
Link Layer Multi-Priority Frame Forwarding
King-Shan Lui

Department of Electrical and Electronic Engineering
University of Hong Kong

Pokfulam Road, Hong Kong
Email: kslui@eee.hku.hk

Whay Chiou Lee
Broadband Networks Research Lab

Motorola Labs
Mansfield, MA 02048, USA

Email: Whay.Lee@motorola.com

Klara Nahrstedt
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA

Email: klara@cs.uiuc.edu

Abstract— With increasing demand for multimedia and real-
time applications, local area network (LAN) technologies are
rapidly being upgraded to support Quality-of-Service (QoS).
Many QoS-enabled LANs are making use of resource allocation
mechanisms that can discriminate among traffic classes of
different priorities. When such LANs are interconnected by
bridges to form an extended LAN, it is necessary to upgrade the
bridges so that they are QoS-enabled as well. For example, the
IEEE 802.1p standard defines a framework for priority queuing
in bridges. Alternatively, frame forwarding decisions at the link
layer may be modified to recognize frame priorities and alternate
paths may be used for differentiating QoS. In this paper, we
describe a novel bridge protocol that can forward frames of
different priorities using different paths. Our protocol ensures
that the forwarding path of a higher priority frame is never longer
than the forwarding path of a lower priority frame.

I. INTRODUCTION

With increasing demand for multimedia and real-time
applications, local area network (LAN) technologies are rapidly
being upgraded to provide support for quality-of-service (QoS).
To this end, traffic prioritization at the link layer has become
common practice. In an extended LAN, where multiple LAN
segments are interconnected via bridges, a frame sent from one
LAN to another may go through one or more bridges. A need
thus arises for frame forwarding over alternate paths based on
priorities.

Bridges operate on top of the Medium Access Control (MAC)
layer, which is a sublayer of the data link layer. The data unit
in this layer is called frame or MAC frame. MAC addresses
are used to identify hosts. The basic function of a bridge
is to forward MAC frames from one LAN to another without
requiring any modification to the communication software in
the hosts. Bridges do not modify the content or format of the
MAC frames they receive and the operation of bridges should
not misorder or duplicate frames.

In the standard IEEE 802.1D spanning tree bridge protocol,
a shortest path spanning tree with its root at a predetermined

This work was supported by Motorola Inc. through the Broadband Networks
Research Lab and the Motorola Center for Communications at the University
of Illinois at Urbana-Champaign.

bridge, known as a root bridge, is used to interconnect LANs
together. The spanning tree defines a unique path between each
pair of bridges/LANs, and the same path is used to forward
all frames transported between the pair. As only one spanning
tree is used, the forwarding path between a pair of LANs may
not be a shortest path. Moreover, traffic is restricted on a
single spanning tree and some links are not used for frame
forwarding at all. To enhance the routing capability of the
standard bridge protocol, many enhancements to the standard
have been proposed. Most of them focus on finding an alternate
path that is shorter than the corresponding tree path between a
pair of bridges/LANs.

To provide QoS in extended LANs, the IEEE 802.1 group
has developed enhancements to bridge functions. In particular,
the IEEE 802.1p standard, which is incorporated in the most
recent IEEE 802.1D standard [1], defines a priority queuing
framework for 802.1D bridges. Another IEEE standard, namely
802.1Q [2], specifies a frame format for carrying such priority
information. Each frame associated with a priority is queued
according to that priority value. The default scheduling method
is to send frames in a lower priority queue only when there is
no frame waiting in a higher priority queue. There are at most
eight different user priorities but the number of different queues
a bridge has may vary. In order to avoid frame misordering,
the mapping between priorities and queues is static. The IEEE
standard does not define how a host assigns user priorities to
frames. IETF, on the other hand, has studied how to support
integrated service over extended LANs that supports the IEEE
802.1D/p standard [3], [4], [5] .

Although frames of different priorities may be put in
different queues, they all go through the same forwarding
path if they go from the same source to the same destination.
Therefore, if a link is very congested, the highest priority
frames will also suffer high delay, while the lower priority
frames will suffer severe starvation. In this respect, it is
desirable to differentiate the forwarding paths of frames of
different priorities. To the best of our knowledge, none of the
existing mechanisms forwards frames with different priorities
using different paths. In this paper, we describe a novel bridge

1573
0-7803-7802-4/03/$17.00 © 2003 IEEE

protocol that is able to forward frames using different alternate
paths based on frame priorities. Our protocol, which can
interoperate with the standard IEEE 802.1D bridge protocol and
some existing extensions, ensures that a frame of given priority
always goes through a forwarding path that is no worse than
a forwarding path used by any lower-priority frame sent from
the same source host to the same destination host. The storage
and computation required by the protocol are asymptotically
the same as that of the standard bridge protocol. Moreover, our
protocol is very flexible that the differentiation pattern can be
adjusted according to user needs.

In the rest of this paper, we describe the standard protocol
and its extensions in Section II. We describe our protocol in
Sections III and Section IV. We discuss the performance of our
protocol in Section V and draw conclusion in Section VI.

II. STANDARD PROTOCOL AND ITS EXTENSIONS

Each IEEE 802.1D bridge has three basic functions:
(1) frame forwarding, (2) learning, and (3) spanning tree
construction. (1) and (2) are performed with the use of a
Forwarding Database (FD) within each bridge. An FD in a
bridge specifies which port of the bridge to forward a data
frame, when a destination host is given. If there is no such
entry in the FD, the bridge forwards the frame through all ports
except the port through which the frame came. Whenever a
frame from source host s is received at port p, the bridge marks
in its FD that the forwarding port of s is p. Entries in the FD
are forgotten periodically.

Because a bridge forwards a frame with unknown destination
to all ports except the incoming one, if there are loops in the
bridged LAN, then, a frame may be forwarded indefinitely.
To avoid this, a distributed spanning tree algorithm is used
to make sure that the active topology among the bridges is
always a tree so that there is a unique path between each pair of
bridges/LANs/hosts. The bridge with the smallest identifier is
selected to be the root and a shortest path tree w.r.t. the root is
built by exchanging configuration messages. Links that are not
selected to be tree links, called non-tree links will be disabled
and never used to forward frames. As only one tree is used, the
forwarding path between two hosts may not be a shortest path.

a

b

LAN A LAN B

c

s1 s2

LAN C LAN D

(a) Extended LAN

a

b

LAN A LAN B

c

s1 s2

LAN C LAN D

(b) Spanning Tree

Fig. 1. Extended LAN with hosts s1 and s2

Figure 1(a) shows a simple extended LAN. a, b, and c are
bridges, while LAN A, LAN B, LAN C, and LAN D are four
different LANs. s1 is a host on LAN C and s2 is a host on LAN

D. There is a loop in this extended LAN. To avoid indefinite
frame forwarding, the standard protocol will deactivate some of
the links to form a spanning tree so that there is a unique path
between each pair of bridges. Let a be the root bridge. The
spanning tree, built according to hop count, is shown in Figure
1(b). The link between bridge c and LAN C is deactivated.
Suppose that host s1 on LAN C wants to send a frame to
another host s2 which is on LAN D. Although both b and c
connect to LAN C, only b will process the frame, since the port
where c connects to LAN C is disabled by the spanning tree
algorithm. Therefore, when s1 sends a frame to s2, the path of
the frame is s1 → b → a → c → s2. This tree path is longer
than the shortest path, s1 → c → s2 from LAN C and LAN D.

To improve the routing capability of the standard, several
extensions have been proposed. Most of them focus on finding
shorter forwarding paths [6], [7], [8], [9], [10], [11], [12]. All
frames that have the same source and destination are forwarded
over the same path, despite of the priority. Hart proposed to
forward frames over non-tree link to achieve load sharing [13],
[14]. However, there is no guarantee that the non-tree link is
better than the tree path and so it is difficult to determine on
which path a higher priority frame should be forwarded on.
Moreover, a non-tree link is used only for the traffic between
the end bridges of that link. To the best of our knowledge, there
is no existing protocol that can forward frames according to
their priorities on more than two paths. Our protocol utilizes
the capability of finding shorter alternate paths provided by [6]
- [12] to forward frames on different paths. By forwarding
frames on different paths, our protocol diverts traffic onto non-
tree links and achieves better load balancing. Our protocol is
very flexible that it can work with different existing extensions
of the standard protocol and the pattern of differentiation is
adjustable.

III. PROTOCOL OVERVIEW

A. Model

Our protocol utilizes the capability of finding shorter
alternate paths provided by [6] - [12]. As different protocols use
different models, we follow the model used in [12] to illustrate
the general idea. In [12], shorter paths among bridges are found
for frame forwarding and hosts are mapped to the bridges to
utilize the shorter forwarding paths. Therefore, in this paper,
we describe how to forward frames on different paths between
a pair of bridges.

We represent a bridged LAN as an undirected graph where
bridges are nodes. A link connects two bridges together. Each
link is associated with a non-negative cost. The length of a
path is the sum of the costs of all the links along the path. The
priority of a frame is an integer between 0 to 7. A smaller
number implies a higher priority and a frame of priority value
0 is of the highest priority. The problem of multi-priority frame
forwarding is modeled as message forwarding from one node
to another according to the priority of the messages.

B. Overview

The standard forwards frames on tree paths only and the
extensions forward frames on at most two different paths: the

1574

tree path and the shortest alternate path identified. Apart from
the tree path and the shortest alternate path, our protocol can
forward frames, according to their priorities, over one or more
hybrid paths, where each consists of a segment of a tree path,
followed by a shortest alternate path. Figure 2 illustrates a
hybrid path from z to v. In the following figures in this paper,
hop count is the considered additive metric, solid links are tree
links, and dash links are non-tree links. The tree path from z
to v is z → y → x → q → u → v and the shortest alternate
path from y to v is y → u → v. The hybrid path from z to
v consists of a segment of the tree path from z to v (z → y)
and the shortest path from y to v. The length of a hybrid path is
less than that of the tree path and is larger than the length of the
shortest alternate path identified. Therefore, our protocol would
forward frames of intermediate priorities over hybrid paths and
we will describe the detail in Section IV.

x

y

z
u

q

tree path

hybrid path

to root bridge

v

shortest path

Fig. 2. Hybrid Path

x

y

u

q

to root bridge

v
z

p

Fig. 3. Multiple Hybrid Paths

C. Information Required

To forward frames on hybrid paths, our protocol requires
each node to keep the information of two forwarding paths to
each other node: the tree path and the shortest path. Refer to
Figure 2, z only has to keep the next hop node on the tree path
to v, which is y, and the next hop node on the shortest path to
v, which is v itself. Therefore, the storage requirement of our
protocol is asymptotically the same as existing protocols. The
next hop of the shortest path can be obtained by the extensions
described in Section II. The tree path forwarding direction is in
the FD specified by the standard. Therefore, there is little extra
overhead in finding the two forwarding directions.

Apart from forwarding directions, our protocol requires each
node to keep track of the number of nodes on the tree path
to every other node. We will describe why we need this
information when we describe our protocol in detail in Section
IV. To obtain the number of nodes on a tree path, After the
standard spanning tree is built, each node sends a frame called
Tree Hop Count on all of its tree links. This frame contains
a counter that reflects how many nodes the frame has passed
through and the last node that processes that frame. The node
that originates the frame initializes the counter to 0. When a
node x receives a Tree Hop Count with counter value c that
is originated from another node y, x knows that y is c hops
away on the tree path, denoted as tree hop count(x, y) = c. x
then increments the counter by 1 and sends the frame on all tree
links except the link that Tree Hop Count comes from.

The propagation of a Tree Hop Count frame is the same
as the propagation of a data frame which is sent from an
unknown host. Therefore, the complexity of this step is the
same as sending data frames to several unknown hosts in
the standard protocol. Note that in an extended LAN, hosts
must outnumber bridges. Moreover, as the entries in the FD
are forgotten periodically, hosts would become unknown after
idling for certain time. As a result, the message overhead of
Tree Hop Count is negligible.

IV. MULTI-PRIORITY FRAME FORWARDING

In this section, we discuss how a hybrid path is formed and
present the complete protocol. To simplify our discussion, we
denote a tree path from node x to node y as treepath(x, y),
the shortest alternate path identified between x and y as
shortpath(x, y), and the hybrid path as hybrid(x, y).

A. Hybrid Paths and Frame Forwarding

hybrid(z, v) in Figure 2 consists of treepath(z, y), which
is a segment of treepath(z, v), and shortpath(y, v). A
frame would go through this path because (1) z forwards
the frame over treepath(z, v) towards y, and (2) y forwards
the frame over shortpath(y, v). In other words, when an
intermediate node on the tree path diverts the frame, which
is being forwarded on the tree path, to the shortest alternated
path identified from itself to the destination, the frame will be
forwarded on a hybrid path. Therefore, when a node receives a
frame from downstream, it has to decide whether to forward it
over the tree path continuously, or to forward it over the shortest
alternate path identified. It must determine the forwarding
direction in such a way that the forwarding path of a higher
priority frame is no worse than the forwarding path of a lower
priority frame that is sent from the same source to the same
destination.

We now consider two different hybrid paths from z to v as
shown in Figure 3. Hybrid path P1 = z → p → v is shorter
than hybrid path P2 = z → p → y → u → v. In P1, the tree
path segment is treepath(z, p) and in P2, the tree path segment
is treepath(z, y). That is, a hybrid path that traverses fewer
tree hops is shorter. The key idea of our protocol is: the higher
the priority of a frame, the smaller the number of tree hops it
has to traverse. In addition, for a frame of a given priority,
the more tree hops it has made, the more likely it should be
forwarded over an available alternate path. Refer to Figure
3, a frame of the highest priority should be forwarded using
the non-tree link (z, v), without going through any tree hop.
For a frame of the next lower priority, z should forward it to
p, using the tree path forwarding direction and let p forward
it over shortpath(p, v). A frame of the next lower priority
is forwarded on tree forwarding port by z and p to y and y
forwards it over shortpath(y, v). Finally, a frame of the lowest
priority is forwarded over the tree path, that is, all nodes decide
to send it to the next hop on the tree path.

B. Forwarding Decision Function

A node uses the priority of the frame and the number of tree
hops that the frame has traversed to determine where to forward

1575

the frame. A node invokes a function to make the forwarding
decision. We call this function forwarding decision function.
This function takes two values: (1) the priority of the frame
(priority value) and (2) the number of tree hops traversed
(hop count), and returns the forwarding direction of the frame.
There are at most two different forwarding directions: the
next hop on the tree path, or the next hop on the shortest
alternate path identified. We denote these two directions as
next tree hop and next short hop. If the function returns
a positive value, the forwarding direction is next tree hop;
otherwise, the forwarding direction is the next short hop.

Generally speaking, as long as a function
m(priority value, hop count) satisfies the following
conditions, it can be used as the forwarding decision
function:

1) m(p, h1) ≤ m(p, h2) if h1 ≥ h2
2) m(p1, h) ≥ m(p2, h) if p1 ≥ p2
Condition (1) says that the more tree hops a frame has

traversed, the more likely that it is forwarded using a shorter
path. Condition (2) says that a frame of higher priority (smaller
number means a higher priority) is more likely to be forwarded
on a shorter path.

Different functions would yield different forwarding
decisions for the same frame. For example, the function
priority value − hop count will forward frames of priority
0 to next short hop while other frames over next tree hop,
if the node that executes the function is the source node. On
the other hand, if the function is �priority value

4 � − hop count,
a source node will forward frames of priority values 0 - 3
to next short hop. Hence, the forwarding decision function
can be adjusted for different forwarding patterns, making our
protocol very flexible.

C. Complete Protocol

When a node n receives a frame that is sent from source s
to destination t with priority value priority value, it checks
whether treepath(n, t) is the same as shortpath(n, t). If so, it
sends the frame towards next tree hop; otherwise, it computes
m(priority value, tree hop count(n, s)). If the forwarding
decision function returns a positive number, n sends the frame
towards next tree hop. If the forwarding decision function
returns zero or a negative number, n sends the frame towards
next short hop.

Consider a frame that is sent from z to v with priority value
1 in Figure 3. Suppose that the forwarding decision function
is priority value − tree hop count. When z processes the
frame, the forwarding decision function returns 1 - 0 = 1
> 0. Therefore, z sends it to next tree hop, which is p.
When p receives the frame, as tree hop count(p, z) = 1, the
forwarding decision function returns 0 and p forwards the frame
to its next short hop, which is v, the destination. The path that
the frame goes through is z → p → v.

For a frame that is sent from z to v with priority 2, z will
send it to p as in the case of the frame with priority 1. When p
computes the forwarding decision function, the function returns
2 - 1 = 1 and so p forwards the frame to y. When y receives the
frame, the forwarding decision function returns 0 and then y

forwards it to next short hop, which is u. As treepath(u, v)
is the same as shortpath(u, v), u forwards the frame to v using
the tree link. The path that this frame traverses is z → p →
y → u → v.

V. PERFORMANCE ANALYSIS

A. Correctness

Let us assume that two frames, f1 and f2, are being sent
from the same source s to the same destination t. Suppose that
the priority values of them are p1 and p2, respectively. Our
protocol ensures that, without loss of generality, if p1 < p2, the
forwarding path of f1 is no longer than the forwarding path of
f2.

To see this, suppose that the forwarding path of f2 is
composed of treepath(s, n) and shortpath(n, t). That is,
all the nodes on treepath(s, n), except n, forward f2 to
next tree hop, while n forwards f2 to next short hop. We
further assume that the forwarding path of f1 consists of
treepath(s, n′) and shortpath(n′, t). If n = n′, our claim
holds. If n �= n′ and n′ is on treepath(s, n), the forwarding
path of f1 is shorter than the one of f2. If n �= n′ and n′ is not
on treepath(s, n), n must receive f1. According to Condition
(2) of the forwarding decision function, if n decides to forward
f2 on shortpath(n, t), it must also decide to forward f1 on
shortpath(n, t). Therefore, the forwarding path of f1 must be
shorter than or the same as the forwarding path of f2. A formal
proof can be found in [15].

B. Number of Different Paths

For nodes that are on the same branch, that is, one is
an ancestor of the other on the tree, the tree path is the
shortest path between them and there is no path differentiation.
There are different paths only when the nodes are on different
branches and shorter alternate path exists, such as z and
v in Figure 3. The tree path between nodes on different
branches consists of an upstream segment from the source to
the nearest common ancestor of the nodes (treepath(z, x))
and a downstream segment from the nearest common ancestor
to the destination (treepath(x, v)). Among the nodes n on
treepath(z, v), it is possible for treepath(n, v) to be different
from shortpath(n, v) only when n is on the upstream segment
but not the nearest common ancestor. Refer to Figure 3, the
shortest path is different from the tree path for nodes y, p, and
z to node v. However, x, which is an ancestor of v, does not
have a non-tree path to v that is shorter than treepath(x, v).
Therefore, the maximum number of different paths from node
s to node t depends on the number of nodes on the upstream
tree path from s to t.

C. Simulation Results

We conducted simulation studies to evaluate the performance
of our protocol. We generated a total of 2200 networks of
different topologies. Each of these networks was generated
in three steps. In the first step, a rooted spanning tree was
generated, for a fixed network size, by randomly varying
branching factors at each node, wherein a branching factor at

1576

a node refers to the number of children of the node with respect
to the rooted spanning tree to be generated. In the second step,
non-tree links were added to connect some pairs of nodes that
were not immediate neighbors on the rooted spanning tree. In
the third step, a random cost was assigned to each link.

The network size was varied from 20 to 30 nodes, resulting
in a total of 11 different network sizes. There were two different
ranges for the branching factors, one for high branching factors
and one for low branching factors. At the root, high branching
factor varied from 6 to 8 while low branching factor were
from 4 to 6. Ranges 2 to 4 and 4 to 6 were used for the
branching factors at other nodes. 50 different topologies were
randomly constructed for each combination of network size and
branching factors. Each tree link cost was a random integer
between 1 and 3 inclusive. For each node, both the number of
non-tree neighbors and the non-tree neighbors were randomly
selected. As a bridge has only a few outgoing interfaces, we
restricted the number of non-tree links a node could have to be
at most the network size divided by 7. The costs of non-tree
links were set in a way that the tree structure generated in the
first step is preserved in the computation of a rooted shortest
path tree. In this respect, the cost of each non-tree link was set
to a sufficiently large value and augmented randomly by 1 or 2.

We measured the average path length ratio (average
length of tree path

length of our forwarding path) of three different priorities and the result
is shown in Table I. We also studied the number of different
paths available between a pair of nodes (Table II). The results
show that our protocol successfully forward frames on two
or more paths according to frame priorities. In this respect,
our protocol is expected to perform better than existing bridge
protocols which are not equipped to do the same. Moreover,
such an advantage of our protocol will be greater in large
networks where there are many alternate paths for prioritized
frame forwarding.

Network Size 1st priority 2nd priority 3rd priority

20 1.1281 1.0374 1.0006
21 1.2270 1.0656 1.0005
22 1.2289 1.0714 1.0019
23 1.2251 1.0701 1.0019
24 1.2262 1.0708 1.0030
25 1.2281 1.0719 1.0039
26 1.2322 1.0760 1.0044
27 1.2401 1.0809 1.0047
28 1.3256 1.1086 1.0092
29 1.3075 1.1004 1.0081
30 1.3157 1.1074 1.0093

TABLE I
PATH PERFORMANCE OF DIFFERENT PRIORITIES

VI. CONCLUSION

In this paper, we describe a novel bridge protocol, which can
forward frames using different paths according to their frame
priorities. Our protocol ensures that the forwarding path of a

Size Avg. Number of Paths Max. Number of Paths

20 1.2260 2.9850
21 1.4004 3.0200
22 1.4090 3.1100
23 1.4093 3.1050
24 1.4122 3.1750
25 1.4252 3.2250
26 1.4444 3.2750
27 1.4616 3.3150
28 1.6112 3.4350
29 1.5968 3.4600
30 1.6211 3.4900

TABLE II
NUMBER OF PATHS AVAILABLE

frame of a given priority is never worse than that of any lower
priority frame, provided that the frames are sent from the same
source to the same destination. Our protocol can work upon
any existing bridge protocol that tries to find shorter forwarding
paths than the standard does without increasing the asymptotic
complexity of the protocol. In the future, we would like to study
the effect of different forwarding decision functions and explore
the use of dynamic forwarding functions to achieve dynamic
load balancing.

REFERENCES

[1] Information technology - telecommunications and information exchange
between systems - local and metropolitan area networks - common
specifications. Part 3: Media Access Control (MAC) bridges, ISO/IEC
15802-3, ANSI/IEEE Std 802.1D, 1998.

[2] IEEE Standards for Local and Metropolitan Area Networks: Virtual
Bridged Local Area Networks, IEEE Std 802.1Q, 1998.

[3] A. Ghanwani, W. Pace, V. Srinivasan, A. Smith, and M. Seaman, “A
Framework for Providing Integrated Services Over Shared and Switched
LAN Technologies,” RFC 2816, 2000.

[4] R. Yavatkar, D. Hoffman, Y. Bernet, F. Baker, and M. Speer, “SBM
(Subnet Bandwidth Manager): A Protocol for Admission Control over
IEEE 802-style Networks,” RFC 2814, May 2000.

[5] M. Seaman, A. Smith, E. Crawley, and J. Wroclawski, “Integrated Service
Mappings on IEEE 802 Networks,” RFC 2815, 2000.

[6] R. Perlman et. al., “Utilization of Redundant Links in Bridged Networks,”
U.S. Patent Number 5,150,360, Sept. 22, 1992.

[7] B. Rajagopalan and M. Faiman, “Load Sharing and Shortest-Path Routing
in Transparently Interconnected Local Area Networks,” in INFOCOM,
1991.

[8] Y.-D. Lin and M. Gerla, “Brouter: The Transparent Bridge with Shortest
Path in Interconnected LANs,” in LCN, 1991.

[9] T.-Y. Tai and M. Gerla, “LAN Interconnection: A Transparent, Shortest-
Path Approach,” in ICC ’91, 1991.

[10] R. Garcia, J. Duato, and J.J. Serrano, “A New Transparent Bridge
Protocol for LAN Internetworking Using Topologies with Active Loops,”
in International Conference on Parallel Processing, 1998.

[11] T. Rodeheffer, C. Thekkath, and D. Anderson, “SmartBridge: A Scalable
Bridge Architecture,” in SIGCOMM, 2000.

[12] K. Lui, W. Lee, and K. Nahrstedt, “STAR: A Transparent Spanning
Tree Bridge Protocol with Alternate Routing,” ACM Computer
Communication Review, vol. 32, no. 3, July 2002.

[13] J. Hart, “Extending the IEEE 802.1 MAC Bridge Standard to Remote
Bridges,” IEEE Network Magazine, vol. 2, no. 1, Jan. 1988.

[14] J. Hart, “Distributed Load Sharing,” U.S. Patent Number 4,811,337, Mar.
7, 1989.

[15] K. Lui, Alternate Routing Protocols for Bridged Networks, Ph.D. thesis,
University of Illinois, Urbana-Champaign, May 2002.

1577

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

