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Abstract—Many communication systems arebandwidth-
expanding: the transmitted signal occupies a bandwidth
larger than the symbol rate. The sampling theorems of
Kotelnikov, Shannon, Nyquist et al. [1] shows that in or-
der to represent a bandlimited signal, it is necessary to
sample at what is popularly referred to as the Shannon or
Nyquist rate. However, in many systems, the required sam-
pling rate is very high and expensive to implement. In this
work we show that it is possible to get suboptimal perfor-
mance by sampling close to thesymbol rateof the signal,
using well-studied algorithmic components. This work is
based on recent results on sampling for some classes of non-
bandlimited signals [2]. In the present paper, we extend
these sampling results to the case when there is noise.

In our exposition, we use Ultra Wideband (UWB) signals
as an example of how our framework can be applied.

I. I NTRODUCTION

A communication system sends messages from the
transmitter to the receiver by having the message bits se-
lect symbols from a finite set called a constellation, and
then transmitting the selected symbol through a chan-
nel after properly modulating them. Modulation refers
to translating the symbols into signals that can be sent
through the channel of interest.

This motivates us to consider communication in the fol-
lowing light: The transmit pulse is a “deterministic” com-
ponent of communication, and the message is conveyed
in the selection of symbols. Taking advantage of linear-
ity and time-invariance of the pulse shape, we can write
the baseband signal as a stream of deltas with amplitude
and delay chosen by the message bits convolved with the
transmit pulse. This constitutes a large class of communi-
cation systems.

In recent work [2], Vetterli et al. showed a gener-
alized view of sampling. Recall the sampling theorem
for bandlimited signals, due to Kotelnikov, Shannon, et
al. [1]. The main result is that a signalx(t) that is ban-
dlimited toB, can be sufficiently represented by its sam-
plesxn = x(nT ) taken everyT = 1/B as follows:

x(t) =
+∞∑

n=−∞
x(nT )sinc(t/T − n), t ∈ R (1)
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where sinc(t) = sin(πt)/πt is the sinc function. In the
case of a non-bandlimited signal, such a sampling theory
can only apply to the lowpass approximation of the signal.
That means to first lowpass filter the signal and then to
sample it at the appropriate rate. Of course, the obtained
samples are a sufficient representation of the lowpass ap-
proximation of the signal and not of the signal itself. We
refer to the lowpass filter as the kernel filterϕ(t).

In [2] it is shown that it is possible to completely re-
construct a signal that is not bandlimited from uniform
samples of its lowpass approximation, provided that the
signal has a finiterate of innovation. Therate of innova-
tion is defined as the number ofdegrees of freedom per
unit time. In terms of a model based representation of a
signal, the number ofdegrees of freedom(per unit time)
can be seen as the number of parameters (per unit time)
required to model the signal. Then, the reconstruction
is possible provided that the lowpass approximation has
been obtained with the appropriate kernel filterϕ(t) and
that the samples have been taken at rates above therate of
innovation. Such a sampling model is shown in Fig. 1.

x(t)- ϕ(t) -y(t) ⊗

∑
n δ(t− nT )

? -ys(t)
C/D -yn

Fig. 1. Sampling model:x(t) is the signal,ϕ(t) is the kernel filter,P
n δ(t − nT ) is the sampling operator,ys(t) is the sampled signal

andyn are the samples.

An excellent example is a signal that consists of a finite
stream of weighted Diracs:

x(t) =
K−1∑

k=0

ckδ(t− tk), t ∈ R (2)

This signal itself is fully specified by{ck, tk}K−1
k=0 , which

are the amplitudes and locations of the Diracs respec-
tively. Hence, we can see that the signal has2K degrees
of freedom and, following [2], it is fully characterized by
the samples of its lowpass approximation. However, the
traditional view of sampling suggests that it is impossible
to perfectly reconstruct the signal from a finite number of
(uniform) samples, because it has infinite bandwidth.
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In a communication context, the rate of innovation of a
memoryless modulation system is thesymbol rate. From
here on we will use this term.

In many wideband communication systems, according
to the classical sampling theory, the large signal band-
width prescribes a prohibitively high sampling rate to im-
plement an optimal matched filter receiver. For example,
Ultra Wideband can use bandwidths of up to several hun-
dred megahertz. Sampling at the symbol rate can be a
solution to such a problem. Indeed, we will show that it is
possible to reliably decode a received signal by sampling
it at the symbol rate, not at the sampling rate dictated by
the bandwidth of the transmit signal.

II. SAMPLING AT THE RATE OF INNOVATION

We now present a review of [2], specifically for two
classes of signals that are of interest in this work:

1) A stream of Diracs.
2) A stream of pulses of a deterministic shape.

A. Sampling a Stream of Diracs

We repeat one of the main sampling results in [2]. Let
x(t) be aτ -periodic stream ofK Diracs (2). Then, we
can perfectly reconstruct the signal from samples that
have been uniformly taken with a periodT , such that
τ/T ≥ 2K + 1, using as sampling kernelϕ(t) a lowpass
filter with bandwidth[−Kπ/T, Kπ/T ].

The key insight here is to observe that for the given
x(t), the Fourier seriesX[m] is:

X[m] =
1
τ

∫ τ

t=0
x(t)ej2πtm/τdt

=
1
τ

K=1∑

k=0

cke
j2πtkm/τ , m ∈ Z (3)

From the above expression we can straightforwardly see
that the coefficientsX[m], m ∈ Z, containK complex
exponentials. Therefore,2K + 1 coefficientsX[m], m =
−K, . . . , K are sufficient to calculate{ck, tk}K−1

k=0 . Those
2K + 1 coefficients are the ones still available after the
lowpass filtering process and they can be easily computed
by taking at least2K + 1 samples of the filtered signal.

Once we have the2K + 1 Fourier coefficients, several
classical approaches can be used to retrieve the Diracs. In-
deed, from a model based approach point of view, the esti-
mation of a stream of Diracs can be seen as the dual prob-
lem of the classical line spectra estimation. Therefore,
estimation of the Diracs can be achieved by adapting one
of the well developed parametric methods for line spec-
tra [3]. The difficult step of such methods is commonly

the estimation of the positions{tk}K−1
k=0 while, knowing

the positions, the weights{ck}K−1
k=0 are easily obtained by

solving a linear system.
In [2], the positions are retrieved using an annihilating

filter based method. Such a method, which is a first order
method, has revealed a poor noise robustness. Second or-
der methods, such as ESPRIT [4] or MUSIC [5], present
a better noise robustness. They are also commonly known
ascovariance methods.

We can also extend this sampling result to the non-
periodic case, using the same key idea.

One thing to note is that the sampling kernelϕ(t) can
be any lowpass or bandpass filter of the appropriate band-
width since we only require to take a sufficient number of
contiguous samples in frequency.

B. Sampling a Stream of Pulses

The extension of the previous results to a stream of
pulses is straightforward. Indeed, we can write a stream of
pulses with deterministic shape as a stream of Diracs con-
volved with the pulse shape and, provided that we know
the spectra of the pulse shape exactly, we can invert the ef-
fect of the pulse shape on the Fourier representation at the
band of interest. We refer to such an inversion operation
asequalization, as it is commonly denoted in a communi-
cation systems context.

III. SAMPLING INTERPRETATION OF

COMMUNICATION

In this section we further our exploration of the applica-
tion of the new sampling idea to communication systems.
We will develop our framework on a specific example of a
bandwidth-expanding communication system, namely Ul-
tra Wideband communication. The idea is to consider the
Diracs as the carrier of information.

Ultra Wideband (UWB) has gained popularity, mostly
targeted towards short-range low-power communication.
The idea here is to use very low duty-cycle signaling by
either PAM or PPM. Unfortunately, to the best of our
knowledge, at the present very little is known about how
to practically and efficiently implement UWB systems. In
our example we consider the PPM system, but note that it
is easy to extend the framework to PAM systems.

The framework that we have discussed in Subsections
II-A and II-B enables us to see that it is sufficient to re-
cover the signal by sampling at the innovation rate, which
in this case is the symbol rate. In our treatment we ex-
plored the case when the signal of interest is a stream of
pulses.
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A. The Compound Channel

The “pulse shaping effect” on the received signal is due
to both the transmit pulse shape and the channel. In many
scenarios, the channel of interest is linear (and possibly
time-varying), and for small time intervals can be mod-
eled by an linear time-invariant (LTI) system. Letx(t) be
a stream of Diracs,p(t) the pulse shape andh(t) the im-
pulse response of the channel. Then, the received signal
x̃(t) is given by

x̃(t) = h(t) ∗ (p(t) ∗ x(t)), t ∈ R

We will jointly consider the effect of these element by re-
ferring to them as thecompound channel. In practice, the
compound channel also compensate for the receiver front-
end effects, and in particular for the fact that the bandpass
approximation is not perfect. If we denote byh̃(t) the cor-
responding impulse response, the previous equation be-
comes

x̃(t) = h̃(t) ∗ x(t), t ∈ R
By this viewpoint we consider the compound channel
shown in Fig. 2.

t
0 T 2T 3T

Encoded message

t

Compound
channel

Received signal

Fig. 2. Illustration of the compound channel

Moreover, we have to take into account the presence of
an addictive white noiseη(t). Finally, we have

x̃(t) = h̃(t) ∗ x(t) + η(t), t ∈ R (4)

Recall that we need to first identify the LTI component
of our compound channel: consistently with our previous
treatment of convolved Diracs, an equalization must be
performed. Therefore, our scheme requires channel iden-
tification.

B. Bandpass Approximation for Receivers

As already mentioned, the sampling kernelϕ(t) can be
any lowpass or bandpass filter of the appropriate band-
width. We are interested in bandwidth-expanding commu-
nication systems, and because the innovation rate is lower
than the signal bandwidth, we get a degree of freedom in
choosing the bandwidth over which we take our samples,
i.e. the bandwidth of the sampling kernel used for the ban-
dlimited approximation of the received noisy signal. It is
easy to see that the best choice is the band with the high-
est signal power, and SNR. We show this in Fig. 3. More

w

|X(w)|

No

Lowpass approximation
Bandpass approximation

Fig. 3. Illustration of picking the best band to maximize SNR

precisely, let us consider the classical bandlimited SNR
formula:

SNR =

∫ ω0+B/2

ω0−B/2
|X(ω)|2dω

∫ ω0+B/2

ω0−B/2
|N(ω)|2dω

=

∫ ω0+B/2

ω0−B/2
|X(ω)|2dω

BNo

where we have taken advantage of the whiteness of the
noise. From this equation, it follows that the position of
the bandω0 can be chosen so to maximize the SNR.

In particular, by considering that a UWB signal, even in
its baseband form, has a zero DC component in order not
to overheat the amplifiers, we obtain a bandpass sampling
kernel.

C. Canonical Wideband Receiver

Because the UWB pulse is very similar to delta func-
tions, it is an ideal candidate for the new sampling scheme.
It requires minimal amount of equalization, except for the
notch at DC. However, we now know that we can apply
bandpass approximation over our band of interest.

UWB Receiver Algorithm:
Sampling of single-user signal

Let x̃(t) be the noisy received signal of eq. (4) and
y(t) = x̃(t) ∗ ϕ(t) its bandpass approximation.

1) Take2K ∗ L samplesyn of y(t);
2) Calculate the spectraY [k];
3) Calculate spectra of the “pulse shaping effect”

H̃[k];
4) Equalize:Z[k] = Y [k]/H̃[k];
5) Estimate amplitudes, locations of Diracs from

zn.

In the above algorithm, the spectral quantities are com-
puted over[ω0 − B/2, ω0 + B/2] which represents the
band of interest,L is anoversampling ratethat we have
introduced, and̃H[k] can be seen as the freq. response of
the compound channelh̃(t).

Note that a departure from what was presented in [2]
is that in this case we usepassbandapproximation in-
stead of lowpass approximation. Therefore we use sam-
pling kernelϕ(t) = Bsinc(BT ) exp(jω0t) instead of its
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x(t)
- h̃(t) ϕ(t) -

y(t) ⊗

∑
n δ(t− nT )

? -
ys(t)

C/D -
yn

FFT -
Y [k]

1eH[k]
-

Z[k]
Loc. Est -

{t̂k}

DIGITAL

Fig. 4. UWB PPM Receiver

lowpass equivalent. How does this effect our estimation
of {ck} and{tk}?

Using passband approximation does not effect our es-
timate of{tk}. To see this, note that the termstk creates
the complex frequency in the Fourier domain. Passband
approximation equals shifting in the Fourier domain, and
complex frequency is indifferent to sample shifting.

Using passband approximation effects the estimate of
{ck}. This is easily resolved by multiplying the results by
exp(−jω0tk). We are basically solving a slightly different
system of linear equation forck for our givent̂k, due to
our new sampling kernel. We show the new PPM receiver
in Fig. 4.

Concerning the estimation of the locations of the
Diracs, the requirement of noise robustness naturally lead
to the choice of a second order method. In particular we
consider the ESPRIT method [4]. As already discussed,
the amplitudes are then obtained through the solution of a
linear system.

The complexity of the system is set by several compu-
tationally intensive operations:

1) FFT to get the frequency-domain samples. Com-
plexity is of ordero(KL log KL).

2) Equalizer to invert the effect of the pulse shape,
channel, and frontend imperfections. It includes
o(KL) divisions.

3) ESPRIT to estimate the locations. It includes

(3.a) Estimation of the covariance matrixRZZ of
Z[k]. Let Q be the size of such a covari-
ance matrix. We use the formulaRZZ =
1
N

∑
Z′nZn. The complexity isKL times

o(Q2) multiplies, ando(Q2) divisions. Note
that the division can be designed to be a power
of 2, which corresponds to shifts.

(3.b) One matrix inversion and two eigenvalue de-
compositions, all of complexityo(Q3). How-
ever, since the first eigenvalues decomposition
is applied to a Hermitian, positive definite ma-
trix, there are many methods to lower the com-
plexity. In addition, we are interested in only

few of the eigenvectors. There are iterative
methods that can be used to solve this effi-
ciently [6].

All these steps are done once per symbol. As a function
of L, the complexity grows aso(L + L log L).

Oversampling improves the estimate of the covariance
matrix, and thus improves the performance of the system,
as has been studied in the frequency estimation literature.
We show the tradeoff of performance versus oversampling
in Fig. 5 and complexity versus oversampling in Fig. 6 for
different SNRs.
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Fig. 5. Error rate versus oversampling
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Fig. 6. Complexity versus oversampling
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IV. SIMULATIONS

We present a series of simulation results of the perfor-
mance of our algorithm for UWB signals in the presence
of an addictive Gaussian white noise. We have also com-
pared this with the case where the channel is a noisy LTI
channel, and obtained very similar results. We compare
all results with what we call the “ideal” receiver, with
near-infinite-rate sampling and matched filtering to the
pulse shape. In [2] the authors used a first-order method
which is very sensitive to noisy conditions. Therefore in
our exposition we consider using second-order methods
such as ESPRIT [4].

We used a5× 5 covariance matrix with different over-
sampling rates, except for the2× oversampling where we
had to use a smaller covariance matrix. The results are
more promising, as shown in Fig. 7. Oversampling im-
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Fig. 7. Simulation of comparison between matched-filter and ESPRIT
for UWB

proves the estimate of the covariance matrix, and thus
leads to better results.

Note that in this framework we can use well-studied
frequency estimation algorithms to improve performance
and/or to reduce complexity.

V. CONCLUSIONS

Inspired by the recent work on sampling of non-
bandlimited signals, we studied communication systems
that use bandwidth expansion. In the noiseless case, it is
possible to sample the symbol rate, rather than the much
higher chip rate. We investigated the noisy case, where
different estimation procedures are necessary. The trade-
off between oversampling above the symbol rate and ro-
bustness has been shown. In our example we considered
only Pulse-Position Modulation. Note that it is easy to

extend this framework to general multilevel/multiphase
modulation (such as QAM) by solving for the values of
ck in Eqn. 2, following the formulation in [2].

An optimization procedure to obtain the best perfor-
mance for a given system has been presented, where the
frequency estimation component can be replaced by more
sophisticated algorithms. Within such a framework, we
have shown that it is possible to implement a receiver
which operates at near the true rate of innovation, or rate
of information, of a communication system. Such a result
can be applied to a large class of communication systems,
including UWB and CDMA. However, it comes at the cost
of SNR.
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