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Abstract— This paper deals with the problem of computing
channel capacity for wireless communications systems with
multi-antennas. The system is modelled using a transmit volume,
a receive volume and a set of reflective scatterers. Based on the
authors’ previous work on channel modelling of such a system,
we give a multi-input-multi-output model for communications
between arbitrary antenna arrays in two volumes. Together
with a novel noise model for describing interferences, we
derive formulas for channel capacity and capacity bounds.
In particular, our results give conclusions which agree with
intuition: In the case where the transmitter knows the channel,
the channel capacity saturates to a constant when the number of
transmit/receive antennas increases beyond a certain threshold;
In the case where the transmitter does not know the channel,
the channel capacity still saturates when the receive antennas
increases but decays when the number of transmit antennas
increases beyond a certain threshold.

I. INTRODUCTION

There has been a rush of research work in the area of
multi-antenna wireless communications in the last few years.
Much of it was motivated by the work of [1], [2] which
shows the potential significant increase in channel capacity
by using multi-antennas for both transmission and receiving.
The work of [1], [2] is done under similar assumptions that 1)
the multi-input-multi-output (MIMO) channel model has in-
dependent components with complex Gaussian (or Rayleigh)
distributions; 2) the noises at different receive antennas are
independent and white; and 3) the channel is known to the
receiver but not to the transmitter. Their main result is that the
channel capacity of such a system grows linearly with respect
to the minimum number of transmit or receive antennas. This
is known as the linear growth property.

Since [1], [2], some studies have been done on channel
modelling of multi-antenna systems. Several authors [3], [4]
have investigated the validity of the so-called “rich” scattering
environment, which is required to achieve the linear growth.
The work of [5] addressed the case where the receiver
elements are placed closely within a fixed region of space, and
proposed a limit to capacity by placing an artificial restraint
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on the received signal power. Likewise, other authors [6], [7]
have suggested that a correlation of the signals at the receivers
will occur, as the element separation becomes “small.”

Recently, we have proposed a volumetric approach to study
the problem of channel modelling for wireless communica-
tions systems involving a transmit volume, a receive volume,
and a set of reflective scatterers [8]. Based on the work of
[8], we give a MIMO model for communications between
arbitrary antenna arrays in two volumes. Together with a novel
noise model for describing interferences, we have derived
formulas for channel capacity and capacity bounds. Our main
interest is to study the capacity limit when the numbers of
transmit and receive antennas in the two volumes increase.
Two cases have been studied: 1) The channel is known to the
transmitter; and 2) The channel is unknown to the transmitter.
In the former case, we show that the channel capacity
saturates to a constant when the number of transmit/receive
antennas increases beyond a certain threshold. In the latter
case, the channel capacity still saturates when the receive
antennas increases but decays when the number of transmit
antennas increases beyond a certain threshold.

The contributions of the paper are as follows: 1) We
provide a numerical approach for computing the channel
capacity and capacity bound for multi-antenna systems with
scattering. 2) We give a novel noise model which describes
interference noises in the receive volume based on communi-
cations modes. In comparison with the common assumption
of independent noises in receive antennas, our model better
represents interference noises in the receive volume. More
precisely, we do not have the unrealistic consequence (as the
independent noise assumption would) that the received signal-
to-noise ratio can be increased indefinitely by placing more
and more receive antennas. Also, no artificial scaling (as in
[5]) is needed on the receive antennas. 3) The results can be
used as a guideline for determining the numbers and spacing
of transmit and receive antennas in a given communication
environment.

This paper is arranged as follows: Section II gives a review
of the channel modelling approach in [8]. In section III,
we provide a multi-antenna channel model together with a
noise model. Section IV gives channel capacity formulas and
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Fig. 1. Multi-antenna Communications System

capacity bounds. A simulation example is given in section V
and some conclusions are drawn in section VI.

II. CHANNEL MODEL

Consider two arbitrary volumes VT and VR separated by
a distance r along the z direction, as shown in figure 1. In
addition, there are scatterers in the space which are assumed
to be pure reflectors. Only one such scatterer is shown in
figure 1. Volume VT contains a source wave function1 ψ(rT )
which generates a wave function φ(rR) in the volume VR for
points rT in VT and rR in VR. It is assumed that the source
signal is monochromatic (or narrowband).

A set of NT transmitters are placed at locations ρTn, n =
1, 2, . . . NT in VT . Similarly, NR receivers are placed at
ρRn, n = 1, 2, . . . NR in VR. In this section, we shall
ignore the antennas and concentrate on the communications
modelling between the two volumes. This allows us to avoid
the limitations placed by the numbers and locations of the
antennas. We will return to the antennas in section III.

The work presented in this section is summarized from [8]
which is in turn motivated by [9]. The paper [9] studied the
problem of channel modelling between two volumes without
scatterers for optical communications. In [8], we generalized
the work in [9] and provided a numerical algorithm for
computing the channel model for wireless communications
between two volumes with or without scatterers.

Given a source wave function ψ(rT ) in the transmit volume
VT , the wave function generated by this source function at any
spatial location r = (x, y, z) is given by

φ(r) =
∫

VT

G(r, rT )ψ(rT )d3rT (1)

where the function G(r, rT ) is the free-space Green’s function
given by

G(r, rT ) =
exp (−ιk|r − rT |)

4π|r − rT |
(2)

1Wave functions may be considered as the continuous equivalent of point-
sources – in fact we may simply write point-sources as special examples of
wave functions.

and k = 2π/λ is the wave number for a wavelength λ and
ι =

√
−1.

Each scatterer is assumed to be a pure reflective plane
of sufficient size that we may neglect fringing [8]. When
“hitting” a scatterer, the signal φ(r) is reflected with a possible
attenuation coefficient ρ and then continues to travel in space.
Therefore, the transmitter is effectively also transmitting to a
mirror-imaged copy of VR (as shown in figure 1, provided the
angle of the reflector is appropriate. Consequently, VT and
VR may communicate via different surfaces through different
scatterers, thus increasing the number of communications
modes. In addition, the connection strength of a particular
communications mode can be increased if this mode is shared
by several paths.

However, one can quickly conclude from the above that
there is a limit to the number of communications modes
and their connection strengths because the amount of space
available for scattering is limited. Our work in [8] gives a
method for computing the channel model for a given system
setting, as described below.

The direct path can be modelled as

φ(rR) =
∫

VT

G(rR, rT )ψ(rT )d3VT (3)

where φ(rR) denotes the wave function at location rR ∈
VR by ψ(rT ) through the direct path. Following the ideas
in [9], two sets of orthonormal basis functions, {βTi(rT )}
and {βTj(rT )} can be obtained to describe the signal transfer
between VT and VR. That is, if we decompose any ψ(rT ) and
φ(rR) as

ψ(rT ) =
∑

i

aiβTi(rT ) (4)

and
φ(rR) =

∑

j

bjβRj(rR) (5)

respectively, then the coefficient vectors a and b are related
by a transfer matrix Γ as follows:

b = Γa (6)

where the (j, i)th element of Γ is given by

γji =
∫

VR

∫

VT

β∗
Rj(rR)G(rR, rT )βTi(rT )d3rT d

3rR (7)

Moreover, if the basis functions are chosen to be the eigen-
functions of (3), Γ becomes a diagonal matrix (i.e., we have
a diagonal model) and γii are simply the singular values of
the transfer matrix. The number of communications modes
corresponds to the number of significant singular values.

A similar approach can be applied to each scattering path
through the use of the “mirror-imaged” communications path,
and a transfer matrix is obtained. This transfer matrix is in
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general a non-diagonal matrix. A singular value decompo-
sition may be applied to obtain a diagonal transfer matrix
which is then truncated to an appropriate size by removing
insignificant singular values. The remaining size corresponds
to the number of communications modes for the overall
system.

For notational simplicity, we will still denote the orthonor-
mal basis functions for VT and VR for the overall system by
βTi(rT ) and βRj(rR), respectively. The number of commu-
nications modes will be denoted by Nc. The overall channel
transfer matrix will still be denoted by Γ and it is a diagonal
matrix with elements γi, i = 1, ..., Nc. We note that γi are
roughly the same for most i and they drop down quickly
when i reaches Nc.

See [8] for the details of the channel modelling process
and a numerical algorithm for computing the channel model.

III. MULTI-ANTENNA MODELLING

In this section, we consider the modelling problem with
transmit and receive antennas. Suppose we place NT trans-
mitters at arbitrary locations ρTn, n = 1, 2, . . . NT , in
VT . Similarly, NR receivers are placed at arbitrary locations
ρRn, n = 1, 2, . . . NR, in VR. We may denote the vector of
transmit signals as x and the vector of received signals as y.
Our aim is to develop the channel model for the system:

y = Hx+ w (8)

where w represents the receiver noise and H is the transfer
matrix between x and y. The remainder of this section will
show how H and w may be modelled.

A. Receiver Modelling

We assume the receivers are ideal. That is, each receiver k
samples the wave function φ(rR) at a location ρRk. We may
write the received signal y as:

yk = φ(ρRk) + wk (9)

Using (5), we get:
y = Bb+ w (10)

where

B =




βR1(ρR1) · · · βRNc

(ρR1)
...

...
βR1(ρRNR

) · · · βRNc
(ρRNR

)



 (11)

B. Noise Modelling

We propose to model the noise function in VR as follows:

φw(rR) =
Nc∑

j=1

ηjβRj
(rR) (12)

where ηj is an independent white noise with zero mean and
variance σ2

j . That is, the noise of the channel excites the
eigen-modes of the receiver. So that the noise in VR should
be independent of the receive antennas, and receivers sample
signal and noise. This corresponds to the practical situation
where the main noise source comes from interferences in
the environment rather than from the receivers themselves.
If we have fewer receivers than modes, the noise samples
will appear independent.

Only the noise components in the subspace of
{βRj

(rR)}Nc
j=1 are considered because other noise

components can be removed by the receivers via projection
(provided enough receive antennas are there to sample the
noises). Hence, when sampled by the receive antennas, we
get

w = Bη (13)

C. Transmitter modelling

We shall assume that the transmitters are ideal point sources
of small volume. Each transmitter is able to produce a signal
xn independent of any other transmitters. Therefore, we may
choose the source function ψ(rT ) as:

ψ(rT ) =
NT∑

n=1

ψn(rT )

ψn(rT ) =

{
1√

∆VT
xn rT ∈ VTn

0 otherwise
(14)

where xn is the intensity of source n, ∆VTn is the (small)
volume occupied by source n and ∆VT is the size of the
volume. For simplicity, it is assumed that all volumes are of
equal size, but this can be relaxed. The scaling of 1/

√
∆VT in

(14) is used so that the transmission power for transmitter n is
|xn|2 and is independent of ∆VT . If ∆VT is sufficiently small,
the projection of ψn(rT ) onto βT (rT ) may be simplified as:

ani =
∫

VT

ψn(rT )βTi(rT ) d3rT

=
√

∆VTxnβTi(ρTn) (15)

We then write ai as the sum of ani:

ai =
√

∆VT

NT∑

n=1

xnβTi(ρTn) (16)

In vector form we have:

a =
√

∆VTAx (17)

where the Nc ×NT matrix A is given by:

A =




β∗

T1(ρT1) · · · β∗
T1(ρTNT

)
...

...
β∗

TNc
(ρT1) · · · β∗

TNc
(ρTNT

)



 (18)
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Combining the modelling results for the receivers and
transmitters, the channel may be written as:

y =
√

∆VTBΓAx+Bη (19)

IV. CAPACITY

In this section, we proceed to estimate the channel capacity
using the model (19). We are interested in the scenario where
the numbers of transmit and receive antennas are both large.
Two cases are analyzed: 1) The channel model is known to
the transmitter; 2) The channel model is unknown to the
transmitter. In both cases, the receiver knows the channel
model (e.g., through channel estimation).

A. Channel known at transmitter

We consider the case NT 	 Nc and NR 	 Nc. If
NR is sufficiently large, (i.e., the sampling points ρRn are
sufficiently dense), we may approximate B∗B by an integral
as: [

B∗B
]
i,j

≈ NR

VR

∫

VR

β∗
Ri(rR)βRj(rR) dr3

R (20)

Since the basis βR(rT ) is orthonormal, from (11) we write:

B∗B ≈ NR

VR
INc

(21)

In similar fashion we may write:

AA∗ ≈ NT

VT
INc

(22)

for NT sufficiently large. Define

ŷ =
VR

NR
B∗y x =

√
VT

NT
A∗x̂ η̂ =

VR

NR
B∗Bη (23)

and re-write (19) as:

ŷ =
√

∆VT
VR

NR
B∗BΓ

√
VT

NT
AA∗x̂+ η̂ (24)

Using (21) and (22), we may simplify (24) as:

ŷ =
√

∆VTNT

VT
Γx̂+ η̂ (25)

Further, it is easy to verify that the ηi are approximately
independent with variance σ̂2

i = σ2
i .

Recall that the channel transfer matrix Γ is diagonal and
the singular values γi are roughly equal. Hence, the optimal
transmission scheme is equal power per communication chan-
nel:

E{x̂x̂∗} =
P

Nc
· INc

Hence, the channel capacity of the system is given by

C ≈
Nc∑

i=1

log2

(
1 +

P̂i

σ̂2
i

)
(26)

where P̂i is the signal power in ŷi, given by

P̂i =
∆VTNT

VT

P

Nc
γ2

i (27)

Simplifying the above, we get

C ≈
Nc∑

i=1

log2

(
1 +

∆VTNT

VT

γ2
i

Nc

P

σ2
i

)
(28)

Since ∆VTNT ≤ VT , we further have

C �
Nc∑

i=1

log2

(
1 +

γ2
i

Nc

P

σ2
i

)
(29)

which gives the upper bound on the channel capacity. In
particular, the bound is independent of NT and NR,
provided that they are sufficiently large.

Note that the assumption that γi are roughly the same
can removed. In this case, the power distribution among
different diagonal channels should be done using the water-
filling principle.

B. Channel unknown at transmitter

When the channel is unknown at the transmitter, the op-
timal transmit strategy is to assign independent equal-power
signals to all transmitters, i.e.,

E{xx∗} =
P

NT
INT

Using (19) and (23), we get

ŷ ≈
√

∆VT ΓAx+ η̂ (30)

where η̂ is the same as before.
For simplicity, we assume σi = σ (constant). The channel

capacity is thus given by

C ≈ log2 det
(
I +

∆VT ΓAA∗ΓP/NT

σ2

)

≈ log2 det
(
I +

∆VTNT

VT

Γ2P/NT

σ2

)

=
Nc∑

i=1

log2

(
1 +

∆VT

VT

Pγ2
i

σ2

)
(31)

Hence, the conclusion is that the channel capacity de-
creases as ∆VT decreases (or NT increases), provided NT

is sufficiently large. The reason for this is subtle:
All communication between VT and VR occurs through

the connecting eigen-modes. The (point-source) transmit el-
ements excite the finite transmit modes. If we have densely
placed transmitting elements, all of which are transmitting
white signals, the transmit modes will become saturated. From
a beamforming perspective we would say “the receiver cannot
distinguish between the sources.” At this point additional
transmitters act as interference sources.
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Fig. 2. Capacity vs NT = NR for direct transmission channel (known at
transmitter) for Nc = 2.1

The capacity bound is independent of NR because no
new information on either the signal or noise can be gained
by placing more receive antennas, provided NR is already
sufficiently large.

V. SIMULATION

The capacity bounds provided in the previous section
assume NT and NR are large. In this section, we provide
a simulation example to examine how the capacity changes
when NT and NR change.

In figure 2 we have simulated a direct transmission channel
(without scattering). The volumes VT and VR were two paral-
lel prisms whose sizes are 15λ×9λ×9λ and 18λ×9λ×9λ,
respectively. The direction of propagation is along the last
(z) axis. The volumes are separated by a distance r = 100λ,
giving the total number of communication modes Nc = 2.1.
The position of each antenna element was chosen uniformly
at random from within the respective volume. Basis functions
were generated using [8], and interpolated for each position.

For the purpose of the simulation, we set NT = NR and
∆VT · NT = VT . The transmission power and noise was
normalized as follows:

P

(4πr)2σ2 = 10

The channel was assumed to be known to the transmitters. The
largest singular value of the equivalent continuous channel
was given by ν1 = 0.0059. A water-filling method was used
by the transmitter in both the upper bound and the simulation.
This avoided the need for the equal gains assumption.

The solid line shows the capacity bound as given by (29),
whereas the circled line shows how the capacity increases
as NT (and NR) increases. It can be seen that the capacity
asymptotes below the bound given by (29) as predicted.

VI. CONCLUSIONS

In this paper, we have analyzed the channel capacity for
multi-antenna communications between two volumes with or
without scattering bodies. Bounds are given to the channel
capacity for two cases: channel known to the transmitter, and
channel unknown to the transmitter. The main findings of the
paper are that in the known channel case, the channel capacity
is bounded as the number of antennas increases, whereas in
the unknown channel case, the channel capacity actually de-
creases as the number of transmit antennas increases beyond
a certain value.

In this paper, the channel model is extended to a model
between transmit and receive antenna arrays. Further, a novel
noise model is provided to properly characterize the receiver
noises. The results of this paper should not be interpreted
as a discouragement for using multi-antennas. Our capacity
bounds simply indicate that there is a limit to the number
of antennas one can place in a fixed volume (for either
transmission or receiving). In fact, the channel capacity is
limited by the transmit and receive volumes and scatterers.
To increase the capacity, one needs to increase the available
transmit/receive volumes, hence allowing more antennas to
be placed. The results of this paper can be used to give a
guideline for determining the numbers of antennas necessary
to utilize the available capacity.
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