
MMSE Channel Prediction Assisted Symbol-by-symbol
Adaptive OFDM
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Abstract— Subband Adaptive Orthogonal Frequency Division Multi-
plexing (OFDM) constitutes an effective method of compensating for the
frequency selective fading incurred by mobile receivers. The channel
transfer function estimation error increases both as a function of the
Doppler frequency and that of the subband modem mode signalling delay.
This leads to a degradation of the system’s performance. In this contribu-
tion a 2D-MMSE channel-predictor is investigated as a means of compen-
sating for these effects, which incorporates the scheme proposed in [1] into
an adaptive OFDM scheme.

I. OVERVIEW

Subband adaptive OFDM (AOFDM) has been shown to be an effec-
tive method of improving the system performance in mobile environ-
ments, where the subbands least affected by frequency-selective fading
are assigned more bits per subcarrier, than the severely faded subbands
[2–5]. The modulation mode assignment to be employed by the remote
transmitter A in the next timeslot is determined by the local receiver
B upon estimating the short-term channel quality to be experienced by
the next received OFDM symbol on the basis of the most recently re-
ceived OFDM symbol. Due to the channel’s variation with time, there
is a mismatch between the channel quality estimated by receiver B
and that actually experienced by the following OFDM symbol trans-
mitted by transmitter A. This reduces the achievable performance gain
of AOFDM compared to employing a single fixed modulation mode.
Hence the application of AOFDM is confined to channel environments
exhibiting relatively low Doppler frequencies, especially if no channel
prediction is used. Hence, in order to support AOFDM in a broader
range of mobility conditions, signal prediction techniques - which are
well-known from the field of speech-coding for example - can be em-
ployed for obtaining a more accurate estimate of the channel quality
in the next transmission timeslot on the basis of that in previous slots.
A channel predictor assisted OFDM pre-equalization scheme was dis-
cussed in [6], while prediction assisted decision-directed channel es-
timation has been proposed in [7]. In this contribution we will study
the performance of an AOFDM transceiver, which employs decision-
directed channel estimation and modulation mode adaptation. In the
next section we will commence our discussions with an outline of the
adaptive transceiver structure, while in Section III we detail the MMSE
predictor’s design. Finally, in Section IV the system’s performance is
evaluated under a variety of channel conditions.

II. ADAPTIVE TRANSCEIVER

The schematic of the adaptive time division duplex (TDD)
transceiver employed in our simulations is shown in Figure 1. The sig-
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Fig. 1. Schematic of the subband adaptive transceiver employing decision-
directed MMSE channel prediction.

nal received from the remote transmitter A in the n-th downlink times-
lot is forwarded to a Fast Fourier Transform (FFT) block, followed by
the frequency-domain equalization of the complex symbols associated
with each of the K subcarriers. Equalization ensues using the á priori
channel transfer factor estimates Ĥapr[n, k], k = 0, . . . ,K−1 gener-
ated during the (n−1)-th downlink timeslot on the basis of the OFDM
symbols received in the previous P downlink timeslots, where each
timeslot hosts one OFDM symbol. The subband modulation mode
assignment to be employed by transmitter B for the OFDM symbol
transmitted on the next uplink timeslot is explicitely embedded into
the data stream as side-information.

As seen in Figure 1, the primary data and the modem mode sig-
nalling streams are separated from each other in the demultiplexer
(DMUX) stage of Figure 1, followed by adaptive OFDM demodula-
tion of the primary user data. Additionally, turbo coding can be em-
ployed in the system, which requires adaptive soft-bit generation at
the receiver instead of direct hard-decision based adaptive demodula-
tion, followed by channel-deinterleaving and turbo decoding. The de-
modulated and turbo decoded data stream is conveyed to the adaptive
receiver’s output. Furthermore, the sliced bits are invoked for regener-
ating the transmitted OFDM symbol to be used as a reference signal,
which allows updating the channel transfer function estimate gener-
ated by the receiver. Hence the output bit stream has to be optionally
re-encoded by the turbo encoder and re-modulated. An initial á poste-
riori estimate H̃apt[n, k] of the actual channel transfer factor H[n, k]
in the k-th subcarrier of the n-th OFDM symbol is obtained upon di-
viding the complex received OFDM symbol x[n, k] by the subcarrier’s
sliced symbol s̃[n, k] [1], yielding:

H̃apt[n, k] =
x[n, k]

s̃[n, k]
, k = 0, . . . ,K − 1

416
0-7803-7400-2/02/$17.00 © 2002 IEEE



= H[n, k] · s[n, k]
s̃[n, k]

+
n[n, k]

s̃[n, k]
, (1)

where H[n, k] denotes the Rayleigh-distributed complex channel
transfer factor having a variance σ2

H , which is unity. Furthermore,
s[n, k] represents the complex OFDM symbol transmitted, which ex-
hibits zero mean and a variance of σ2

s , and finally n[n, k] is the Ad-
ditive White Gaussian Noise (AWGN) contribution with a mean value
of zero and variance of σ2

n. The total noise variance σ2
n is constituted

by the sum of the AWGN process’ variance σ2
AWGN plus the vari-

ance of the Gaussian noise-like inter-subcarrier interference contribu-
tion σ2

ICI . The latter component can be neglected in fading channels
exhibiting a low maximum Doppler frequency fD . However, under
high-mobility channel conditions - which we envisage for our system
- an estimate of σ2

ICI has to be provided. Upon assuming error-free
symbol decisions, where s̃[n, k] = s[n, k], the initial á posteriori
channel transfer factor estimate of Equation 1 is simplified to:

H̃apt[n, k] = H[n, k] +
n[n, k]

s[n, k]
, (2)

which has a mean-square estimation error of β[n, k]σ2
n/σ

2
s . The factor

β[n, k] depends on the modulation mode employed in the k-th subcar-
rier. For an M-PSK mode for example, β[n, k] = 1, while for the 16-
QAM modulation mode β[n, k] = 17/9 [8]. A 2D minimum mean-
square error (MMSE) channel estimator was proposed in [1], in or-
der to infer more accurate channel transfer factor estimates Ĥapt[n, k]
from the initial estimates H̃apt[n, k], k = 0, . . . ,K − 1. This is
achieved by additionally capitalizing on the previous initial á posteri-
ori estimates H̃apt[n − ν, k], ν = 1, . . . , P − 1, k = 0, . . . ,K − 1
of the (P − 1) past OFDM symbols, where P − 1 denotes the order
of the associated estimation filter. This estimator exhibits the struc-
ture seen in Figure 1, within the circle drawn in dashed lines. Ex-
plicitely, from the frame of initial á posteriori channel transfer factor
estimates H̃apt[n, k], k = 0, . . . ,K− 1 of the most recently received
OFDM symbol, initially a short-term estimate of the time-variant chan-
nel impulse response (CIR) is obtained upon invoking the Inverse Fast
Fourier Transform (IFFT). In the simplest case only the first K0 CIR-
related taps’ estimates are retained, while the higher-delay IFFT output
samples constituted by noise - in the context of a sample-spaced CIR
- are set to zero in order to reduce the noise by a factor of K0/K.
Furthermore, Wiener estimation filtering is performed [1], which will
be contrasted to Wiener prediction filtering [7] in Section III. Lastly,
the FFT is applied to the CIR-related tap estimates, in order to obtain
the refined á posteriori estimates Ĥapt[n, k] of the frequency domain
channel transfer function of the current OFDM symbol.

In [1] these estimates were employed as á priori estimates for
the frequency domain equalization of the next received OFDM sym-
bol, neglecting the channel’s Doppler-dependent transfer function
variation. In channel evironments exhibiting a relatively high de-
gree of mobility the mismatch between the channel transfer factors
Ĥapt[n, k], k = 0, . . . ,K − 1 estimated for the current OFDM sym-
bol, but also employed for the equalization of the next received OFDM
symbol, may become excessive. Hence, in order to avoid this mis-
match, the motivation of [7] was to employ a prediction filter instead
of the estimation filter of [1]. This scheme was also incorporated in
the adaptive transceiver structure portrayed in Figure 1.

In the proposed arrangement the advantage of employing a predic-
tion filter is two-fold. Firstly, more accurate channel transfer factor
estimates are provided for the demodulation of the next OFDM sym-
bol received. Secondly, the channel quality expressed in terms of the

signal-to-noise ratio (SNR) and potentially experienced by an OFDM
symbol in the next downlink timeslot can be estimated more reliably.
This is expected to enhance the performance of our AOFDM scheme.
The design of the prediction filter will be further elaborated on in Sec-
tion III.
The AOFDM mode adaptation performed by the modem is based on
the choice between a set of four modulation modes, namely 4, 2, 1
and 0 bit/subcarrier, where the latter mode corresponds to ’no trans-
mission’ [2]. The modulation mode could be in theory assigned on
a subcarrier-by-subcarrier basis, but the signalling overhead of such
a system would be prohibitive, without significant performance ad-
vantages [2]. Hence, we have grouped adjacent subcarriers into ’sub-
bands’ and assigned the same modulation mode to all subcarriers in a
subband [2, 4]. Note that the frequency domain channel transfer func-
tion is typically not constant across the subcarriers of a subband, hence
the modem mode adaptation will be sub-optimal for some of the sub-
carriers. The modem mode adaptation is achieved on the basis of the
SNR estimated in each of the K subcarriers for the OFDM symbol
hosted by the (n+ 1)-th downlink timeslot, which is formulated as:

SNR[n+ 1, k] = Ĥ2
apr[n+ 1, k]

σ2
s

σ2
n

. (3)

The iterative AOFDM mode assignment commences by calculating in
the first step for each subband and for all four modulation modes the
expected overall subband bit error ratio (BER) by means of averag-
ing the estimated individual subcarrier BERs [2]. Throughout the sec-
ond step of the algorithm - commencing with the lowest throughput
but most robust modulation mode in all subbands - in each iteration
the number of bits/subcarrier of that particular subband is increased,
which provides the best compromise in terms of increasing the num-
ber of expected bit errors and the number of additional data bits ac-
commodated. This process continues, until the target number of bits
to be transmitted by the OFDM symbol is reached. This algorithm
originates from the philosophy of the Hughes-Harthogs algorithm [9].
As a result of intensive research in the area recently several computa-
tionally efficient versions of the algorithm have emerged [2]. Again,
the computed AOFDM mode assignment is explicitely signalled to the
remote transmitter A on the next uplink OFDM symbol transmitted by
transmitter B for employment in the forthcoming downlink timeslot.
In the next section the design of the CIR-related tap predictor will be
outlined.

III. THE MMSE-PREDICTOR

In this section we highlight the structure of the MMSE predictor
[10, 11]. Specifically, an á priori estimate ĥapr[n + 1, l] of the l-th
significant CIR-related tap, where l < K0, is given by:

ĥapr[n+ 1, l] =

P−1∑
ν=0

c[ν, l] · h̃apt[n− ν, l], (4)

for the (n + 1)-th timeslot. In Equation 4 the variable c[ν, l] denotes
the ν-th coefficient of the P -tap predictor and h̃apt[n−ν, l] represents
the á posteriori estimate of the l-th CIR tap in the (n− ν)-th timeslot,
which is related to the á posteriori estimates H̃apt[n − ν, k], k =
0, . . . ,K−1 of the true channel transfer factors by the Discrete Fourier
Transform (DFT) matrix W. Upon invoking Equation 4, the squared
error between the true CIR-related tap value h[n+1, l] and the á priori
estimate ĥapr[n+ 1, l] can be expressed as:

|e[n, l]|2 =
∣∣∣h[n+ 1, l] − ĥapr[n+ 1, l]

∣∣∣2 (5)
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=

∣∣∣∣∣h[n+ 1, l] −
P−1∑
ν=0

c[ν, l] · h̃apt[n− ν, l]

∣∣∣∣∣
2

.

By differentiating Equation 5 with respect to each of the CIR predictor
coefficients c[κ, l], κ ∈ {0, . . . , P − 1}, a set of P equations can be
obtained, which are known in the literature as the Wiener-Hopf equa-
tions [11] given by:

P−1∑
ν=0

c∗[ν, l] · E{h̃apt[n− κ, l] · h̃∗
apt[n− ν, l]} =

E{h̃apt[n− κ, l] · h∗[n+ 1, l]}, (6)

where again κ ∈ {0, . . . , P −1} and E{} denotes the expected value.
By introducing vector notation, a more convenient representation of
Equation 6 can be found:

R
[t]
apt[l] · c[l] = r

[t]
apt[l], (7)

where the (P ×P )-auto-correlation matrix R
[t]
apt[l] of the á posteriori

CIR-related tap estimates used for predicting the l-th CIR-related tap
is given by:

R
[t]
apt[l] = E{h̃apt[l] · h̃H

apt[l]} = µ
[f ]
l R[t] +

σ2
n

σ2
s

I. (8)

In Equation 8 the variable µ
[f ]
l denotes the l-th CIR-related tap’s

variance, which can be expressed as the l-th diagonal element of
the decomposition of the channel’s spaced-frequency correlation ma-
trix1 R[f ] with respect to the unitary DFT matrix W, namely as
µ

[f ]
l = (WHR[f ]W)[l,l]. In the specific case, when the Karhunen-

Loeve Transform (KLT) matrix U - rather than the DFT matrix W
- is employed for transforming the á posteriori channel transfer fac-
tor estimates from the frequency-domain to the CIR-related domain,
the decomposition results in a diagonal shape matrix with the l-th el-
ement given by λ

[f ]
l = (UHR[f ]U)[l,l], which is known as the l-th

eigenvalue of the matrix R[f ]. The eigenvectors corresponding to the
different eigenvalues of R[f ] are hosted by the matrix U. Note that
in the context of the idealistic scenario of a sample-spaced CIR the
DFT matrix W is identical to the KLT matrix U. The application
of the KLT for transforming the correlated á posteriori channel trans-
fer factor estimates to the CIR-related domain results in a representa-
tion, where the number of significant coefficients is as low as possible.
Furthermore, these coefficients are uncorrelated with each other. De-
spite these advantages, the application of the KLT is impractical due
to the following reasons. First of all, perfect knowledge of the chan-
nel’s spaced-frequency correlation matrix is required, which is nor-
mally not available. Secondly, depending on the number of significant
CIR-related taps retained, namely on K0, the associated complexity
might be excessive. In Equation 8 the matrix R[t] is the spaced-time
correlation matrix, which hosts the samples of the channel’s normal-
ized spaced-time correlation function r[t](∆t) [1]. Furthermore, note
that in Equation 8 we have neglected the effects of the modulation
mode-dependent SNR variations alluded to earlier in Section II. The
(P × 1)-cross-correlation vector r

[t]
apt[l] seen in Equation 7 is defined

by:
r
[t]
apt[l] = E{h̃apt[n, l] · h∗[n+ 1, l]} = µ

[f ]
l r[t], (9)

1The channel’s spaced-frequency correlation matrix is defined as R[f ] =
E{H[n]HH [n]}, where H[n] = (H[n, 0], . . . , H[n, K − 1])T . The indi-
vidual matrix elements are also the samples of the channel’s normalized spaced-
frequency correlation function r[f ](∆f) [1].

where r[t] is the cross-correlation vector also hosting the samples of
the channel’s normalized spaced-time correlation function r[t](∆t).
Furthermore, h̃apt[l] is the (P × 1)-sample vector containing the P á
posteriori estimates associated with the l-th CIR-related tap:

h̃apt[n, l] = (h̃apt[n, l], . . . , h̃apt[n− (P − 1), l])T , (10)

and c[l] is the (P × 1)-vector of CIR predictor coefficients:

c[l] = (c∗[0, l], . . . , c∗[n− (P − 1), l])T . (11)

A conceptually straightforward solution of Equation 7 for c[l] is given
by the direct inversion of the auto-correlation matrix R

[t]
apt[l], yielding:

c[l] = R
[t]−1
apt [l] · r[t]

apt[l]. (12)

However, computationally more efficient approaches, such as the
Levinson-Durbin algorithm [11] are available, which take into account
the Hermitean structure of the auto-correlation matrix that is stated as
R

[t]H
apt = R

[t]
apt. The á priori estimation MSEapr[l] of the l-th CIR-

related tap predictor is given by rearranging Equation 5 and calculating
the expected value of |e[n, l]|2, yielding [11]:

MSEapr[l] = µ
[f ]
l −2Re{cH [l]·r[t]

apt[l]}+cH [l]·R[t]
apt[l]·c[l], (13)

where in the context of the optimum Wiener solution of Equation 12
we obtain the following expression for the Minimum MSE (MMSE):

MMSEapr[l] = µ
[f ]
l − cH [l] · r[t]

apt[l]. (14)

Furthermore, by capitalizing on the results of [8] the average estima-
tion MSE observed in the frequency-domain upon retaining only the
first K0 CIR-related á priori tap estimates, while setting the remaining
tap estimates equal to zero is given by:

MSEapr|K0 =
1

K

K0−1∑
l=0

MSEapr[l] +
1

K

K−1∑
l=K0

µ
[f ]
l . (15)

The difference between the predictor employed in our system por-
trayed in Figure 1 and the estimator proposed in [1] is in the definition
of the cross-correlation vector of Equation 9. Specifically, the predic-
tor employs an estimate of the cross-correlation between the l-th CIR
tap’s estimates h̃apt[n−ν, l], ν = 0, . . . , P −1 of the previous P −1
plus the current CIRs and the actual l-th CIR tap h[n + 1, l] expected
during the (n+ 1)-th OFDM symbol. By contrast, the estimator capi-
talizes on the cross-correlation between the l-th CIR tap’s estimates of
the previous P − 1 plus the current CIRs and the actual l-th CIR tap
h[n, l] expected during the n-th OFDM symbol, which belongs to the
current timeslot.

As observed in Equations 8 and 9, calculation of the auto-correlation
matrix R

[t]
apt[l] and the cross-correlation vector r

[t]
apt[l] inherently re-

quires knowledge of the channel’s spaced-time spaced-frequency cor-
relation function rH(∆t,∆f), which was shown in [1] to be separa-
ble. The separability implies that we have rH(∆t,∆f) = r[t](∆t) ·
r[f ](∆f) under the condition that the different CIR taps’ fading pro-
cesses have the same correlation versus time, namely r[t](∆t). In
[12, 13] it was proposed by Höher et al. to employ a uniform,
ideally support-limited scattering function Sh(fd, τ) associated with
2D sinc-shaped spaced-time spaced-frequency correlation function
rH(∆t,∆f) in the context of 2D-FIR Wiener filter-based channel es-
timation. The aim of this design was that of rendering the estima-
tor insensitive against the variations of the channel’s associated mul-
tipath intensity profile and Doppler power spectrum. Specifically, it
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was argued in [1] that under these conditions no further MSE perfor-
mance degradation is observed for channels having a multipath spread
of Tm and Doppler spread of BD , when the estimator is designed for
T̃m ≥ Tm and B̃D ≥ BD . Hence this estimator was termed “ro-
bust”. In this case the robust estimator would exhibit the same MSE
performance, as the optimum channel estimator capitalizing on per-
fect knowledge of the channel’s statistics in the context of a channel
with a uniform, ideally support-limited scattering function. In general
this is not exactly true, except for linear estimation filters of an infinite
order, which hence employ an infinite number of signal samples. An
exception is the idealistic scenario of encountering a sample-spaced
CIR, where perfect robustness against the variations of the channel’s
multipath intensity profile can be achieved by capitalizing on a finite
number channel transfer function samples, namely on those contained
in the bandwidth of an OFDM symbol. In this case the uniform, ideally
support-limited sample-spaced multipath intensity profile, which ren-
ders the estimator robust, is given by µ̃[f ]

l = K
K0

, l = 0, . . . ,K0 − 12

and µ̃
[f ]
l = 0, l = K0, . . . ,K − 1, where Tm = K0Ts, which

will be used as estimates of the CIR-related tap variances µ[f ][l] re-
quired in Equation 8. In [1] this was also shown to be an acceptable
choice in the context of non-sample-spaced CIRs. In conclusion, the
uniform, ideally support-limited Doppler power spectrum and its asso-
ciated spaced-frequency correlation function employed in our perfor-
mance assessment in Section IV is given by:

SH(fd) =
1

BD
rect

(
fd

BD

)
, (16)

with:
r[t](∆t) = FT −1(SH(fd)) = sinc(πBD∆t). (17)

Specifically in the context of the OFDM system considered we have
∆t = (γ − δ)Ttd, where γ and δ are the integer indices of different
OFDM symbols between which the associated channel transfer func-
tions’ time-domain correlation is to be calculated, while Ttd denotes
the difference in time between two consecutive OFDM symbols.

IV. SIMULATION RESULTS

In this section the performance of the decision-directed channel pre-
diction assisted subband adaptive OFDM transceiver will be assessed
in the context of the indoor Wireless Asynchronous Transfer Mode
(WATM) channel environment characterized by the short (S)CIR of
[2], which we hence refer to in the figures as the SWATM channel. In
Figure 2 we have portrayed the performance of the AOFDM modem
for three different normalized Doppler frequencies FD = fDTf ,
where Tf denotes the OFDM symbol duration. Explicitely, this
implies that the Doppler frequency was normalised to the OFDM
symbol duration, rather than to the time-domain sampling interval
duration, typically used in single-carrier modems. Two scenarios are
compared against each other, namely that of zero-delay signalling of
the modulation mode assignment (’cont.’) and that of a more realistic
one Time Division Duplex (TDD) slot duration delay arrangement.
Explicitely, the modulation mode assignment requested by receiver
B for the next downlink timeslot was signalled by transmitter B to
receiver A in the uplink slot. For these simulations we assumed perfect
channel transfer function knowledge, zero-delay signalling of the

2This is valid when using the Hermitean transpose of the DFT matrix W
for performing the transform to the CIR-related domain. However, when em-

ploying the IDFT according to standard definition, we have µ̃
[f ]
l = 1

K0
, l =

0, . . . , K0 − 1.

AOFDM modulation mode assignment and ‘frame-invariant’ fading,
where the CIR taps were kept constant for the duration of an OFDM
symbol, in order to avoid inter-subcarrier interference (ICI). This
allowed as to study the performance of channel prediction without
the obfuscating ICI effects [2]. Upon comparing the performance
curves for the idealistic scenario of zero-delay signalling with that of
TDD signalling at an OFDM symbol normalized Doppler frequency
of fDTf = 0.01, we observe a slight BER performance degradation
for the latter scenario. This is, because the time-domain separation
between two consecutive OFDM symbols is effectively doubled.
In other words the channel transfer function estimate employed
during the current downlink OFDM symbol period for deciding upon
the modulation mode assignment to be used during the following
downlink OFDM symbol period is less correlated with the true
channel transfer function actually experienced by this OFDM symbol.
An additional BER degradation is observed upon further increasing
the OFDM symbol normalized Doppler frequency. For example, at
fDTf = 0.05 the performance advantage in favour of the AOFDM
scheme has completely diminished compared to the fixed modulation
based QPSK-assisted OFDM scheme of the same throughput. This is
our motivation for employing CIR-related tap prediciton filtering.

In our forthcoming simulations the idealistic assumptions of
‘frame-invariant’ fading and zero-delay signalling were removed,
again, in favour of the ‘frame-variant’ fading TDD scenario. The un-
coded BER performance is illustrated in Figures 3 and 4. In Figure 3
we characterised the low-mobility scenario of fDTf = 0.01, while in
Figure 4 the high-mobility scenario of fDTf = 0.05. As a reference,
we have plotted in both figures the performance exhibited by the fixed
BPSK and QPSK modulation modes, employing a 4-tap predictor.
Upon invoking AOFDM modulation we observed - particularly for the
4-tap CIR-related tap predictor - a tremendeous performance gain over
the fixed modulation modes. The improvement was more dramatic for
the high-mobility environment associated with Figure 4, where a BER
floor was observed at high SNRs as a result of the fading-induced
inter-subcarrier interference. In this scenario, low-BER transmission
was infeasible without CIR prediction. For relatively low SNRs the
BER performance was more limited as a result of erroneous symbol
decisions in the initial CIR estimation stage of the decision-directed
channel estimator. This effect is a consequence of transmitting
training information in every 32-th OFDM symbol only.
In conclusion, we have demonstrated that by invoking MMSE CIR
prediction, efficient decision-directed channel estimation can be
successfully employed in conjunction with AOFDM even under
high-mobility channel conditions.
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taps was K0 = 12.
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