
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 3, NO. 2, MARCH 2004 677
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Abstract—We investigate transmission strategies for flat-fading
multiple antenna channels with transmit and receive antennas,
and with channel state information (CSI) partially known to the
transmitter. We start with an assumption that the first eigenvec-
tors of , where 0 min( ) and is the channel
matrix in , are available at the transmitter as partial spatial
information of the channel. A beamforming method is proposed in
which a beamforming matrix is determined from the eigenvec-
tors in some predefined way; as a result, the receiver also knows
the beamforming matrix. With this beamforming scheme, we de-
velop a new multiple antenna system concept that provides a mech-
anism to reduce the amount of channel feedback information. This
paper focuses on deriving the channel capacity of the multiple an-
tenna channels employing the proposed beamforming and feed-
back methods. An important task for achieving capacity is the so-
lution of interesting optimization problems for the optimal power
allocation over the transmit symbols. The results show that the pro-
posed methods lead to systems wherein the amount of feedback in-
formation can be significantly reduced with a minor sacrifice of
achievable transmission rate.

Index Terms—Channel capacity, channel state information
(CSI), multiple-input multiple-output (MIMO) systems, multiple
antennas, power allocation, transmit beamforming, wireless
communication.

I. INTRODUCTION

I N recent years, communication systems with multiple an-
tennas at both the transmitter and the receiver have gathered

much attention for high-rate data transmission. The informa-
tion-theoretical capacity of the multiple antenna channels has
been studied by many researchers, immediately following the
promising results by Telatar [1] and Foschini [2]. Many previous
studies have focused on the following two assumptions about
channel state information (CSI): the first is the case where CSI
is known to both the receiver and the transmitter [1], [3]; and the
second is where CSI is available only at the receiver, not at the
transmitter [1], [2], [4]. We will refer to the former as complete
CSIT and the latter as no CSIT1 ; these will be used as the two
references in comparing channel capacities.
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1CSIT: channel state information at the transmitter. In this paper, we assume
that in all cases the channel information is completely known to the receiver.

We remark that there are gaps between the capacities of the
two cases, in particular, when the transmit power is relatively
low, or when the number of transmit antennas is greater
than the number of receive antennas. In order to achieve the
higher capacity of the complete CSIT, the transmitter should
perfectly know instantaneous channel information. In general,
the channel state information at the transmitter, even partial
information, can be utilized to increase the channel capacity.
This research was motivated by a natural insight that there is a
tradeoff between the improvement in channel capacity and the
degree of completeness of the CSI available at the transmitter.
In practical situations, particularly, in systems with a feedback
channel for the channel state information, the amount of
channel information that is required at the transmitter can be
too large to handle, since the channel has number of
fading parameters. In this paper, we consider the cases where
the channel information is partially known to the transmitter in
a way that enables a reduction in the amount of the feedback
information.

There were several studies that have considered partial
CSIT for different systems or in different forms of CSIT other
than what this paper considers. We mention a few works in
this content. Caire and Shamai [5] investigated single-input
single-output channels. Multiple-input single-output (MISO)
channels were studied by Visotsky and Madhow [6] considering
the second order statistics of channel as partial CSIT. Jafar et al.
[7] considered extension of Visotsky’s result to multiple-input
multiple-output (MIMO) channels, Bhashyam, Sabharwal, and
Aazhang [8] explored MISO channels considering the received
SNR as partial channel information. Beamforming combined
with space-time coding in MIMO channels were investigated
by Jongren, Skoglund and Ottersten [9] where an estimate
of the channel realization is assumed to be available at the
transmitter.

There are many applications in which there exists a feedback
channel for the channel state information. However, in many
real systems, the channel information can not be fully provided
to the transmitter, for example, due to a limited transmission
capacity of feedback channel or rapid channel variation. In de-
signing such systems, it is important to determine what type of
the channel information to feed back while minimizing the loss
of channel capacity. In this paper, we consider flat-fading chan-
nels with transmit and receive antennas which is modeled
by an complex matrix . We propose a beamforming
method in which the beamforming matrix is determined from a
subset of the eigenvectors of in some predefined way; as
a result, the receiver also knows the beamforming matrix. With
this beamforming scheme, we introduce a new multiple antenna
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system concept that provides a mechanism to reduce the amount
of channel feedback information. It is shown that this system
concept leads to schemes wherein the amount of feedback in-
formation can be significantly reduced with a minor sacrifice of
achievable transmission rate.

In fast time-varying channels, it may be more realistic that
averaged channel information is provided to the transmitter as
in [10]. Since the basic principle in beamforming and feed-
back of channel information except averaging the channel in
obtaining the feedback information, the proposed beamforming
and system concept can be adapted in that situation. Therefore,
this paper focuses on the cases that feedback the instantaneous
channel information.

This paper is organized as follows. In Section II, the channel
model is described and the capacity results for complete and
no CSIT are summarized. The new beamforming method and
a novel multiple antenna system concept are introduced in
Section III. It is shown that a MIMO channel can be decom-
posed into two parts, parallel independent channels and a
new smaller coupled MIMO channel. In Sections IV and V,
the channel capacities for partial CSIT are derived under two
different conditions: i) unequal and ii) equal power allocated
over the symbols for the coupled MIMO channel. Numerical
results are presented in Section VI.

II. SYSTEM MODEL AND BACKGROUND

A. Channel Model

We consider multiple antenna systems with antennas at the
transmitter and at the receiver. Assuming slow flat-fading, the
MIMO channel is modeled by the channel matrix .
That is, the channel input and the channel output
have the following relationship:

(1)

where is the complex additive white Gaussian noise
(AWGN) vector with each element being assumed i.i.d. com-
plex Gaussian random variable with zero-mean and unit vari-
ance, i.e., , where denotes the expectation
operation and is the identity matrix. We denote the rank
of by . And the singular value decomposition (SVD) of
is given by , where denotes the conjugate trans-
pose of a matrix ; unitary matrices and
span the input space and the output space , respectively;
and contains the singular values with representing
the th singular value of and . We impose
a constraint on the transmit power, .

In this paper, we assume that in all cases perfect CSI is known
to the receiver. In addition, it is assumed that the transmitter
knows the first column vectors of , where , or the
first eigenvectors of , as partial spatial information of the
channel. This assumption includes the two extreme cases: i)

is the case that the transmitter has same spatial information as
in the complete CSIT case; and ii) accounts that no spatial
information is available at the transmitter as in the no CSIT case.
This paper mainly considers the cases of ; these
corresponds to partial CSIT cases. For notational convenience,

let us define where is the th column vector
of , and , i.e., .

B. Ergodic Channel Capacity

We consider the ergodic capacity as a performance measure.
More details of this section can be found in [1]. The ergodic
capacity of a random MIMO channel with transmit power con-
straint is given by

where indicates the expectation over channel realiza-
tions; and is the conditional capacity for a given
channel realization with a power constraint . That is

The mutual information satisfies the following
inequality:

(2)

where is the base-2 logarithm, denotes the deter-
minant of , , and the equality holds if and only
if is a circularly symmetric complex Gaussian random vector.
In summary, the ergodic channel capacity is expressed as

C. MIMO Channels With Complete and No CSIT

Let us denote by the capacity of MIMO channels with
CSI fully known to both the transmitter and the receiver (com-
plete CSIT); by the capacity with CSI known only to the
receiver (no CSIT). When the transmitter knows the channel
information, the optimum power allocation can be solved by
water-filling [11] over independent spatial channels [1]. The
capacity is given by

(3)

where is the th largest eigenvalue of
(or ), and are the transmit powers allo-
cated on the transmit symbol ( ), i.e.,

. is defined as
and is the level of water-filling satisfying the

power constraint

On the other hand, when the transmitter has no knowledge
about the channel, it is optimal to use an equal power allocation
[1], i.e., for . Then, the capacity is given
by

(4)
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The difference between and at high transmit
power is summarized in the following Lemma.

Lemma 1: At high transmit power (to satisfy
for all )

when
when

(5)

where if is full rank.
Proof: See Appendix A.

That is, when , the two capacities ( and ) is
asymptotically same; and when , and also when ,
there exist fundamental gaps between and even as

.

III. THE BEAMFORMING METHOD AND NEW SYSTEM CONCEPT

A. Extended Maximal-Ratio Transmission

In a system where single data stream is transmitted over
transmit antennas after passing through a beamformer ,
the optimum choice of is the first eigenvector of , or, .
This transmission scheme is called maximal-ratio transmission
(MRT). The choice of the beamformer as is optimal in
terms of maximizing the received signal-to-noise ratio [12]. In
addition, it can be easily shown that the beamformer choice of

is also optimal in the sense of maximizing the mutual
information.

A generalization of the MRT for a system with data
streams is to employ different beamformers for each data
stream. In this scheme, the transmitted signal can be
modeled as

(6)

where is referred to as beam-
former matrix, , and is the
(Euclidean) norm on . In [13], it was discussed that the op-
timum beamformer, for the case when , is likely to be .
The transmitter uses only the known spatial channels, that is,
transmitting data streams using the eigenvectors. We will
call this scheme extended MRT. Since the receiver knows the
channel parameters, the channel can be decomposed into par-
allel channels with different channel gains. As a result, with this
strategy, one can employ conventional scalar coding to each
spatial channel. But, because the inherent multiplexing capa-
bility of the multiple antenna channel is not fully exploited, it
will be shown later that this strategy is inferior to the transmis-
sion strategies we propose in the following.

B. The Beamforming Method

To fully exploit potential multiplexing capability of the
channel, we propose a new and improved beamforming
method that also utilizes the orthogonal complement of the
space spanned by . A beamforming matrix is
generated as a function of in a predefined manner. Since the
receiver has knowledge of , the receiver is also aware of the
beamforming matrix that the transmitter will use. This property
enables us to conceive of a new multiple antenna system
concept which is described in Section III-C. One reasonable
way to generate the beamforming matrix is the following:

1) Choose column vectors, namely,
, that are mutually orthogonal and

also orthogonal to the space spanned by , i.e.,

(7)

where is identity matrix and 0 is zero
matrix.

2) Concatenate to to form a beamforming matrix
.

It can be easily shown that, if is full rank, spans the same
input space as does. The beamforming matrix is used in
transmitting the information vector in a manner similar
to the use of in the complete CSIT case. The procedure for se-
lecting satisfying (7) can be defined in various ways, e.g.,
are the eigenvectors corresponding to the nonzero eigenvalues
of . Whatever be the mechanism for generating
at the transmitter, the generating mechanism is assumed to be
known at the receiver so that the receiver can also independently
generate and, hence, .

C. New Multiple Antenna System Concept

With the proposed beamforming scheme, we develop a new
multiple antenna system concept that can potentially lead to
a reduction in the amount of channel feedback information. It
involves

1) Based on , calculation for optimal power allocation
over transmit symbols is performed at the receiver.

2) The power allocation result is provided to the transmitter
as additional CSIT.

The first step will be described in detail in Sections IV and V.
Two approaches will be discussed, each of which results in
and real values, respectively. These values are bounded
between 0 and 1, and sum up to be 1. Then, the total channel
feedback information is -dimensional complex vectors, i.e.,

, plus (for the first approach) or (for the second ap-
proach) real values in . Thus, in most systems, in particular,
when the number of transmit antennas is large, the amount of
feedback information can be significantly reduced.

Table I summarizes the transmission strategies that will be
used as references. Table II is a summary of the proposed trans-
mission strategies including the spatial information available at
the transmitter, the beamforming matrix, and the power allo-
cation results as additional CSIT. The first scheme and corre-
sponding capacity in Table I will be dealt in Section IV,
the second is a special case of the first , and the third
scheme denoted by will be discussed in Section V.

As shown in the tables, in the proposed schemes, the amount
of feedback information required at the transmitter is more than
in the no CSIT case and much less than in the complete CSIT
case; therefore, it is expected that the capacities of the pro-
posed schemes lie between the two extremes. But, it will be
shown later that at moderate transmit power region, the pro-
posed schemes achieve the most gain of channel knowledge of
the complete CSIT. Comparing with the extended MRT scheme,
the capacity is much higher particularly at high transmit power,
although the amount of feedback information is comparable.
This results from the transmission strategy that utilizes the or-



680 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 3, NO. 2, MARCH 2004

TABLE I
SUMMARY OF THE TRANSMISSION STRATEGIES: REFERENCE SCHEMES

TABLE II
SUMMARY OF THE TRANSMISSION STRATEGIES: PROPOSED SCHEMES

thogonal complement space, i.e., channel, which can be ob-
tained from the partial spatial information at the transmitter.

D. Channel Decomposition

Now, we will show that by using the proposed beamforming
method the original MIMO channel is decomposed into two
parts: parallel independent channels, and a new smaller cou-
pled MIMO channel. The transmitted signal is given by

where , , and .
The receiver pre-multiplies the received signal
by to have . Using the partitioned matrices of

compatible size to , can be written as follows:

(8)

where , , diagonal matrices
and contain and ,
respectively, and the zero matrices are of suitable size. Equa-
tion (8) results from the facts that , and

.
We can see that the MIMO channel has been decomposed into
noninterfering parallel channels and a new coupled MIMO

channel with a channel matrix in .
That is

(9)

(10)

We will refer to the first channel of (9) as the channel, and the
second channel of (10) as the channel. Note that the covari-
ance of is unchanged as .
An interesting property about the singular values of the channel
matrix is summarized in the following Lemma.

Lemma 2: The singular values of the channel matrix
is preserved as .

Proof: See Appendix B.
By the following Lemma, we show that the mutual informa-

tion is preserved with the linear operations and
. Furthermore, can be given by the sum of the

mutual information expressions for two decomposed channels.
Lemma 3: For a given channel realization , the mutual

information between the input and the output of the MIMO
channel can be expressed as

(11)

(12)

Proof: See Appendix C.

IV. MIMO CHANNELS WITH PARTIAL CSIT: OPTIMUM

TRANSMISSION STRATEGY

Here and in Sections V and VI, we derive the ergodic channel
capacity and the optimum transmit power allocation schemes
for the MIMO system with partial CSIT described in Sections II
and III.

As we discussed in Sections II and III, by using a beam-
forming matrix generated in a predefined way, the beamforming
matrix is also known to the receiver. We discuss the trans-
mission schemes and accompanying optimum power allocation
solutions that take advantage of receiver’s knowledge of the
channel. For simplicity, we define an equivalent channel ma-
trix , or , which represents the channel
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between and , i.e., . By Lemma 3 , maxi-
mizing is equivalent to maximizing . Thus, since

, we have

(13)

The maximization problem is complex, and except in some
special cases it requires the use of numerical optimization
methods. Fortunately, this optimization problem is matched to
the so-called determinant maximization problem [14] and can
be solved numerically by using MAXDET algorithm [15]. The
optimal power allocation for the channel, in general cases,
turned out to be unequal even for the symbols over the
channel. In this scenario, the channel feedback information is

and the power allocation , where is defined
as . Compared to the equal power allocation cases which
will be discussed in Section V, although this optimal scheme
requires complicated calculation for the power allocation and
a little bit more feedback information, i.e., real
numbers in , it provides higher channel capacity. We
can find closed-form expressions in the following practically
important cases.

A. Case I: When and

In this case, since no eigenvector of is provided to the
transmitter, we consider a natural choice of the beamforming
matrix, . Then, since the equivalent channel is now
a -dimensional row vector denoted by , the
maximization problem of (13) becomes a simple form of the
following:

By the monotonicity of log function and using a well-known
solution in conventional linear programming, we have the fol-
lowing solution

(14)

where . This means that the total transmit
power should be allocated such that and for
all .

The analysis indicates that if the index for is available at
the transmitter via some feedback we can obtain higher channel
capacity than that of no CSIT case. This can be interpreted as
transmit antenna selection method in which at a given time only
one antenna that provides the best link to the receiver is used in
transmitting data.

B. Case II: When and

This is a generalization of Case I. An example of this case is
, and . In this case, the equivalent channel

is given by

...
...

...
...

. . .

where is defined as the inner product between the th
column of and the th column of , i.e., for

. Therefore, the channel can be expresses as follows:

where denotes the th component of the -dimensional vector
and the th symbol of .2

Then, applying the same linear optimization technique as in
Section IV-A to the last MISO channel (the input are
and the output is ), the maximization problem of (13) becomes
the following:

(15)

where . Notice that the channel we
consider consists of parallel Gaussian channels with each
channel having a channel gain, , , respec-
tively. Thus, the conditional channel capacity can be solved
by conventional water-filling over the noisy channels with
equivalent noise levels of .

The result implies that the spatial information to feed back is
and the index for that indicates the antenna, among the

antenna set of th to th antenna, that provides the best link to
last channel output .

V. MIMO CHANNELS WITH PARTIAL CSIT: SUBOPTIMUM

TRANSMISSION STRATEGY

By using Lemma 3, the conditional channel capacity can be
expressed as follows:

(16)

where is the transmit power allocated to the channel
of (9), and is the transmit power on the channel of
(10). is the conditional channel capacity of the
channel with transmit power . Because the channel con-
sists of parallel Gaussian channels, for a given , the ca-
pacity and the optimum power allocation can be obtained simi-
larly to the complete CSIT case of (3). That is

(17)

The second term in (16) is the conditional
channel capacity of the channel with transmit power .
In this Section, we confine our attention to a practically reason-
able transmission strategy: an eqal power allocation for the
channel. Compared to the optimum scheme in Section IV, the

2Note the definitions of ~y and s are different from those in Section III.
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power allocation results in real values in ; therefore,
the amount of channel feedback information has been reduced,
which is one of advantages of this transmission strategy.
The analysis of this transmission scenario is also meaningful
because it explains the limiting performance of the systems
that comprises of parallel channels (the channel) from
beamforming, for which conventional time-domain only codes
would be used; and a MIMO channel (the channel), for
which a space-time code would be employed. In other words,
this section assumes that the transmitter has no information
about the channel except the total transmit power for
the channel. Then, from (4), the conditional capacity expression
is given by

(18)

Combining (17) and (18) with (16), the conditional capacity
for a given channel realization is obtained by solving the
following maximization problem

(19)
where is defined as

(20)

We can write the constraint maximization using Lagrange mul-
tipliers as the maximization of

where is the Lagrange multiplier (a constant
is included here for a simplicity in the following derivations).
Let us define two kinds of functions that will be referred many
times in following discussion

Differentiate with respect to and , and
set the derivatives to zeros; that is,

and . Then, we
obtain the following equations

(21)

(22)

Fig. 1. An example of functions f (P ) and g(P ) (when t = 4, r = 4,
n = 2, � = 9:6303, � = 2:2467, � = 1:0682, � = 0:4174).

The power constraint can be rewritten
using inverse functions3 of , and .

(23)

Here note that the channel capacity is achieved when the total
transmit power equals to . Since their shapes determine the
optimum power allocation, to facilitate understanding the func-
tions and are shown in Fig. 1 as an example.
Note also that the inverse function for is easily written by

, while it is not easy to find a simple
expression for . The following Theorem summarizes the
steps to obtain the conditional channel capacity .

Theorem 1: For a given channel, the channel capacity of
MIMO channel with partial CSIT can be obtained by solving
for satisfying

and

where functions and are defined in (21) and (22). Once
the solution is obtained, the optimum power allocation is
given by

(24)
and, the conditional channel capacity is given by

(25)

where is defined in (20).
Now, we need to solve for that simultaneously satisfies

(21), (22) and (23). Note that the function is a mono-
tonically decreasing function with and goes to zero

3For the existence of inverse functions, we limit the domains of functions
f (x) and g(x) such that f : (�1=� ;1) ! (0;1) and g : (�(t �
n)=� ;1) ! (0;1).



ROH AND RAO: MULTIPLE ANTENNA CHANNELS WITH PARTIAL CSI 683

as increases; and, so is the function with
. A desirable fact is that

(26)

Hence, , for all . We now define some
parameters to be used in the following discussion

(27)
Then, we can solve for by considering two cases: i) when

, and ii) when . When , should be
greater than ; therefore, in (23), . It means
that should be zero, i.e., the should not be used. Then,
the solution satisfying the three (21)–(23) and the channel
capacity can be obtained by using normal water-filling just as
in (3). The optimum power allocation is given by

(28)

The conditional channel capacity is given by

(29)

In the second case when , should be less than ;
therefore, is now positive. That is, for

, and also . The
channel is now being used. Therefore, from (21)–(23), we

need to solve for satisfying

which is equivalent to

(30)

The solution satisfying (30) can be solved numerically by
using a zero-finding algorithm for single-variable nonlinear
functions. The following Lemma shows the range of which
is helpful in setting up the zero-finding algorithm.

Lemma 4: , and is given by

(31)

Proof: See Appendix D.

A. Equivalent Water-filling

From the above derivation of the optimum transmit power
allocation, we can see that a MIMO channel with partial CSI
at the transmitter has some characteristics of water-filling. In
particular, the channel starts to be used when the transmit
power is greater than a certain threshold and the power
allocation on the channel is determined by the conventional
water-filling method. In this subsection, we show that the power

Fig. 2. Power allocation versus water-filling level � (t = 4, r = 4, n = 2,
� = 9:6303, � = 2:2467, � = 1:0682, � = 0:4174).

allocation on the channel also can be understood with an
equivalent water-filling model, which is described in the fol-
lowing Theorem.

Theorem 2 [Equivalent Water-Filling]: The optimum power
allocation over each channel can be viewed as the area deter-
mined by the the following function that defines the shape of
the vessel for water-filling.

if
if

...
...
if

if
if

(32)

where is given by

(33)

Then, the optimum power allocation can be written as follows.

for

(34)
if ,
otherwise

(35)

where is the level of water-filling.
Proof: See Appendix E.

We can obtain the relationship between the optimal power
allocation to each channel and the water-filing level
from the definitions of functions and
given in (21) and (22). Fig. 2 is a numerical example for a given
channel realization of and . In this figure, we
can see the characteristics of water-filling. That is, the thresh-
olds are and as we expected. Note that

are linear functions with unit slope, and has an
approximate slope of . But, function is not a linear
function. Fig. 3 shows an example of the equivalent water-filling
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Fig. 3. Equivalent water-filling by Theorem 2 (t = 4, r = 4, n = 2, � =

9:6303, � = 2:2467, � = 1:0682, � = 0:4174).

shape that was calculated numerically from Theorem 2. The
shape of the equivalent water-filling explains the water-filling
characteristics discussed above. Since, for , the width
of the th channel is one, function has unit slope. And,
the last channel is a nonlinear function which results in

If we approximate the water-filling vessel to the rectangular
one depicted in Fig. 3, then the calculation for the power allo-
cation, therefore, also the channel capacity, will become much
easier. The approximation also gives a meaningful insight in
understanding the MIMO channel with partial CSIT. The fol-
lowing summarizes the results from the approximation.

Corollary 1 (Approximation for ): For a given channel
realization,

(36)
where the lower bound can be achieved by a rectangular water-
filling vessel exemplified in Fig. 3 with the transmit power al-
location:

(37)

and is selected to satisfy the power constraint
.

Proof: See Appendix F.

VI. NUMERICAL RESULTS

For comparative studies, we consider the extended MRT
scheme. The transmitter is also assumed to know , and only

spatial channels are used for transmission. That is, all the
transmit power is allocated only to the channel in a
water-filling manner. It is equivalent to the case where the
channel in our system model is not used. Since the extended
MRT scheme abandons a chance for the additional potential
gain from the channel, it is surely inferior to the proposed
scheme. By looking at the problems in points of optimization,
we can easily see the following relationships between capacities
with different CSI assumptions and transmission strategies.

Although the proposed system does not depend on a spe-
cific channel model, for numerical comparisons, we consid-
ered the MIMO channel that was assumed in [1]. The channel
gain matrix is a random matrix independent to
the transmit symbols and the additive noise , with i.i.d. en-
tries, each having independent real and imaginary parts with
zero-mean and variance 1/2.

Figs. 4 and 5 are ergodic capacities versus total transmit
power with different CSI assumptions and transmission
strategies that have been discussed in Section V, for MIMO
channel with parameters and ,
respectively. For details about CSI assumptions and trans-
mission strategies, refer to Tables I and II in Section III. In
simulation, for each channel realization, was
calculated using Theorem 1. The figures include the results
from the approximation for the water-filling vessel described
in Corollary 1. We can see that the approximation is a good fit
over a significant range of transmit power. Also, the difference
between and at high transmit power of Lemma
2 can be observed. In addition, the following asymptotical
behaviors of can be seen.

as

This is because when the transmit power is low, by water-filling,
in most case the power is allocated only to first a few channels
and nothing to the channel; therefore, the two capacities are
similar. This shows that spatial information is more important
in low range of transmit power.

By comparing and , it is observed that at low
transmit power the two are very close, and as the transmit power
increases is getting higher than . From this ob-
servation, we can say that the channel should be utilized to
achieve higher capacity at medium and high range of transmit
power. At high transmit power region, is higher than but
close to . This can be understood by noticing that, at high
transmit power, for the same reason as the no CSIT case, the
transmit power is wasted with the equal-power transmission
over transmit symbols for the channel.

Figs. 6 and 7 show ergodic capacities for the transmission
schemes that have been dealt in Section IV, with parameters

and , respectively. The con-
ditional capacity was calculated, depending on
the system parameters, using the MAXDET algorithm, or (14),
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Fig. 4. Ergodic capacities of MIMO channel with different CSI assumptions
and transmission strategies (t = 4 and r = 2).

Fig. 5. Ergodic capacities of MIMO channel with different CSI assumptions
and transmission strategies (t = 6 and r = 3).

(15). In order to effectively compare the performance of dif-
ferent transmission strategies, each capacity has been normal-
ized to , the capacity of the complete CSIT. As ex-
pected, it is observed that for all range of transmit power

In comparing and , it is noticeable that at

low transmit power , but at intermediate

and high transmit power is superior. This observation im-
plies that when the transmit power is low the spatial information
of the channel is important, and as the transmit power increases
the power allocation is becoming meaningful from a capacity
point of view. Note that the channel feedback information re-
quired for the two strategies are different: for first strategy,

Fig. 6. Ergodic capacities of MIMO channel with different CSI assumptions
and transmission strategies, normalized to the capacity for the complete CSIT
(t = 4 and r = 2).

Fig. 7. Ergodic capacities of MIMO channel with different CSI assumptions
and transmission strategies, normalized to the capacity for the complete CSIT
(t = 6 and r = 3).

real values in , i.e., ; and for the second one is
one -dimensional complex vector and one real value in

( is determined from as ).
Generally speaking, in spatially correlated MIMO channels,

the gains of spatial channels are more separated than in i.i.d.
channels. Therefore, the proposed scheme is expected to be
more beneficial in spatially correlated channels.

VII. CONCLUSION

We considered multiple antenna systems consisting of
transmit and receive antennas, and partial channel state
information available at the transmitter. When the multiple
antenna channel is represented by a channel matrix in ,
the first eigenvectors of are assumed to be available at
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the transmitter as partial spatial information of the channel. We
proposed a novel transmission strategy in which a beamforming
matrix is determined from the eigenvectors in a predefined
way. From the beamforming method, a new multiple antenna
system concept was developed which enables better use of
the MIMO channels. In particular, we have considered two
methods, each having different degrees of additional channel
information, i.e., power allocation results. The ergodic channel
capacities and accompanying power allocation solutions for
both cases have been derived. The simulation results have
shown that, in moderate transmit power region, the proposed
multiple antenna systems with partial channel information give
channel capacities close to those with full channel information
at the transmitter. In practical applications that need a feedback
for the channel information, the amount of feedback infor-
mation can be significantly reduced with a minor sacrifice of
channel capacity by using the proposed schemes.

APPENDIX

A. Proof of Lemma 1

At high transmit power ,

when
when

where if is full rank.
Proof: Assume is high enough to satisfy

for all and the level of water-filling can be ap-
proximated as . Then

B. Proof of Lemma 2

The singular values of the channel matrix is
preserved as .

Proof: It suffices to show that for some unitary
matrix , because, if then,

which is directly the SVD for with singular values
given in . Since the column spaces of and are same, i.e.,

, we can write

(38)

We will show that is unitary. Denote the spectral norm [16]
of a matrix as

where is the largest singular value of . By using the
submultiplicative property of matrix norm
and , we arrive . And, from (38),

. In a similar way, it can be shown that .
Therefore, .

Since is invertible, . It can be proved that
exactly in the same manner as the above. Since

, , i.e.,
the SVD of is given by . Hence,

, that is, is a unitary matrix.

C. Proof of Lemma 3

For a given channel realization , the mutual information
between the input and the output of the MIMO channel can be
expressed as

Proof: From the system model

(39)

The first equation of (11) can be proved by

The second equation above cames from that
since for given the first term of (39) is just a constant vector,
and by a property that the entropy is not changed with a shift.

The second equation of (12) can be verified by noting that the
two input-output relations, and , are indepen-
dent. Therefore

D. Proof of Lemma 4

, and is given by
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Proof: Since, by assumption, , and is a
decreasing function with for

From the definition of in (22), we can see that has the
largest singular point at with
as for a small positive value . Therefore, when
the argument of in (30) approaches to , the output of
goes to . Setting the argument to and solving for gives

in (31). Hence, the Lemma is proved by noting that is
continuous and monotonically deceasing for .

E. Proof of Theorem 2

Proof: Other things are straightforward except of
(33). We want to find a function satisfying

Differentiating both sides with respect to , we have

(40)

We know that the relationship between and is given
by which was presented in (22). We can obtain

by

where note that was written in denominator within the
summation instead of . By noticing that in
(40) is the inverse of , and after changing variable, we
reach the desired result of (33).

F. Proof of Corollary 1

Proof: First, let us show the following inequality for the
function :

(41)

For a fixed , the function
is concave for . For any concave function defined
over a set , for all , and for all nonnegative
numbers such that , it is easy to see
that

By applying the above inequality with equal coefficients ,
we have

where , and the last equality results from
. Therefore, the inequality (41) has been proved.

It is interesting that the function is associated with the
rectangular vessel depicted in Fig. 3. That is, if is
rewritten for the water-filling level , we have

which explains the water-filling behavior of the rectangular
shape. It is obvious that the mutual information obtained from
the rectangular vessel is less than the maximum value, i.e.,

.

ACKNOWLEDGMENT

The authors would like to thank Prof. S. Boyd of Stanford
University for his help in applying the MAXDET algorithm to
problems with complex matrices, as well as the reviewers for
their valuable comments and suggestions which improved the
paper.

REFERENCES

[1] I. E. Telatar, “Capacity of multi-antenna Gaussian channels,” AT&T Bell
Labs Tech. Memo., 1995.

[2] G. J. Foschini and M. J. Gans, “On limits of wireless communications in
a fading environment when using multiple antennas,” Wireless Personal
Commun., vol. 6, no. 3, pp. 311–335, Mar. 1998.

[3] E. Biglieri, G. Caire, and G. Taricco, “Limiting performance of block-
fading channels with multiple antennas,” IEEE Trans. Inform. Theory,
vol. 47, pp. 1273–1289, May 2001.

[4] A. Narula, M. D. Trott, and G. W. Wornell, “Performance limits of coded
diversity methods for transmitter antenna arrays,” IEEE Trans. Inform.
Theory, vol. 45, pp. 2418–2433, Mar. 1999.

[5] G. Caire and S. Shamai, “On the capacity of some channels with channel
state information,” IEEE Trans. Inform. Theory, vol. 45, pp. 2007–2019,
Sept 1999.

[6] E. Visotsky and U. Madhow, “Space-time transmit precoding with im-
perfect feedback,” IEEE Trans. Inform. Theory, vol. 47, pp. 2632–2639,
Sept. 2001.

[7] S. A. Jafar, S. Vishwanath, and A. Goldsmith, “Channel capacity and
beamforming for multiple transmit and receive antennas with covariance
feedback,” Proc. IEEE ICC 2001, pp. 2266–2270, June 2001.

[8] S. Bhashyam, A. Sabharwal, and B. Aazhang, “Feedback gain in mul-
tiple antenna systems,” IEEE Trans. Commun., vol. 50, pp. 785–798,
May 2002.

[9] G. Jongren, M. Skoglund, and B. Ottersten, “Combining beamforming
and orthogonal space-time block coding,” IEEE Trans. Inform. Theory,
vol. 48, pp. 611–627, Mar. 2002.

[10] M. T. Ivrlac and J. A. Nossek, “Correlated fading in MIMO systems-
blessing or curse?,” in Proc. 39th Allerton Conf., 2001.

[11] T. M. Cover and J. A. Thomas, Elements of Information Theory. New
York: Wiley, 1991.

[12] T. K. Y. Lo, “Maximum ratio transmission,” IEEE Trans. Commun., vol.
47, pp. 1458–1461, Oct. 1999.

[13] H. Sampath, P. Stoica, and A. Paulraj, “Generalized linear precoder and
decoder design for MIMO channels using the weighted MMSE crite-
rion,” IEEE Trans. Commun., vol. 49, pp. 2198–2206, Dec 2001.



688 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 3, NO. 2, MARCH 2004

[14] L. Vandenberghe, S. Boyd, and S.-P. Wu, “Determinant maximization
with linear matrix inequality constraints,” SIAM J. Matrix Anal. Applic.,
vol. 19, no. 2, pp. 499–533, Apr. 1998.

[15] S.-P Wu, L. Vandenberghe, and S. Boyd, MAXDET: Software for De-
terminant Maximization Problems: User’s Guide, Alpha Version, CA:
Stanford Univ., 1996.

[16] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge, MA:
Cambridge Univ. Press, 1985.

June Chul Roh (S’03) received the B.S. and
M.S. degrees in electronics engineering from the
University of Seoul, Seoul, Korea, in 1993 and 1995,
respectively.

Currently, he is working toward the Ph.D. degree
with the University of California at San Diego,
La Jolla. From 1995 to 2000, he was a Member
of Technical Staff of the Korea Telecom R&D
Group, where he worked on third-generation cellular
systems and was involved in developing a wideband
CDMA system. His research interests include

communication theory, information theory, statistical signal processing,
spread-spectrum communications, and multiple antenna systems.

Bhaskar D. Rao (S’80–M’83–SM’91–F’00)
received the B.Tech. degree in electronics and
electrical communication engineering from the
Indian Institute of Technology, Kharagpur, in 1979
and the M.S. and Ph.D. degrees from the University
of Southern California, Los Angeles, in 1981 and
1983, respectively.

Since 1983, he has been with the University of Cal-
ifornia at San Diego, La Jolla, where he is currently
a Professor with the Electrical and Computer Engi-
neering Department. His interests are in the areas of

digital signal processing, estimation theory, and optimization theory, with appli-
cations to digital communications, speech signal processing, and human-com-
puter interactions.

Dr. Rao is a member of the Statistical Signal and Array Processing Technical
Committee of the IEEE Signal Processing Society. He is also a member of the
Signal Processing Theory and Methods Technical Committee.


