
Bandwidth Sensitive Routing in DiffServ Networks
with Heterogeneous Bandwidth Requirements

Jun Wang, Li Xiao, King-Shan Lui, Klara Nahrstedt
Department of Computer Science

University of Illinois at Urbana-Champaign
{junwang3, lixiao, kinglui, klara}@cs.uiuc.edu

Abstract—
This paper studies the problem of finding optimal routes for

premium class traffic in a DiffServ network such that (1) loop-
freedom is guaranteed in the entire network under hop-by-hop
routing assumption; and (2) the maximum relative congestion
among all links is minimized. This problem is called the Extended
Optimal Premium Routing (eOPR) problem, which is proven to be
NP-hard.

We use the integer programming method to mathematically
formulate the eOPR problem and find the optimal solutions
for small scale networks. We also study heuristic algorithms
in order to handle large scale networks. Simulation results
are compared with the optimal solutions obtained by solving
the integer programming models. The results show that the
Bandwidth-inversion Shortest Path (BSP) algorithm can be a good
candidate to route premium traffic in DiffServ networks.

I. INTRODUCTION

To provide better end-to-end Quality of Service (QoS) to
applications, the Differentiated Service (DiffServ) scheme has
been proposed as a cost-effective solution [1], [2]. In DiffServ
networks, traffic is classified into multiple service classes, in
which the premium class has the highest priority. However,
all traffic between each source-destination pair may flow along
the same path independent of class of service. The reason is
that DiffServ scheme was designed originally and intentionally
to be decoupled from IP routing. Without taking service
differentiation into consideration during the routing process,
some inappropriate paths might be used by both premium
and best-effort traffic so that the premium class traffic, due
to its higher priority, could impose very negative inter-class
effects [3] on best-effort traffic, including larger delay, higher
packet loss rate and even bandwidth starvation. Therefore, it is
important to find optimal routes for premium class traffic under
both DiffServ and hop-by-hop IP routing assumptions, which
minimize the negative inter-class effects.

The higher ratio of bandwidth is used by the premium traffic
on a link, the larger inter-class effects will be. Therefore, a
natural way to find better premium paths is to minimize such

This work was supported by NSF Grant under contract number NSF ANI
00-73802 and NSF CISE Grant under contract number NSF EIA 99-72884.
Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of
the National Science Foundation.

Please address all correspondences to Jun Wang and Klara Nahrstedt at
Department of Computer Science, University of Illinois at Urbana-Champaign,
Urbana, IL 61801, phone: (217) 244-5841, fax: (217) 244-6869.

bandwidth ratio occupied by premium traffic among all links.
We call this bandwidth ratio occupied by premium traffic of a
link the relative congestion (RC) of the link. Then, given a
network, the optimal routing algorithm needs to find routes for
the premium traffic such that the maximum value of relative
congestion in the network is minimized1. This routing problem
is called the Extended Optimal Premium-class Routing (eOPR)
problem2 and is proven to be NP-hard (see Appendix). The
original OPR problem was raised in [3], where all nodes in
a DiffServ network were considered as edge nodes and the
bandwidth requirements among all nodes were homogeneous.
In this paper, we study a more realistic model, in which nodes
are classified into edge nodes and interior nodes and premium
bandwidth requirements among edge nodes are heterogeneous.

The rest of the paper is organized as follows. Section
II presents the system model, our assumptions and the
eOPR problem formulation. The approach based on integer
programming is introduced in Section III to obtain the optimal
solution to the eOPR problem. Two heuristic algorithms are
also introduced there. The performance issues are investigated
in Section IV. Some previous work is covered in Section V.
Finally, Section VI concludes this paper and the Appendix part
gives a brief proof of the NP-hardness of the eOPR problem.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network model

A DiffServ network is defined as N = (G,Ve, C), in which
G = (V,E) is a directed graph with V as its node set and E
as its link set. Ve ⊆ V is the edge node set which contains all
edge nodes in the network. C = {cxy|∀(x, y) ∈ E} defines the
capacities of all links, where (x, y) represents a link from node
x to node y.

A path from the source node v1 to the destination vn is
written as p(v1, vn) = 〈v1, v2, · · · , vn−1, vn〉. A path is simple
or loop-free if all nodes from v1 to vn are distinct. If v1 = vn,
then p(v1, vn) forms a loop. Specially, if a path is used by
premium traffic, then we call it a premium path. If a link is
shared by multiple premium paths between different pairs of

1That is, the maximum ratio, among all links, of the total amount of reserved
bandwidth for the premium traffic divided by the link capacity is minimized.

2More formal definition of the eOPR problem and some examples are
presented later in Section II.

188
0-7803-7802-4/03/$17.00 © 2003 IEEE

edge nodes, then it has to reserve the sum of the bandwidth
requirements for all premium traffic passing through it.

Since only the edge nodes generate premium traffic, the
bandwidth requirements among all the edge nodes are defined
as Q = {rxy|x, y ∈ Ve}. As we can see, different routing
algorithms may result in different traffic distributions among
links. We use F = {fxy|(x, y) ∈ E} to denote the reserved
bandwidth (by the premium traffic) on links. Finally, given
∀(x, y) ∈ E, we define RC(x, y) = fxy

cxy
as the relative

congestion of the link (x, y). Among all the RC values
in a given network, the maximum one is defined by Y =
max

(x,y)∈E
{RC(x, y)}, which is the optimization target in our

eOPR problem.

B. Assumptions

Our formulation of the eOPR problem is based on the
following assumptions:

• Each router can obtain the topology information by some
link-state routing protocol such as the Open Shortest-Path
First Protocol (OSPF).

• Hop-by-hop routing is used. Therefore, routing
consistency (or loop-freedom) should be guaranteed [3],
[4]. This implies that, for every destination node v ∈
Ve, all paths connecting other edge nodes to v forms a
spanning tree.

• Queueing delay at each node along a path accounts for
the most significant part of the entire end-to-end delay
for that path. This implies that the premium class traffic,
with the highest priority traffic, experiences almost no
queueing delay [2], [5]. Therefore, choosing fairly longer
(in terms of hop-count) paths for the premium traffic does
not compromise the delay requirement.

• The current hop count shortest path (SP) algorithm is still
used for routing the best-effort traffic in the network, due
to its stability and the dominance in volume of the best-
effort traffic.

C. Formulation of the eOPR problem

Given a DiffServ network N and premium bandwidth
requirements Q among the edge nodes, different routing
algorithms may choose different paths to route the premium
traffic, thus producing different relative congestion values for
every link in the network. Therefore, our target is to find a
set of routes connecting the edge nodes which minimizes the
maximum value of relative congestion among all links. This
problem is called the Extended Optimal Premium-class Routing
(eOPR) problem. It is NP-hard. The brief proof of the NP-
hardness is given later in the Appendix. The optimal routing
solution to this problem, R∗, should achieve the optimum
relative congestion value:

Y ∗ = min {Y } = min

{
max

(i,j)∈E
{fij

cij
}
}

Figure 1(a) and 1(b) illustrate a simple example for the eOPR
problem. The original topology consists of 5 nodes, 3 of which
(node 1, 2, and 5) are edge nodes. The bandwidth requirement

3

2 41 5
(20/100)

(0/100) (0/100)

(30/100)(30/50)

r2,5= 10r1,5= 20

Legend
(Reserved bandwidth / Capacity)

(a) The maximum relative congestion produced
by the SP algorithm Ysp = 0.6

3

2 41 5
(20/100)

(30/100)
(30/100)

(30/100)

(0/50)

Legend
(Reserved bandwidth / Capacity)

r1,5= 20

r2,5= 10

(b) The maximum relative congestion produced
by the optimal algorithm Y ∗ = 0.3

Fig. 1. An example for the eOPR problem

set Q is composed of 2 requirements: r1,5 = 20 and r2,5 = 10.
The numbers associated with every link represent (Reserved
bandwidth f / Link capacity c) on that link. For instance, in
Figure 1(a), since link (2, 4) is used to carry the premium traffic
from both node 1 and 2 to the destination node 5, the reserved
bandwidth on (2, 4) is f2,4 = r1,5 +r2,5 = 30. Figure 1(a) uses
the SP routing and Figure 1(b) uses the optimal routing. From
Figure 1(a), we can see that the maximum relative congestion,
which the SP algorithm (Rsp in short) produces, is Ysp =
30/50 = 0.6 with link (2, 4) as the bottleneck link. While,
as shown in Figure 1(b), the optimal routing algorithm R∗ can
achieve Y ∗ = 30/100 = 0.3,3 which is definitely smaller than
Ysp.

III. INTEGER PROGRAMMING OPTIMIZATION AND

HEURISTIC ALGORITHMS

A. Integer programming optimization

To obtain the optimal solution to the eOPR problem,
it is mathematically formulated as an integer programming
problem as presented below. Given a DiffServ network N =
(G(V,E), Ve, C)4 and the bandwidth requirement set Q =
{rik|i, k ∈ Ve}5, we define the following two sets of decision
variables in Equations 1 and 2, where Tk denotes a spanning
tree rooted at node k which covers all the edge nodes.

xijk =
{

1, (i, j) ∈ E, k ∈ Ve, (i, j) ∈ Tk

0, otherwise.
(1)

3Since node 1 chooses the path 〈1, 2, 3, 4, 5〉 to node 5, and node 2 is on this
path, then node 2 has to choose 〈2, 3, 4, 5〉 as its own path to 5. Otherwise,
inconsistency will occur at node 2.

4Recall that V = [1, · · · , n] is the entire set of nodes, Ve ⊆ V is the edge
node set, and C = {cij |∀(i, j) ∈ E} is set of link capacities.

5Note that if node i or k is not an edge node, then rik = 0.

189

fijk = bandwidth reserved on link (i, j) for destination k,
for ∀(i, j) ∈ E, and k ∈ Ve .

(2)
Note that xijk are binary variables, and fijk = 0 when xijk =
0. Finally, the eOPR problem is formulated as follows:
Find variables xijk, fijk which satisfy

Y ∗ = MIN

{
max

(i,j)∈E

{∑
k∈Ve,k �=i fijk

cij

}}
. (3)

subject to
∑n

j=1 xijk = 1, i ∈ Ve, (i, j) ∈ E, k ∈ Ve, i �= k (4)
∑n

j=1 xijk ≤ 1, i �∈ Ve, (i, j) ∈ E, k ∈ Ve, i �= k (5)
∑n

j=1 fijk −
∑n

j=1 fjik = rik, i ∈ V, k ∈ Ve (6)

rik � xijk ≤ fijk ≤ cij � xijk i ∈ V, j ∈ V, k ∈ Ve (7)

xijk = 0 or 1, i ∈ V, j ∈ V, k ∈ Ve (8)

Basically, the eOPR problem we are addressing in this paper
is somewhat similar to the Capacitated Miminal Spanning
Tree problems in [6], [7], [8] from the viewpoint of integer
programming, except that (1) we are looking for a different
target - minimizing the maximum relative congestion among
all links, given exactly in Equation 3; (2) in the eOPR problem,
nodes are divided into two categories: edge nodes which must
be covered by the spanning tree, and interior nodes which
can but do not necessary be on the resultant tree; and (3) the
bandwidth requirements between edge nodes in our problem
are heterogeneous.

Specifically, in the integer programming formulation of
eOPR, equalities in Equation 4 ensure that exactly one link is
going out from each non-root edge node for each spanning tree.
On the other hand, if a node is an interior node, it could be on a
tree or not, which is described by Equation 5. The equation in
6 describes flow conservation at each node. Together with the
coupling constraints in Equations 7 and 8, it can guarantee that
all the edge nodes are covered by a spanning tree (the interior
nodes are not necessarily covered by the tree, though). The
formal proof of the acyclic property of the tree was provided by
Gavish in [9].

However, there is a potential problem in the above
formulation. That is, there exist possibly some independent
cycles among those free interior nodes. Since these cycles
are not included in the spanning tree, they cannot be simply
eliminated by the above constraints. We call this the free cycle
problem. The simple solution to this problem, is to pretend
that all interior nodes are edge nodes, but with negligibly tiny
amount of bandwidth requirements. In this way, the resultant
tree will cover all the nodes, thereby preventing cycles in the
entire graph, while the target function of minimizing the relative
congestion still remains unaffected (because the additional
requirements added for those interior nodes are negligible).

To find the optimal solutions, we use the CPLEX [10] as the
solver. Although the CPLEX is a strong solver to integer/linear
programming problems, it still takes huge amount of time to
search for the optimal solutions if the given networks contain
more than 40 nodes. This is because the eOPR problem is NP-
hard in nature.

B. Heuristic algorithms

Although we present the integer programming method to
obtain the optimal solutions to the eOPR problem in the
previous subsection, it is impossible to find such optimal
solutions within polynomial time due to its NP-hardness, unless
P = NP . Therefore, we need heuristic approximation
algorithms for large-scale networks. In this paper, we study two
heuristic algorithms: the Widest Shortest Path (WSP) algorithm
and the Bandwidth-inversion Shortest Path (BSP) algorithm.
Both algorithms are based on the Dijkstra’s algorithm. They
were studied in [3]. However, in this paper, we will apply them
to the new eOPR problem. In the next section, we perform
simulations to study their performance in this new scenario
and compare the results with the optimal ones by solving the
corresponding integer programming problems.

The WSP algorithm is the simplest heuristic algorithm
which can achieve better relative congestion than the basic
SP algorithm. The WSP first uses SP to find shortest path(s)
between two given edge nodes. When a tie occurs, the WSP
always chooses the widest path among the set of shortest paths
between the given pair of edge nodes.

The BSP algorithm is basically a shortest-path algorithm
with the distance or weight function defined as

w(i, j) = 1
cij

for (i, j) ∈ E

and for a path p = 〈v1, v2, · · · , vn〉

w(〈v1, v2, · · · , vn〉) =
n−1∑

i=1

1
cvivi+1

The BSP finds the “shortest” paths among edge nodes with
respect to the weight function given above. The consistency
issues of both WSP and BSP have been studied in [3], [4], [11].

IV. OPTIMIZATION AND SIMULATION RESULT ANALYSIS

To evaluate the performances of WSP and BSP in the eOPR
scenario, simulations are conducted on different randomly
generated network topologies. Simulation results are studied
by comparing them with the optimal results.

A. Solve the integer programming problem

In order to get the optimal solution for a given network, its
corresponding integer programming model should be solved.
We use the ILOG CPLEX [10] as our optimization tool.
The results are used as our benchmark to evaluate the real
performances of the heuristic algorithms.

B. Simulation topologies and metric of interest

We use the topology generator BRITE [12] to randomly
generate our network topologies, where the Waxman model
is used and the nodes are placed according to the heavy-tail
distribution. Link capacities are randomly generated between
the interval [10, 1024]. The edge nodes are randomly selected
from the entire node set. The bandwidth requirements are also
randomly generated among all edge nodes.

Given a network and a routing algorithm, the maximum
relative congestion value, Y , is evaluated as the performance
metric and compared to the optimal result Y ∗.

190

Execution Time (ms)
Topology SP WSP BSP OPT
|V | = 10 0.547 0.780 0.653 ≈ 2000
|V | = 15 1.971 2.974 2.398 ≈ 884000
|V | = 20 4.491 6.695 5.323
|V | = 25 10.287 15.596 12.605 > 108

|V | = 30 18.049 27.767 21.190

TABLE I
APPROXIMATE EXECUTION TIMES OF DIFFERENT ALGORITHMS

C. Simulation results and analysis

10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
The Maximum Relative Congestion for Topologies with Different |V|

Number of nodes (|V|)

M
ax

im
um

 R
el

at
iv

e
C

on
ge

st
io

n
(Y

)

Y* (Optimal)
Y

bsp
 (BSP alg.)

Y
wsp

 (WSP alg.)
Y

sp
 (SP alg.)

|V
e
| / |V| = 0.5

Fig. 2. Maximum relative congestion vs number of nodes (|V |)

Figure 2 shows the simulation and optimization results of the
maximum relative congestion (Y) with respect to the number
of nodes in the topology (|V |). We fix the ratio of edge nodes
in the network to 0.5, i.e., |Ve|

|V | = 0.5. The results show clearly
that, within the heuristic algorithms (WSP and BSP), the BSP
performs the best. Actually, when |V | is not very large, BSP
can achieve results very close to the optimal ones. We also put
the results of SP algorithm in the figure just for comparison.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The Maximum Relative Congestion for Topologies with Different Ratio of |V
e
| / |V|

Ratio of edge nodes (|V
e
| / |V|)

M
ax

im
um

 R
el

at
iv

e
C

on
ge

st
io

n
(Y

)

Y* (Optimal)
Y

bsp
 (BSP alg.)

Y
wsp

 (WSP alg.)
Y

sp
 (SP alg.) |V| = 30

Fig. 3. Maximum relative congestion vs ratio of edge nodes (|Ve|
|V |)

Figure 3 shows the results of Y with respect to the ratio of
edge nodes in the topology (|Ve|

|V |). |V | is fixed to 30 in this case.
Again, the BSP performs much better than the WSP, and yields
results close to the optimal ones.

Although CPLEX can achieve the optimal results which
are always better than the results of heuristic algorithms, its

execution times are much larger, as shown in Table I, where
we fix |Ve|

|V | = 0.5. The real numbers in the table may vary if
different hardware platforms are used. But they show clearly
that to obtain the optimal solutions may take the order of
magnitude longer time than to get sub-optimal solutions by
using some heuristic algorithms. Although in practice it is not
efficient to use our integer programming model, it provides us
a lower bound to evaluate heuristic algorithms.

In summary, both simulation and optimization results
suggest that: (1) for small scale networks, we can get the
optimal solutions to the eOPR problem by solving the integer
programming models; (2) for large-scale networks, however,
more efficient approximation algorithms are needed and the
BSP algorithm can be a good candidate.

V. PREVIOUS WORK

In [13], S. Chen and K. Nahrstedt did a thorough survey
on QoS routing algorithms. Our work in this paper is
based on the hop-by-hop routing scheme instead of per-flow
consideration. [4] studied hop-by-hop routing algorithm issues,
such as isotonicity, search of optimal paths, etc. The author
provided an elegant algebra basis to study the QoS routing
issues in the Internet. In [11], [14], the authors proposed
and evaluated some Dijkstra-based QoS routing algorithms,
such as the shortest-distance path algorithm which uses the
reciprocal of link bandwidth as weight function, similar to the
BSP algorithm in this paper. In [15], the authors discussed path
selection algorithms to support QoS routes in the context of
extensions to the OSPF protocol. However, they focused on
QoS routing algorithms for connections or flows.

A similar NP-hard problem, called the Capacitated Minimum
Spanning Tree problem (CMST), is studied theoretically in [6],
[7], [8], [16]. The eOPR problem differs from the CMST
problem in the sense that: (1) we consider multiple destination
nodes while in the CMST only one destination is taken care
of; (2) instead of covering all nodes in CMST, we look for
an optimal spanning tree which covers all edge nodes, some
interior nodes could be included in the tree if they can help to
improve the optimizing target; (3) we have different optimizing
target (in CMST, the optimizing target is the minimum cost of
all links in the tree).

In [3], we raised the basic OPR problem for the first time.
The basic OPR problem assumed homogeneous bandwidth
requirement among all nodes. In this paper, we study the eOPR
problem which is much more realistic in the sense that (1) both
edge nodes and interior nodes are modeled and (2) bandwidth
requirements among edge nodes are heterogeneous.

VI. CONCLUSION

In this paper, we studied the Extended Optimal Premium-
class Routing (eOPR) problem, which was proven to be
NP-hard. An approach based on integer programming was
proposed to obtain the optimal solutions for given small-scale
networks. Two heuristic algorithms, WSP and BSP, were
introduced and studied as efficient approximation solutions.
Their performances, as well as the comparisons to the optimal
solutions, were also investigated. Our results suggest that BSP

191

can be a good candidate algorithm in practice, because it can
achieve sub-optimal solutions close to the optimal ones, while
it takes significantly smaller amount of execution times.

REFERENCES

[1] S.Blake et. al., “An Architecture for Differentiated Services,” RFC 2475,
December 1998.

[2] K.Nichols, V.Jacobson, and L.Zhang, “A Two-bit Differentiated Services
Architecture for the Internet,” RFC 2638, July 1999.

[3] Jun Wang and Klara Nahrstedt, “Hop-by-Hop Routing Algorithms For
Premium-class Traffic In DiffServ Networks,” in Proceedings of IEEE
Infocom 2002 (to appear), June 2002.

[4] J.L. Sobrinho, “Algebra and algorithms for QoS path computation and
hop-by-hop routing in the Inernet,” in IEEE INFOCOM 2001, Anchorage,
Alaska, April 2001, pp. 727 – 735.

[5] J. Wang, Y. Wang, and K. Nahrstedt, “Quantitative Study of
Differentiated Service Model Using UltraSAN,” Tech. Report UIUCDCS-
R-2001-2237, Department of Computer Science, University of Illinois at
Urbana-Champaign, July 2001.

[6] A. Amberg and W. Domschke, “Capacitated minimum spanning trees:
Algorithms using intelligent search,” Combinatorial Optimization:
Theory and Practice, vol. 1, pp. 9–39, Summer.

[7] C.H. Papadimitriou, “The complexity of the capacitated tree problem,”
Networks, vol. 8, pp. 217 – 230, 1978.

[8] Leslie Hall, “Experience with a Cutting Plane Algorithm for the
Capacitated Spanning Tree Problem,” INFORMS Journal on Computing,
vol. 8, no. 3, Summer 1996.

[9] B. Gavish, “Formulations and Algorithms for the Capacitated Minimal
Directed Tree Problem,” Journal of the ACM, vol. 30, pp. 118–132, 1983.

[10] “Ilog cplex,” in http://www.ilog.com/products/cplex/.
[11] Q. Ma and P. Steenkiste, “On path selection for traffic with bandwidth

guarantees,” in 5th IEEE International Conference on Network Protocols,
Atlanta, GA, October 1997, pp. 191 – 202.

[12] A. Medina, A. Lakhina, I. Matta, and J. Byers, “Brite: An approach
to universal topology generation,” in Proceedings of the International
Workshop on MASCOTS ’01, Cincinnati, Ohio, August 2001.

[13] S. Chen and K. Nahrstedt, “An Overview of Quality-of-Service Routing
for the Next Generation High-Speed Networks: Problems and Solutions,”
IEEE Network, Special Issue on Transmission and Distribution of Digital
Video, Nov./Dec. 1998.

[14] Q. Ma and P. Steenkiste, “Supporting Dynamic Inter-Class Resource
Sharing: A Multi-class QoS Routing Algorithm,” in IEEE Proceedings
of INFOCOM ’99, 1999, pp. 649–660.

[15] G. Apostolopoulos, D. Williams, S. Kamat, R. Guerin, A. Orda, and
T. Przygienda, “QoS Routing Mechanisms and OSPF Extensions,” RFC
2676, Aug. 1999.

[16] R. Ahuja, “Multi-exchange neighborhood structures for the cmst
problem,” in Mathematical Programming 91, 2001, pp. 71–97.

[17] J.K. Lenstra, D. Shmoys, and E. Tardos, “Approximation algorithms for
scheduling unrelated parallel machines,” in 28th IEEE FOCS, 1987.

[18] J. Kleinberg, Y. Rabani, and E. Tardos, “Fairness in routing and load
balancing,” in 40th Annual Symposium on Foundations of Computer
Science, 1999, pp. 568 – 578.

APPENDIX: NP-HARDNESS OF THE eOPR PROBLEM

Actually, the eOPR problem is even harder than the original
OPR problem. Therefore, following a similar reduction, it is
not difficult to prove that the eOPR is also a NP-hard problem.

As we know, the Non-uniform Load Balancing problem,
denoted by P0 for short, is NP-hard [17], [18].

P0 - The Non-uniform Load Balancing problem
INSTANCE: A set of jobs J = j1, j2, · · · , jk, and a set of
machines M = m1,m2, · · · ,mn; for each job ji ∈ J , there
is a set Si ⊂ M on which ji can be run; each job ji has a
requirement ri which is equal to either 1 or 2.
QUESTION: Is there an assignment from J to M such that each
job j ∈ J is assigned to a machine m ∈ M so that the sum of
the requirements assigned to each machine is at most 2?

Now we prove that eOPR is also NP-hard by constructing a
reduction from P0 to eOPR.

t

Sk'+2Sk'+1S2S1 Sk' Sk

t1 t2 t3 tn

Job k'+1 Job k'+2 Job kJob 1 Job 2 Job k'

machine 1 machine 2 machine 3 machine n

V1 (Jobs with req=1) V2 (Jobs with req=2)

T (Machines)

Fig. 4. The NP-hardness reduction

The reduction algorithm begins with an instance of P0. We
construct a graph G(V,E) to encode the instance of P0, shown
in Figure 4.

For each job ji in J , we add one node si into V . Since we
have two types of jobs (with requirement 1 or 2), without loss of
generality, we assume that there are k′ jobs with requirement 1.
Accordingly, we can divide si nodes into two groups, denoted
by V1 and V2 respectively in Figure 4. For each machine mi in
M , we place a node ti into V as well. We denote these nodes
by T . Finally, one additional termination node, t, is added into
V . So far, the construction of V is completed, that is, V =
V1 ∪ V2 ∪ T ∪ {t}.

For each job ji in J , since it has a machine set Si ⊂ M on
which it can run, we add one link (si, tj) into E if machine
mj ∈ Si. Through these links, we encode the condition that
job ji can only be assigned to a machine in Si. Then, for each
node ti, a link (ti, t) is also added into E. We assign all links
in E with the same capacity K (K ≥ 2). This completes our
construction of graph G(V,E). Now we have

V = {si|i = 1, · · · , k} ∪ {tj |j = 1, · · · , n} ∪ {t} (9)

E = {(si, tj)|mj ∈ Si} ∪ {(tj , t)|j = 1, · · · , n} (10)

It is easy to verify that |V | = k + n + 1.
Figure 4 illustrates the construction of G. It is clear that such

construction of G can be completed within polynomial time.
Now the Problem P0 has been transformed into an instance
of the eOPR problem, where the constructed G(V,E) is the
graph. On top of it, Ve = {si} ∪ {t} are all the edge nodes.
The link capacities cij = K (∀(i, j) ∈ E,K ≥ 2). And the
requirements are given in Equation 11.

rij =






1, i ∈ V1, j = t
2, i ∈ V2, j = t
0, otherwise.

(11)

The question now becomes to look for a spanning tree Tt in G
rooted at t which (1) covers all the other edge nodes in V1 and
V2; and (2) satisfies the constraint that the maximum relative
congestion among all links should be no larger than 2

K .
We can show that this transformation of the instance of P0

into the above instance of eOPR is a reduction, because it is
easy to verify that (1) a feasible allocation of jobs to machines
in Problem P0 always constructs a spanning tree Tt in G; and
(2) a solution Tt to the above instance of eOPR problem always
implies a feasible allocation to P0 accordingly. (Due to space
limitation, we omit the formal proof to this part of claims.)

192

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

