 can be split into two intervals, [al, x)
and [x, al+1), such that the throughput contributed by channel state s ∈ [q(al), q(al+1)) will
strictly increase while the power assignment for s ∈ [q(al), q(al+1)) stays the same.

As illustrated in Fig. 3, greater efficiency can result from repartitioning an arbitrary policy
by merging all intervals with zero power into a single interval and subdividing a non-zero
power interval. Thus Lemma 3 yields the following corollary.

Corollary 2 For an optimal policy (p∗, a∗) only p∗0 can be zero.

4 An Asymptotically Optimal Policy

The ergodic capacity of a fading channel [5] can be written as

C =

∫ ∞

s0

log

(
s

s0

)
f(s)ds, (19)

where s0 is a cut-off value which is strictly positive for a finite average power constraint∫ ∞

s0

p(s)f(s)ds = p, (20)
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Figure 3: Illustration of the repartitioning step for L = 6 and m = 3.

where p(s) is a continuous water-filling power assignment given by

p(s) = N0

(
1

s0
− 1

s

)+

. (21)

Intuitively, for our discrete adaptive system, when L increases to infinity, the corre-
sponding capacity CL should converge to the ergodic capacity. For a reasonably good policy
(p, a), it is expected that the corresponding average reliable throughput RL(p, a) should also
converge to the ergodic capacity. This property is referred to as asymptotic optimality.

Although we gained some insight on how to construct good policies in the previous section,
the design of an optimal partition a∗ remains unknown. Here, we verify the asymptotic
optimality of a policy based on a channel state partition which is uniform in probability.
This design is a building block and the starting point of our iterative algorithm in the next
section. We compare the ergodic capacity with the average reliable throughput of an L-level
policy (p†, a†) with the rate/quantization level assignment

a†
l =

{
1/L, l = 0
l/L, l = 1, 2, . . . , L − 1

, (22)

and the water-filling power assignment (18). Here, we deliberately set a†
0 = a†

1 which leads
to p†0 = 0 after water-filling. Although suboptimal, this choice will simplify subsequent
arguments. Based on (18), the rest of p†l ’s can be written as

p†l = N0

(
1

λ†N0

− 1

q(a†
l )

)+

, (23)

Since (p†, a†) is sub-optimal, R†
L = RL(p†, a†) satisfies

R†
L < CL < C (24)
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Figure 4: Local optima (q0 = q(a0)).

The similarity between the power allocation functions p(s) in (21) and p†l in (23) allows us

to show in the following theorem that R†
L is asymptotically optimal.

Theorem 3 limL→∞ R†
L = C.

The implication of Theorem 3 is that for sufficiently large L, the optimization over the
partition q is of less importance as long as the power allocation is water-filling and the code
rates are chosen accordingly. On the other hand, an arbitrarily chosen partition a may not
lead to an asymptotically optimal policy. Moreover, this emphasizes that the joint partition
and power-rate optimization will offer more significant improvement when L is small.

5 Iterative Policy Improvement

Finding an optimal policy (p∗, a∗) that achieves the capacity CL is a challenging optimization
problem. The following simple example illustrates that the problem could be non-convex
and that there might be multiple local maxima. In this example, we assume L = 1 so that
the equality in the average power constraint yields p0 = p̄. The objective function (average
reliable throughput) is

R1(a0) = (1 − a0)R(q0p0), (25)

where q0 = q(a0) and R(q0p0) is a monotonically increasing function shown in Fig. 4(a). Let
q0 be the one shown in Fig. 4(b), then R1(a0) has two local maxima and is not concave as
shown in Fig. 4(c).

One way of finding the optimal policy is brute force maximization of (17) over a quantized
space of all possible pairs of power and partition assignments. This approach entails quanti-
zation of continuous policy variables p and a and can only be taken for a very small number of
quantization levels L since its complexity increases exponentially in L. In Fig. 6, we present
an iterative algorithm that finds a good policy (p‡, a‡) with throughput R‡

L = RL(p‡, a‡).
The first two steps initialize the algorithm with the asymptotically optimal policy (p†, a†)
with throughput R†

L. The rest of the algorithm consists of the following three local opti-
mization techniques:

• Water-filling (Theorem 2) to optimize power allocation given a partition,

• Water-spilling to optimize the intervals while satisfying by the power constraint (16),

9
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Figure 5: Illustration of the water-spilling step. As the boundary al moves to the right,
power from interval Vl = [al, al+1) spills over the boundary to fill the interval Vl−1. The
figure on the left shows the increase in pl−1 as the boundary al is increased.

• Repartitioning (Lemma 3) to re-allocate zero power intervals.

The convergence of the algorithm follows from the fact that the average reliable throughput
will be nondecreasing at each step of the algorithm and is upper-bounded by C [5]. Thus,

R†
L ≤ R‡

L ≤ C, (26)

We note that a water-filling step may result in several zero power assignments (pl = 0),
which is suboptimal according to Corollary 2. We will see that water-spilling may not be able
to remedy this. Thus we employ repartitioning, as illustrated in Fig. 3, as an intermediate
step. Under repartitioning, intervals with zero power are merged to satisfy Corollary 2 and
VL−1 is partitioned following Lemma 3. These two operations ensure that the average reliable
throughput will increase after this step.

For iterative adjustment of the partitions, we employ a local optimization technique called
water-spilling that varies boundaries al one at a time. Fig. 5 depicts a policy before and
after such local optimization. The water-spilling technique is designed to satisfy the average
power constraint (15). Since the quantization intervals in Fig. 5 are represented in terms
of a, the average power assigned to a given interval is equal to the area of its respective
rectangle. To ensure that the power constraint (15) is satisfied regardless of the change in
al, the sum of the areas of the shaded rectangles must remain the same. Consequently, when
we shift al to the right (or, equivalently, increase the rate assignment rl), power spills from
the interval l to raise the power pl−1.

pl−1(al) =

{
[p̄l − pl(al+1 − al)] / (al − al−1) l > 1
[p̄l − pl(al+1 − al)] /al l = 1

, (27)

where p̄l is the average power over Vl−1 and Vl. Consequently, water-spilling suggests maxi-
mizing the average reliable throughput over a single variable al.

Using F ′(s) and F ′′(s) to denote the first and the second order derivatives of a function
F (s) with respect to S, respectively. We show in Appendix B that if the fading CDF F (s)
satisfies

2

1 − F (s)
+

F ′′(s)
[F ′(s)]2

≥ 0, s ∈ S, (28)

the water-spilling objective function is concave in al. Therefore, any convex searching algo-
rithm can be used in this step.
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1. k = 0. Choose interval boundaries a
(k)
l = l/L for l = 1, . . . , L and set a

(k)
0 = 1/L.

2. water-filling: Given a(k), find p(k) from the water-filling assignment (18).

3. repartitioning: If p
(k)
1 = 0, let n = min{m|p(k)

m > 0}. Define the new policy (p, a) as

al =

⎧⎪⎨
⎪⎩

a
(k)
n /2, l = 0

a
(k)
l+n−1, l = 1, . . . , L − n

a
(k)
L−1 + (1 − a

(k)
L−1)

l−n
L−n

, otherwise

pl =

⎧⎨
⎩

0, l = 0

p
(k)
l+n−1, l = 1, . . . , L − n

p
(k)
L−1, o.w.

Otherwise, p = p(k) and a = a(k).

4. water-spilling: For l = L − 1, L − 2, . . . , 1:

– Using (27), let (p′l−1, a
′
l) = arg max(pl−1(al),al) RL(p, a).

– Set

p = [p0, . . . , pl−2, p
′
l−1, p

′
l, . . . , p

′
L−2, pL−1]

�

a = [a0, . . . , al−1, a
′
l, a

′
l+1, . . . , a

′
L−1]

�

Let a′
0 = arg maxa0 RL(p, a). Set a(k) = [a′

0, a
′
1, . . . , a

′
L−1]

� and p(k) = p.

5. If RL(p(k), a(k)) − RL(p(k−1), a(k−1)) < ε let p‡ = p(k) and a‡ = a(k). Define R‡
L =

RL(p‡, a‡) and stop. Otherwise, set a(k+1) = a(k), k = k + 1, and go back to step 2.

Figure 6: The iterative algorithm combining water-filling, repartitioning, and water-spilling.

6 Numerical results

In this section, we present numerical results for the capacity CL and lower bounds of CL

obtained by brute force maximization over a quantized space of all possible policies and by
using the proposed iterative algorithm, respectively. We compare CL and lower bounds with
the ergodic capacity C for two different fading models: Rayleigh and log-normal fading.

6.1 Rayleigh Fading Channel

For a Rayleigh fading channel, the fading CDF is

FR(s) = 1 − e−s, s ∈ S. (29)
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Figure 7: CL with L = 1, 2, 3 for Rayleigh fading.

In this case, it is easily verified that the concave condition (28) holds. Fig. 7 shows there is a
6 to 7 dB gap between the curves of C and C1 for a capacity around 1 to 2 bits/sec/Hz. As
C1 is the capacity for constant-rate constant-power transmission, the gap indicates potential
gains of the adaptive transmission system. By applying an L = 2 adaptive transmission
policy, the required SNR can be reduced by approximately 3 dB in comparison with that by
using a constant-power and constant-rate policy. In other words, a 2-level adaptive system
can eliminate about half of the SNR gap between the curves of the ergodic and the non-
adaptive capacity. Furthermore, increasing L from 2 to 3 yields another 1 dB reduction
in the SNR requirement. Note that C2 and C3 were obtained by brute force maximization
(searching).

Fig. 8 provides a comprehensive comparison among C, CL, R†
L, and R‡

L. Note that, for a
small L = 2, there is only a negligible difference between CL and R‡

L. For a relatively large
L = 10, R‡

L is within 1 dB from C when SNR is less than 20 dB. Since R‡
L is a lower bound

of CL, we expect that CL is very close to C with L > 10.

Meanwhile, it is worthwhile pointing out that the improvement of R‡
L over R†

L is a result
of iterative optimization. This improvement is quite substantial when L is small and the
SNR is high. However, when the SNR is less than 10 dB, there is only a negligible difference
between R†

L and R‡
L, where the average reliable throughput is about 2 bits/sec/Hz or less.

On the other hand, even with high SNRs, if L is sufficiently large, R†
L and R‡

L will also be
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Figure 8: A comparison of C, CL, R†
L, and R‡

L for Rayleigh fading.

very close. This is an indication of the asymptotic optimality of equal probability partitions.
Also, since (p†, a†) is not a good policy for L = 2 where p†0 = 0 and a†

1 = 1− a†
1 = 1/2, even

C1 outperforms R†
L at high SNRs. Although space considerations do not permit inclusion

of the results, similar conclusions hold for the Nakagami fading channel with a parameter
m = 2 [18].

6.2 Log-Normal Fading Channel

With a mean µ and a variance σ, a PDF of a log-normal random variable s [19] is

fLN(s) =
1√
2πσ

10

log 10

1

s
e−

(10 log10 s−µ)2

2σ2 . (30)

Using a numerical approach, we find that (28) holds for σ ≤ 6.

In Fig. 9, a comprehensive comparison with C, CL, R†
L, and R‡

L for the log-normal channel
with σ = 6 is shown. In comparison with the case of the Rayleigh fading channel, it requires
a relative larger L for an adaptive system design in order to achieve a performance close to
C in the log-normal fading channel.

According to [19], a typical value of σ is 8 dB. When σ = 8, the log-normal distribution
does not satisfy the concavity condition (28). However, in this case, a line-search algorithm
can be used to substitute a convex searching algorithm at the water-spilling step. The
difference between the capacity for two different σ values is small.
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Figure 9: A comparison of C, CL, R†
L, and R‡

L for log-normal fading (σ = 6).

7 Conclusion

Following the seminal work [5] and the recently introduced concepts of information out-
age and outage probability [11, 14, 15], we construct the throughput maximization problem
over possible candidate policies, which are the ensembles of channel state space partitions
and power-rate allocations. In addition, we observe several properties of optimal policies
achieving the maximum throughput. These properties give insight for understanding and
simplifying the throughput maximization problem.

Although we do not construct optimal policies, we suggest three options based on the
observed properties of the optimal policies. The first approach is to exhaustively search
for good policies over possible policies with a good resolution. Unfortunately, this is only
effective for the cases where L is relatively small since its computation complexity increases
exponentially in L. Another approach is to design a reasonably good policy, as shown in
Section 4, which provides a very good approximation to an optimal policy when L is large.
The last one is an iterative local search algorithm which is particularly useful where the first
approach is impractical and the second one is not good enough.

Finally, the most important message conveyed by this research is that a carefully designed
discrete adaptive system with a small number of power levels and code rates can achieve the
results close to those obtained by the well-known optimum continuous adaptive transmission
system in several slow fading environments.
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A Proofs

Proof: Lemma 1
When p∗l is zero, (8) is obvious. Otherwise, suppose there is an optimal policy (p,v, r)

for which pl > 0 and rl �∈ [R(plvl+1), R(plvl+1)) for some l. We construct the policy (p,v, r′)
with r′ = [r0, . . . , rl−1, r

′
l, rl+1, . . . , rL−1]

� with r′l = R(plvl). It is straightforward to show
that (p,v, r′) ∈ πL(p). We consider two cases. First, if rl > R(plvl+1), then

RL(p,v, r′) − RL(p,v, r) = F (vl, vl+1)r
′
l > 0, (31)

which is a contradiction. Second, if rl < R(plvl),

RL(p,v, r′) − RL(p,v, r) = (r′l − rl)F (vl, vl+1) > 0, (32)

which is also a contradiction.

Proof: Lemma 2
Given a policy (p,v,q), with average power

∑L−1
l=0 F (vl, vl+1)pl = p− ε, we can construct

a new policy (p′,v,q) ∈ πL(p) where p′ = [p0 + ε, . . . , pL−1 + ε]�. This policy achieves

RL(p′,v,q) =
∑L−1

l=0 F (ql, vl+1)R((pl + ε)ql) > RL(p,v,q). (33)

�

Proof: Theorem 1
Given an arbitrary policy (p,v,q) ∈ πL(p), suppose that there is an l such that vl+1 < ql+1

and 0 ≤ l < L − 1. We will construct a new policy (p′,v′,q) ∈ πL(p) such that v′
l+1 = ql+1

and RL(p′,v′,q) ≥ RL(p,v,q). If such scenarios appear more than once, we can repeat the
same construction for each such l.

Let

p̂ = F (ql+1, vl+2)pl+1 +
∑

i�={l,l+1}
F (vi, vi+1)pi, (34)

denote the portion of the average transmitted power ρ(p,v,q) associated with channel states
s /∈ [vl, ql+1). Therefore, we can write

ρ(p,v,q) = p̂ + F (vl, vl+1)pl + F (vl+1, ql+1)pl+1 (35)

= p̂ + F (vl, ql+1)p̃, (36)

where

p̃ = {F (vl, vl+1)pl + F (vl+1, ql+1)pl+1} /F (vl, ql+1). (37)

Based on p̃, we construct a new policy (p′,v′,q) with v′ = [v0, . . . , vl, ql+1, vl+2, . . . , vL−1]
�

and p′ = [p0, . . . , pl−1, p̃, pl+1, . . . , pL−1]
�. In the policy (p′,v′,q), transmitted power p̃ is

used for all states s ∈ [vl, ql+1). Hence,

ρ(p′,v′,q) = p̂ + F (vl, ql+1)p̃. (38)
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It follows from (36) that ρ(p′,v′,q) = ρ(p,v,q). The corresponding average reliable through-
put is

RL(p′,v′,q) = R̂ + F (ql, ql+1)R(qlp̃), (39)

where R̂ =
∑

i�=l F (qi, vi+1)R(qipi) denotes the contributions to RL(p,v,q) from channel
states s /∈ Vl. Defining α = F (ql, vl+1)/F (ql, ql+1), we observe from (37) that

p̃ =
plF (vl, ql) + αplF (ql, ql+1) + pl+1F (vl+1, ql+1)

F (vl, ql+1)
(40)

≥ plF (vl, ql) + αplF (ql, ql+1)

F (vl, ql+1)
(41)

Since α ≤ 1,

p̃ ≥ αpl(F (vl, ql) + F (ql, ql+1))

F (vl, ql+1)
= αpl. (42)

From (39), (42) and the fact that R(·) is monotonic increasing, we observe that

RL(p′,v′,q) ≥ R̂ + F (ql, ql+1)R [ql(αpl + 0)] (43)
(a)

≥ R̂ + F (ql, ql+1) [αR(qlpl) + (1 − α)R(0)] (44)
(b)
= R̂ + F (ql, ql+1)αR(qlpl) (45)

= R̂ + F (ql, vl+1)R(qlpl) = RL(p,v,q). (46)

Note that inequality (a) is due to the concavity of R(·) while (b) holds because R(0) = 0.
�

Proof: Theorem 2
Following the standard Lagrange procedure, we have

J = λp +
L−1∑
l=0

(al+1 − al) [R(plq(al)) − λpl] − λa0p0. (47)

For l > 0,
∂J

∂pl
= (al+1 − al)

(
q(al)/N0

1 + plq(al)/N0
− λ

)
= 0. (48)

This leads to

pl =

(
1

λ
− N0

q(al)

)+

. (49)

Similarly, if a0 > 0, we have

∂J

∂p0
= (a1 − a0)

q(a0)/N0

1 + p0q(a0)/N0
− λa1 = 0, (50)

and, thus,

p0 =

(
a1 − a0

λa1

− N0

q(a0)

)+

. (51)
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If a0 = 0, then p0 = 0. Based on (16), 1/λ can be solved and (18) follows immediately.
�

Proof: Lemma 3

(al − al−1)R (plq(al)) = (al − x)R (plq(al)) + (x − al−1)R (plq(al)) (52)

< (al − x)R (plq(x)) + (x − al−1)R (plq(al)) . (53)

�

Proof: Theorem 3
For a sufficiently large L, there exists an l0(L) > 0 such that s0 ∈ V†

l0(L). Even though

l0(L) is a function of L, we will drop (L) to simplify the following derivations. Using the
notation q†l = q(a†

l ), we can write q†l0 ≤ s0 ≤ q†l0+1. It follows from (21) that

p(s) ≥ N0

(
1

q†l0+1

− 1

s

)+

(54)

For s ∈ V†
l , s ≥ q†l , so that

p(s) ≥ N0

(
1

q†l0+1

− 1

q†l

)+

s ∈ V†
l (55)

With the same average power p for both the discrete power assignment (23) and the contin-
uous policy (21), we have

1

L

L−1∑
l=1

N0

(
1

λ†N0
− 1

q†l

)+

=

L−1∑
l=0

∫
V†

l

p(s)f(s) ds (56)

≥ 1

L

L−1∑
l=1

N0

(
1

q†l0+1

− 1

q†l

)+

(57)

We observe that the inequality (57) implies q†l0+1 > λ†N0. It follows from (23) that

p†l ≥ N0

(
1

q†l0+1

− 1

q†l

)+

(58)

Now we derive a lower bound to R†
L.

R†
L =

L−1∑
l=1

1

L
R(p†l q

†
l ) ≥

L−1∑
l=l0+1

1

L
R(p†l q

†
l ) (59)

Applying the lower bound (58), we obtain

R†
L ≥ Rlo(L) =

1

L

L−1∑
l=l0+1

log

(
q†l

q†l0+1

)
(60)
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Next, we upperbound C by Rlo(L) plus terms that will go to zero with increasing L. Since
s0 ≥ q†l0 , we see from (19) that

C ≤
∫ ∞

q†l0

log

(
s

q†l0

)
f(s) ds (61)

=
L−1∑

l=l0+1

∫
V†

l−1

log

(
s

q†l0

)
f(s) ds + I†

L (62)

where I†
L denotes the integral

I†
L =

∫
V†

L−1

log

(
s

q†l0

)
f(s) ds (63)

Below, we will take some additional care to upperbound I†
L. Since s ∈ V†

l−1 implies s ≤ q†l ,
we have from (62) that

C ≤ 1

L

L−1∑
l=l0+1

log

(
q†l
q†l0

)
+ I†

L (64)

=
1

L

L−1∑
l=l0+1

log

(
q†l

q†l0+1

q†l0+1

q†l0

)
+ I†

L (65)

≤ Rlo(L) + log

(
q†l0+1

q†l0

)
+ I†

L (66)

Using the shorthand V†
L−1 for the event S ∈ V†

L−1, we employ (63) to write

I†
L = Pr[V†

L−1]
(
E{log S|V†

L−1} − log q†l0

)
(67)

Since Pr[V†
L−1] = 1/L, and since the log function is concave,

I†
L ≤ 1

L
log E{S|V†

L−1} −
log q†l0

L
(68)

The conditional expectation can also be upperbounded as

E{S|V†
L−1} =

1

Pr[V†
L−1]

∫
V†

L−1

sf(s) ds (69)

≤ L

∫ ∞

0

sf(s) ds = LE {S} (70)

From (68) and (70), we have that

I†
L ≤ 1

L
log

(
LE{S}

q†l0

)
(71)
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Finally, we observe that q†l0 ≤ s0 ≤ q†l0+1 implies that

F (s0) − F (q†l0) ≤ F (q†l0+1) − F (q†l0) =
1

L
(72)

Continuity of the distribution function F (·) implies that limL→∞ q†l0 = limL→∞ q†l0+1 = s0.
This permits us to conclude that

lim
L→∞

log

(
q†l0+1

q†l0

)
= 0 (73)

Similarly, (71) implies
lim

L→∞
I†
L = 0 (74)

Applying (73) and (74) to (66), we see that C ≤ limL→∞ Rlo(L). Since C ≥ R†
L and (60) im-

plies limL→∞ R†
L ≥ limL→∞ Rlo(L), the theorem follows.

B Concavity of Water-Spilling

If we let al to be an arbitrary value a ∈ (al−1, al+1), the water-spilling objective, the rate
sum on Vl−1 and Vl, equals

R̃l = (a − al−1)R (pl−1(a)q(al−1)) + (al+1 − a)R (plq(a)) . (75)

Let φ′ and φ′′ be the first and the second order derivatives with respect to a, respectively.
Now, we have

R̃′′
l = 2R′(pl−1q(al−1)) + (a − al−1)R

′′(pl−1q(al−1))

−2R′(plq(al−1)) + (al+1 − a)R′′(plq(a)). (76)

For the first two terms in (76), after simple manipulations, we obtain

2R′(pl−1q(al−1)) + (a − al−1)R
′′(pl−1q(al−1)) =

−{[q(al−1)]
′}2{

N0

q(al−1)
+ pl−1

}2 < 0. (77)

For the second two terms in (76),

−2R′(plq(al−1)) + (al+1 − a)R′′(plq(a)) =
−2[q(a)]′ + (al+1 − a)[q(a)]′′

N0

pl
+ q(a)

+
−{[q(al−1)]

′}2{
N0

pl
+ q(a)

}2 .(78)

The value of R̃′′
l depends on the fading distributions as well as the power p̄l. Moreover, it is

hard to gain any insight on the sign of R̃′′
l based on its closed form

R̃′′
l =

−(p′l−1)
2{

N0

q(al−1)
+ pl−1

}2 +
−2[q(a)]′ + (al+1 − a)[q(a)]′′

N0

pl
+ q(a)

+
−{[q(a)]′}2{
N0

pl
+ q(a)

}2 . (79)
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Note, if the numerator of the second term in (79), −2[q(a)]′ + (al+1 − a)[q(a)]′′, is negative,
R̃′′

l will be negative and, henceforth, a sufficient condition for our objective function R̃l to
be concave is

−2[q(a)]′ + (al+1 − a)[q(a)]′′ ≤ 0. (80)

It is worthwhile pointing out that −2[q(a)]′+(al+1−a)[q(a)]′′ only depends on the distribution
of S. Since CDF F (s) is a strictly decreasing function we have that [q(a)]′ > 0 and, thus,
the sufficient condition can be simplified to

2

1 − F (s)
+

F
′′
(s)

[F ′(s)]2
≥ 0, (81)

where F (s) = a for any s ∈ (q(al−1), q(al+1)) and al+1 − a is substituted by 1 − F (s). In
Section 6, we show that several fading distributions satisfy (28).

The last operation at the fourth step is to maximize the rate over V0 by varying a0 only.
The objective function (a1 − a0)R(a0p0) is also concave if (28) is satisfied.
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