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Abstract –The maximum likelihood sequence estimator 

(MLSE) has been shown to be an effective measure against 
inter-symbol interference.  An estimate of the discrete-time 
equivalent channel is usually required in order to perform 
sequence estimation.  In practice, the length (or memory) of 
the channel is unknown to the receiver for wireless 
communication channels.  In this paper, upper and lower 
bounds for the performance loss due to channel estimator 
memory mismatch are derived for unbiased estimators, while 
approximate expressions for the irreducible BER floor caused 
by channel estimator memory mismatch are derived for biased 
estimators.  Simulation results are also provided for random 
channels to verify the correctness of the analysis. 

I. INTRODUCTION 

Equalization [1] has been known to be an effective 
measure against inter-symbol interference (ISI) in wireless 
data communication systems.  A popular class of equalizers 
is known as the channel-estimation-based equalizers[2].      
Various analytical[4,5,6] and simulation[2,7] studies all 
indicate that the performance of channel-estimation-based 
equalizers is very sensitive to the accuracy of the channel 
estimate. 

For wireless communications, the actual length of the 
channel is generally location-dependent and unknown.  
Since the length of the channel estimator in a receiver is 
usually fixed, channel estimator memory mismatch inevitably 
occurs and is also a source of channel estimation error.  
When the length of the channel estimator is shorter than the 
actual channel, the channel estimate is always biased.  This 
case is referred to as under-estimation in this paper.  On the 
other hand, when the length of the channel estimator is longer 
than the actual channel, the channel estimate may or may not 
be biased.  This case is referred to as over-estimation.  
Qualitatively, an irreducible BER floor exists if the channel 
estimate is biased as will be discussed later in this paper.  
On the other hand, if the channel estimate is unbiased (which 
implies over-estimation), there will be no BER floor.  
However, a performance loss may still be incurred due to 
over-estimation. 

In this paper, we investigate the effect of channel estimator 
memory mismatch (under-estimation and over-estimation) on 
the BER performance of the channel-estimation-based MLSE.  
An analytical expression is first derived for the BER of an 
MLSE with biased, noisy channel estimate that may be 
under- or over-estimated.  We next show that an unbiased 
over-estimated channel estimator does not cause irreducible 
BER floor, however it still incurs a performance loss that 

increases with the extent of over-estimation.  A formula and 
upper and lower bounds for this performance loss are also 
obtained.  Furthermore, we also show that channel 
estimation bias causes an irreducible BER floor in the MLSE, 
and approximate formulas for the BER floor are also derived.  
Computer simulation results are also provided for the 
least-squares channel estimator to verify the correctness of 
the analysis. 

II. CHANNEL ESTIMATION 

Consider the linear modulation transmission system in Fig. 
1.  The discrete-time signal at the input of the MLSE is 
given by 

k
j

jkjk zxhy += ∑
=

−

ν

0

,  (1) 

where hj, j=0,1,…,ν, is the impulse response of the baseband 
discrete-time equivalent channel of the system, xk is the k-th 
complex modulation symbol, and zk are the samples of 
complex Gaussian noise.  The integer ν is referred to as the 
channel memory.  It is assumed that the modulation symbols 
are zero-mean, independent and identically distributed (i.i.d.) 
random variables with average symbol energy given by 

[ ]2E kX xE ≡   (2) 
where E[• ] denotes statistical expectation, and that symbols 
in the signal constellation are equally likely.  It is also 
assumed that the noise samples zk are independent of xk and 
are i.i.d. zero-mean circularly symmetric complex Gaussian 
random variables with variance given by 

[ ]22 E kz≡σ   (3) 
Finally, it is assumed that ν and hj are deterministic unless 
otherwise stated. 

In practice, ν and hj are unknown to the receiver, therefore 
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Fig. 1.  Transmission system using MLSE in the receiver. 
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the channel estimator assumes that the channel memory is ν′ 
and computes the channel estimates ',,1,0,ˆ ν=jh j  from 
the received signal. In order to accommodate both 
over-estimation (ν′  ≥ ν) and under-estimation (ν′  < ν), in this 
paper the channel vector and channel estimate vector are 
defined as (µ+1)×1 vectors given by 

[ ]Tpp µ0=p   (4) 
and 

[ ]Tpp µˆˆˆ 0=p , (5) 
respectively, where µ=max(ν,ν′), 
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and 
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We also define the bias vector as 
[ ]ppb −= ˆE   (8) 

and zero-mean estimation error vector as 
bppe −−= ˆ .  (9) 

The definitions in (4) to (9) are depicted in Fig. 2 for both 
under-estimation and over-estimation.  Note that although e 
is a (µ+1) × 1 vector, ej is random only for 0 ≤ j ≤ ν′ .  We 
assume that e(1:ν′+1) is a random vector1 with covariance 
matrix ΣΣΣΣe. 

One of the most well-known is the least-squares (LS) 
algorithm[3].  The LS channel estimate is given by [3] 
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where X1 = X(:,1:ν′+1), 
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and Q is the number of training symbols.  For over- 
estimation (ν′  ≥ ν), it can be shown that b = 0 and 

( ) 1
11

2 −
= XXΣ e

Hσ .  (12) 
On the other hand, for under-estimation (ν′ < ν) it can be 
shown that ΣΣΣΣe is the same as (12) and 
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where X2 = X(:,ν′+2:ν+1).  Furthermore, for both cases  

                                                 
1 For a vector x, x(a:b) denotes a sub-vector consisting of the a-th to the b-th 

elements of x.  Similarly, for a matrix A, A(:,a:b) denotes a sub-matrix 
consisting of the a-th to the b-th columns of A. 
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Fig. 2.  The relation between the various vectors for over- and 
under-estimation. 

e(1:ν′+1) is a circularly symmetric zero-mean Gaussian 
random vector. 

III. ANALYSIS OF CHANNEL-ESTIMATION-BASED MLSE 

The channel-estimated-based MLSE observes a sequence 
of N received signal samples y0 … yN-1 and finds an estimated 
sequence of modulated symbols 10 ˆˆˆ −= Nxxx  that 
minimizes, over all possible length-N modulation symbol 
sequences s, the quantity 

( )
21

0

'

0

ˆ∑ ∑
−

= =
−−=

N

j l
ljlj spyd

ν

s .  (14) 

The error rate of the channel-estimation-based MLSE using 
channel estimate p̂  can be derived using Forney’s 
union-bounding technique[8]. 

Let x denote the transmitted sequence, and let Am(x) be 
the set of all paths through the trellis that diverge from and 
remerge for the first time with x at times k and k + m, 
respectively, where 0 ≤ k ≤ N – 1 and m ≥ ν′+1.  Define an 
error event of length m as the event that some member of 
Am(x) has a metric smaller than d(x).  Let εεεε be an error 
sequence such that x + εεεε is a valid sequence of modulated 
symbols, and let 

[ ]T
kmkm '1 νεε −−+≡ε   (15) 

be a vector representing the subsequence of εεεε from time 
(k –ν′) to (k + m – 1).  The probability that εεεε characterizes an 
error event of length m is given by 
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where Pr[x] is the probability of transmitting x.  We can 
show that 
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where 

mmm εPα ˆˆ ≡ , (18) 



















=

'0

'0

'0

ˆˆ

ˆˆ
ˆˆ

ˆ

ν

ν

ν

pp

pp
pp

mP  , (19) 

Bm is a convolution matrices associated with the bias vector b 
with similar definition in (19), and 
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where <ΣΣΣΣe> denotes a Toeplitz matrix of the same dimensions 
as ΣΣΣΣe whose elements are obtained by summing the entries of 
ΣΣΣΣe on the corresponding diagonals and dividing the result by 
the number of elements on the main diagonal.  Note that the 
first term in the argument of the Q function characterizes the 
performance of an MLSE if the channel were indeed p̂ , 
whereas the second and third terms correspond to the 
additional performance loss due to bias and noise. 

We now present some special cases. 

A. Ideal Channel Estimator 

For an ideal channel estimator, we have ν′  = ν = µ and Bm 
= ΓΓΓΓm = 0.  In this case (17) degenerates to 
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where Pm is the m×(m+ν) convolution matrix associated with 
the channel vector p with definition similar to (19).  This 
result is consistent with the result in [8]. 
 
B. Unbiased Channel Estimator 

For an unbiased channel estimator we have ν′  ≥ ν and Bm = 
0.  We can show that an unbiased, over-estimated channel 
estimator incurs an asymptotic performance loss with respect 
to (21).  The performance loss generally increases with ν′  if 
the nonzero diagonal elements of ΓΓΓΓm remain approximately 
constant.  This is intuitively appealing because as ν′ 
increases, the channel estimate contains more unnecessary 
taps that are purely noise.  These taps introduce additional 
noise into the MLSE and cause performance degradation.  
We can show that the performance loss can be bounded by 

 ( )( ) ( )( )max10min10 1'1log101'1log10 λνγλν ++≤≤++   (22) 

where λmin and λmax are, respectively, the smallest and largest 
eigenvalues of the matrix ΓΓΓΓm.  Finally, substituting ν = ν′ 
into (22) gives results that were previously derived in [5]. 

C. Biased Channel Estimator 
For a biased noisy estimator, the error event probability 

is given by (17).  Assuming that σ2 approaches 0, and that µ 

is sufficiently large, it can be shown that the probability of bit 
error is approximated by 
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where M is the size of the signal constellation, 
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and w(εεεεm) is the number of nonzero components of εεεεm.  In 
(25) Emin is the set of εεεεm for which ( ) ( )bbα min;ˆ δδ =m . 

It has been observed that for most channels the minimum 
value of ( )bα ;ˆ

mδ  over error events of length m = ν′+1 is 
very close to ( )bminδ .  Furthermore, bpp +≈ˆ  when the 
channel SNR is high.  Thus an approximate formula for the 
irreducible BER floor caused by channel estimation bias is 
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where dmin is the minimum distance between two 
constellation points. 

IV. SIMULATION RESULTS 

The block diagram of the simulated system is shown in Fig. 
3.  Simulation results are obtained using bursts of quaternary 
phase shift keying (QPSK) symbols with average energy EX.  
Each burst consists of training symbols followed by 
information symbols.  The wireless channel is modeled as a 
random time-invariant discrete-time equivalent channel with 
memory ν corrupted by the discrete-time complex AWGN 
samples with variance σ2.  Channels are assumed to be 
independent from burst to burst.  Each instance of the 
random channel is normalized so that the sum of 
magnitude-squares of the channel taps averages to 1.  At the 
receiver, LS channel estimation with memory ν′  is performed 
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Fig. 3.  Simulation system block diagram. 
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Fig. 4.  Average BER performance of LS channel estimators with 
over-estimation (ν′≥  ν) obtained by computer simulation for random 

channels with ν = 2. 
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Fig. 5.  Simulated and analytical bounds of the average performance loss 
of LS channel estimators with over-estimation (ν′  ≥ ν) for random channels 
with ν=2.   For the simulated case the performance loss is measured at 10-3 

average BER. 

according to (10).  MLSE is then performed on the 
remaining information symbols using the LS channel 
estimate, and the number of bit errors is tabulated. 

The effect of over-estimation (ν′≥ν ) is shown in Fig. 4.  
Here the average BER of the simulated system is plotted as 
functions of Eb/σ2, where Eb = EX/2 is the energy per 
transmitted bit.  The random discrete-time equivalent 
channel has memory ν = 2, with the channel taps being i.i.d. 
circularly symmetric zero-mean complex Gaussian random 
variables.  LS channel estimators with ν′  = 2, 3, and 4 are 
simulated according to (10).  There are a total of 25 training 
symbols consisting of repetitions of a pseudo-random (PN) 
sequence with period 15 mapped onto two antipodal QPSK 
signal points.  The number of observations used for channel 
estimation is set to Q = 15.  The performance of the ideal 
channel estimator is also plotted as a baseline for comparison. 

It can be seen from Fig. 4 that the performance indeed  
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Fig. 6.  The relative variance of the random channel taps for simulating 
under-estimation. 

degrade as ν′  increases.  The approximate average 
performance loss with respect to the ideal channel estimator 
is read off of Fig. 4 and plotted against ν′  in Fig. 5 together 
with the upper and lower bounds given by (22).  It can be 
seen the simulated performance loss matches very well with 
the bounds.   

The effect of under-estimation (ν′ < ν) is next simulated.  
Here the discrete-time equivalent channel has memory ν = 10, 
with each tap being independent zero-mean circularly 
symmetric complex Gaussian distributed, with variances that 
decay exponentially as shown in Fig. 6.  LS channel 
estimators with ν′  = 1, 2, 3, and 4 are again simulated using 
the same training sequence as the over-estimation case.  The 
BER for one instance of the random channel is plotted in Fig. 
7 as functions of Eb/σ2.  It can be seen that a BER floor 
indeed exists as predicted.  It is found that for this particular 
instance of the random channel, (23) and (26) give the same 
values for all ν′ .  These values are also plotted in Fig. 8 as a 
function of ν′  together with the simulated BER at 20 dB.  
Comparing the two curves, it can be seen that the analytical  
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Fig. 7.  Simulated BER performance of LS channel estimators with 
under-estimation (ν′  < ν) for one particular instance of a random channel 
with ν=10. 
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results agree very well with the simulation results at least for 
this particular instance of the random channel. 

Using the same channel model as in Figs. 7 and 8, the 
average irreducible BER floor is simulated at Eb/σ2 = ∞.  
The result is plotted against ν′  in Fig. 9.  The BER floor 
predicted by (23) and (26) is also evaluated for each burst, 
and the average over all bursts are also plotted in Fig. 9.  It 
can be seen that (23) and (26) indeed give very close average 
values, with (26) being slightly lower as expected.  
Furthermore, it can be seen once again that the average BER 
floors predicted by (23) and (26) agree very well with the 
simulation results. 

V. CONCLUSION 

The effect of channel estimator memory mismatch on the 
performance of MLSE is investigated in this paper.  It is 
found that as long as the channel estimate is unbiased, 
channel memory mismatch does not cause irreducible BER 
floor.  However, a performance loss is still incurred.  Upper 
and lower bounds for the performance loss with respect to an 
ideal channel estimator are derived in (22).  Furthermore, it 
is also found that MLSE exhibits an irreducible BER floor 
when the channel estimate is biased, e.g., when the channel 
estimator is too short.  Two approximate expressions, (23) 
and (26), are also obtained for the irreducible BER floor of 
biased channel estimators. 

The analytical expressions are verified by computer 
simulation using the LS channel estimator for random 
channels.  For over-estimation, simulation results show that 
the performance loss with respect to an ideal channel 
estimator agree very well with the analytical bounds in (22).  
On the other hand, for under-estimation, simulation results 
also show that the irreducible BER floors agree very well 
with the approximate analytical expressions (23) and (26). 
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