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Abstract-As the most challenging problems of the upcoming 
next-generation networks, 2-constrained quality-of-service 
routing (QoSR) is NP-complete problem, for which we propose a 
novel precomputation algorithm, LEFPA.  This algorithm 
converts two additive weights to a single metric with linear energy 
functions (LEFs) and pre-computes QoS routing table with 
multiple (B) LEFs to further enhance its scalability.  We first 
analyze the performance of LEFs and give a method to determine 
the feasible and unfeasible areas in the metric space for a QoS 
request.  We then introduce the proposed LEFPA, whose 
computation complexity is O(B(m+nlogn+n).  Furthermore, we 
use three methods to evaluate the routing performance.  
Extensive simulations show that our LEFPA has both absolutely 
and competitively high performance.  
Keywords-Linear energy function, QoS routing, scalability, 

precomputation, performance evaluation 

I.  INTRODUCTION 

Providing different quality-of-services (QoS) for different 
applications in the Internet is a challenging issue [1], of which 
QoS Routing (QoSR) is the most pivotal problem [2].  The 
main function of QoSR is to find a feasible path that satisfies 
multiple constraints for QoS applications. 

For the NP-completeness [3], [4] of multi-constrained QoSR, 
many heuristics have been proposed.  However, these 
algorithms have three limitations [2]:  (1) High time 
complexity prohibits their applications.  (2) Low performance 
means that these algorithms sometimes cannot find a feasible 
path even when it does exist.  (3) Some algorithms work only 
for a specific network.  Furthermore, in next-generation 
high-speed networks, a high rate of packet arrival prohibits the 
online computation scheme, to which most heuristics belong.  
Based on the analyses of linear energy function (LEF), we 
propose a novel approach with the name LEF based 
precomputation algorithm (LEFPA).  Using precomputation 
with LEFs of two dimensions, LEFPA can deal with not only 
2-constrained problems, but also 1-constrained optimal 
problems, such as the Delay-Constrained Least-Cost (DCLC) 
problem.  Both the theoretical analysis and experimental 
results show that our easily implemented LEFPA is highly 
scalable and has high performance.  Furthermore, LEFPA is 
consistent with the routing architecture of the current Internet.  
LEFPA can serve the next-generation high-speed networks. 

This paper has three contributions: (1) We give a 
mathematical model in the QoS metric space to decides 
whether a QoS request can be determined by the continuous 
change of LEFs.  (2) We propose the precomputation 
algorithm LEFPA for QoSR problem based on LEFs.  (3) We 

propose a novel evaluation method for QoSR algorithms, 
named the unknown-area proportion method. 

The rest of this paper is organized as follows.  In Part II we 
analyze the relation of LEFs and constraint space.  LEFPA is 
proposed in Part III, and extensive simulations show its 
performance in Part IV.  Finally, conclusions appear in Part V. 

II.  LINEAR ENERGY FUNCTION ANALYSIS 

A. Problem Formulation 
A directed graph ),( EVG  presents a network.  V is the 

node set and the element Vv ∈ is called a node representing a 
router.  E is the set of edges representing links that connect 
the routers.  The element Eeij ∈  represents the edge 

ji vve →=  of G.  In QoSR, each link has a group of 

independent weight ))(),(()( 21 ewewew = , which is also 
called QoS metric.  For a path nvvvp →→→= 10  and 

}2,1{∈l , the weight +∈ Rewl )(  satisfies the additive 

character if ∑ = − →= n
i iill vvwpw 1 1 )()( . 

Definition 1. Multi-Constrained Path 
For a given graph ),( EVG , source node s , destination 

node t  and constraint vector ),( 21 ccc = , the path p  from 
s  to t  is called Multi-Constrained Path, if 11 )( cpw ≤  and 

22 )( cpw ≤ .  We write cpw ≤)(  in brief.   
Note: )(ew  and c  are also 2-dimensional vectors.  For a 

given QoS request and its constraints c , QoSR seeks to find 
the path p  satisfying cpw ≤)(  based on the network-state 
information. 
B. Linear Energy Function 

Dijkstra gave the Shortest Path Tree (SPT) algorithm, which 
has a low time complexity. However, QoSR problem is related 
to multiple weights simultaneously.  Thus the problem is 
changed to the one, in which the complexity is NP-complete, 
and the original Dijkstra's algorithm cannot be used to solve it, 
so we convert the multiple weights to a single weight. 

Definition 2. Linear Energy Function (LEF) ag  
The LEF of link e  is defined as the linear function 

2211)( wawaega += , which represents the "cost" of e .  
Here, the coefficients ]1,0[, 21 ∈aa  are independent of e  
and satisfy 121 =+ aa .  The vector ),( 21 aaa =  that 
satisfies the above condition is called energy coefficient.   

Based on LEF, we can convert the original multi-constrained 
path problem to a least-energy path problem.  Each 
coefficient of LEF represents the importance of the 
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corresponding weight to that of other weights when calculating 
the SPT. 

Theorem 1: Dijkstra's algorithm with the keyword )(ega  
can create a least-energy tree aT  rooted by s .  A path ap  
from s  to an arbitrary node t  along the tree aT  can satisfy 

)),((min)( ),( tspgpg aGtspaa ∈= . 
Proof:  Because )(ega  is a linear function, which 

satisfies ∑ = +=+ 2
1 2121 )()( l lla eewaeeg  += ∑ =

2
1 1 )(l ll ewa  

∑ =
2

1 2 )(l ll ewa )()( 21 egeg aa += , we can calculate )(ega  for 
each link e , and then run the Dijkstra's algorithm with )(ega  
being the keyword instead of the original cost.  Because the 
original Dijkstra's algorithm can guarantee that the path from 
s  to an arbitrary node t  along the tree has the least cost, the 
algorithm that uses )(ega  as the keyword can guarantee that 

ap  is the least-energy path from s  to t , viz. )( aa pg  
)),((min ),( tspgaGtsp ∈= .  

Definition 3. Path-weight space 

21
2 WWW ×=  is called the path-weight space, if 

ll Wpw ∈)(  for any Gp ∈  and }2,1{∈l . 

For the common condition of +∈ Rewl )( , we can take 
+= RW l , so ll Wpw ∈)(  for any path p .  Thus, )( pw  is a 

point in the space 2W , viz. 2)( Wpw ∈ , and the above set 

}|)({ apw a ∀  is a point set in 2W .  
Theorem 2: For a given G , a source-destination pair ),( ts , 

energy coefficient ),( 21 aaa =  and shortest path ap , an 
arbitrary path p  from s  to t  must be on the upside of the 

line }|{ 2211 optgwawawP =+=  in space 2W . 
Proof:  We use the reduction to absurdity.  If a point 

)( pw ′  exists on the downside of line P , we have 
)()()()( 22112211 pwapwapwapwag aaopt ′+′>+= , which 

is contrary to )),((min)( ),( tspgpg Gtspa ∈=  in Theorem 1.  

Thus, if there is any path p′  from s  to t , )( pw ′  must be 

on the upside of the line P  in space 2W .  
For example, for a given vector a  shown in Fig. 1.a, we 

use Dijkstra's algorithm to find the shortest path ap  from s  

to t  w.r.t. ag .  Drawing the perpendicular P  of vector 

a  crossing the point )( apw , we get a partition of space 2W : 
all points )( pw ′  of paths p′  from s  to t  must be on the 
upside of P .  We should note that, because of the 
discreteness of network topology graph, the corresponding ap  

is changed discretely in the space 2W  with the continuous 
change of vector a .  Thus, the mapping apa  is not an 
injection.  For the common sense where multiple least-energy 
points exist, we should consider that multiple vectors a  map 
a single point ap  as shown in Fig. 1.b.  When the vector 
changes from a′  to a ′′  continuously, the least-energy point 
keeps the same value, i.e. ap .  It is the same case that when 
the vector changes from b′  to b ′′ , the corresponding 
least-energy point is ap  without change.  However, the 
vector a ′′  that is equal to b′  has two least-energy paths, i.e. 

ap  and bp .  In this case, a discrete change of least-energy 
paths occurs. 
C. Feasible area analysis of 2W  

We give a partition of the path-weight space 2W , including 
unfeasible area NOTM , feasible area FEASIBLEM  and 
unknown area UNKNOWNM .  For a given QoS request, we can 
judge its feasibility and give a feasible path for a feasible 
request. 

Definition 4. Unfeasible area 
The point set }|{)( 2WwwaM ∈= , where w  is in the 

lower side of )(aP , is called unfeasible area determined by a 
given vector a .  ∪

0,121

)(
≥=+

=
aaa

NOT aMM  is called the 

unfeasible area.   
Theorem 3: If the constraints NOTMc ∈  of a QoS request 

from s  to t , a feasible path p  satisfying cpw ≤)(  does 
not exist. 

Proof:  According to the definition of NOTM , NOTM  is 
the union of all )(aM  with the continuous change of vector 
a .  For a given QoS request NOTMc ∈ , there must be a line 

)(aP  according to the vector a , so that c  is on the 
downside of )(aP .  According to Theorem 2, any path p′  
from s  to t  must be the upside of )(aP .  Therefore, there 
is no feasible path p  that satisfies cpw ≤)( .  

Definition 5. Available area 
The point set ∪

0,121

)(
≥=+

==
aaa

NOTAVL aMMM  is called 

available area in space 2W , where the complement of NOTM  

is NOTNOT MWM \2= .  
For example, when there are multiple least-energy paths 

with the different energy functions, the available area AVLM  
must be a convex set and each vertex of AVLM  must be a 

P

a

)( pw ′

)( apw

1w

2w

 

)( bpw

)( apw

NOTM

1θ

2θ

)(aP ′ )(aP ′′

)(bP ′′

)(bP ′
1w

2w

 
 a. a  and P  b. Continuous change of a  

 Fig. 1.  Relation between paths and lines 
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least-energy path as shown in Fig. 2a. 
We further divide AVLM  into two parts: feasible area 

FEASIBLEM , and unknown area UNKNOWNM . 
Definition 6. Feasible area FEASIBLEM  

},|{ aFEASIBLE ppapM ≥∃=  is called feasible area.   
Definition 7. Unknown area UNKNOWNM  

FEASIBLEAVLUNKNOWN MMM −=  is called unknown area.   
 
Theorem 4: For the arbitrary constraints c  of a QoS 

request, if FEASIBLEMc ∈ , there must be a feasible path. 
Proof:  From the definition of FEASIBLEM , a∃  that 

satisfies cpa ≤ , where ap  is a feasible path.   

Therefore, we divide 2W  into 3 parts: NOTM , 

UNKNOWNM  and FEASIBLEM .  Fig. 2.b shows the relation 
between them.  Although some papers have pointed out that 
LEFs cannot guarantee to find a feasible path even when it 
does exist [5], [6], they have not given a clear mathematical 
model.  We here use the computational geometry to describe 
the area ( UNKNOWNM ) successfully, in which the constraint 
cannot be judged feasible by LEFs. 

III. PROPOSED HEURISTIC LEFPA 

A. The Idea of LEFPA 
Based on the above theory, we can precompute the set 

}{ ap  of least-energy paths with the energy coefficient a  
changing continuously over all possible vectors.  This path 
set }{ ap  is the QoS routing table.  Thus, the computation of 
the routing table can be independent of QoS requests.  When 
the QoS request arrives, we only need to look up a feasible 
path in the routing table.  According to the position of the 
QoS constraint in space 2W , there are three possibilities.  (1) 
We know that the feasible path does not exist for NOTMc ∈ .  
(2) We don't know whether a feasible path exists for 

UNKNOWNMc ∈ .  (3) We know that the feasible path exists for 

FEASIBLEMc ∈ . 
For the first case, in practice a router can refuse the QoS 

request or start the QoS negotiation.  For the second case, we 
then expect that the probability to occur this case is very small.  
In the performance evaluation part of this paper (Part IV), 

extensive simulations show that it is really very small and most 
(95%) QoS requests will be in the other two areas.  
Furthermore, we also demonstrate that a QoS request in the 
area UNKNOWNM  has very small opportunity to have a 
feasible path.  Therefore, we can regard this area as the 
unfeasible area without affecting the routing performance, and 
refuse this kind of QoS request.  For the third case, we can 
select an element from }{ ap  as the feasible path. 

Because a practical algorithm cannot implement a 
continuous change of vector a , we cannot guarantee to find 
all of the elements in }{ ap .  As a result, the unknown area 

UNKNOWNM  is enlarged.  It is necessary to validate that, 
based on few discrete vectors a , the enlarged UNKNOWNM  
decreases the overall performance of this algorithm very little. 

Because the discrete values of a  must be independent of 
networks, we normalize the weights of each link first.  The 
maximum possible weight of each metric on a link is equal; i.e. 
the weight )(max ewlEe∈  is a constant that is independent of 
l  where }2,1{∈l . 
B. Description of LEFPA 

We propose the precomputation heuristic LEFPA for 
2-constrained problems and 1-constrained optimal problems in 
Fig. 3.  The heuristic, running on node s , includes the 
following steps.  (a) Create a number ( B ) of vectors 

),( 21 aaa =  according to configuration (Line 3-4).  (b) For 
the given network graph G  and vector a , calculate the 
energy )(ega  for each link (Line 5-6).  (c) Use Dijkstra's 
algorithm to create least-energy tree )(aT  with source node 
s  and keyword ag  (Line 7).  Save the least-energy path 
from s  to each node along )(aT  to QoS routing table (Line 
8-10).  When saving the current least-energy path ),( tspa , 
the last path ),( tspb  from s to t  must be checked to see if 
these two paths are identical.  If ),(),( tsptsp ab = , then it is 
not necessary to save the current path ),( tspa .  This process 
can guarantee that there are no identical paths in the routing 
table.  Because the linear function )(ega  has isotonicity, the 

)( cpw
)( bpw

)( apw

∪
0,1|||| ≥=

=
aa

aNOT MM

NOTAVL MM =

2w

1w
)( bpw

)( apw

NOTM

FEASIBLEM

c ′′

c′

c
UNKNOWNM

2w

1w
 

 a. Convexity of AVLM  b. Feasible constraints 

Fig. 2.  FEASIBLEM , AVLM , UNKNOWNM  and NOTM  

LEFPA (B, G, s) 
1) x = 0 
2) WHILE ( 1≤x  ) 
3)  xa =1  

4)  12 1 aa −=  
5)  FOR EACH edge e  IN G  
6)   )()()( 2211 ewaewaeg a +=  
7)  dijkstra( sG, ) 
8)  FOR EACH node t  IN G  
9)   IF ),( tspa ≠ last ),( tspb  

10)    store ),( tspa  
11)  x = x + (1/B) 
 

Fig. 3.  Proposed heuristic LEFPA 
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routing table generated by each node with the same vector a  
will not have a routing loop based on the consistent network 
state information [7]. 
C. Complexity of LEFPA 

Now we analyze the complexity of LEFPA.  In a graph G , 
the node number is ||Vn = , while the edge number || Em = .  
Step (b) has the complexity of )(mO .  Step (c) has the 
complexity of )log( mnnO +  with the improved Dijkstra's 
algorithm.  Step (d) is )(nO .  Thus, the overall time 
complexity of LEFPA is ))log(( nnnmBO ++ , which is as 
B  times as the original Dijkstra's algorithm with a single 
metric in the graph. 

LEFPA creates the QoS routing table by saving least-energy 
paths.  Because it avoids saving identical paths, the size of the 
QoS routing table is less than or equal to B  times that of the 
original routing table with a single-metric network.  For the 
2-constrained problems, when a QoS request arrives, we only 
need to look for a feasible path satisfying ),(),( tsctspa ≤  in 
the (at most B ) paths from s  to t .  If such a path is found, 
then return the path ),( tspa , and otherwise refuse the QoS 
request.  For the one constraint optimal problem (e.g. DCLC), 
we then need to look for the optimal path that satisfies the 
constraint in all s-to-t paths (at most B  paths).  Assume that 
it needs to look up entries in the original routing table for L  
times in a single-metric network; the times in the QoS routing 
table is  BL 2log+  with bisearch. 

For the smaller B , it is more likely to fail to find a feasible 
path in }{ ap , while the larger B  makes LEFPA impractical.  
We will illustrate the relation between B  and the 
performance with extensive simulations, which show that 
LEFPA performs well when B  is small (e.g. 7=B ).   

IV. PERFORMANCE EVALUATION 

We first propose the method of unknown-area proportion to 
evaluate the absolute performance of LEFPA.  We then 
simulate QoS requests to compare its performance with other 
algorithms directly. 
A. Unknown-area proportion 

We propose the method of unknown-area proportion, which 
is independent of QoS requests, to evaluate the absolute 
performance of LEFPA.  We take the unknown area as the 
inefficiency of LEFPA.  Thus, the simulation experiment is to 
analyze the relation between the inefficiency probability 

/Pr UNKNOWNM= )( AVLNOT MM +  and B .  Because 

UNKNOWNM  is a limited area while NOTM  and AVLM  are 
unlimited areas, we take the uppermost point ap  and take the 
rightmost point bp  as shown in Fig 2.b as the border points. 
B. Evaluation of absolute performance 

Based on the pure random network graph with node number 
N [8], we generate two weights for each link, where 

)(1 ew ~[1,1000], )(2 ew ~[1,1000] and )(1 ew  and )(2 ew  
have no correlation.  We simulate the instances with N  
being 50, 100, 200 and 500, respectively.  We generate 10 

graphs in each instance, and in each graph we select source 
nodes 100 times (a particular node can be selected more than 
one time).  Each time, the source node s  uses LEFPA with a 
number ( B ) of LEFs 

iag to compute a least-energy tree, 

where ))(,( BiBBiai −=  and 1,,1,0 −= Bi .  On each 
source node s , ∑ ∈= Gt sNs t)(PrPr 1  is calculated by taking 

each node in the graph as the destination t  once.  Then, for 
all the 100 source nodes, the average ∑= sPrPr 100

1  is 
calculated.  At last, we analyze the 10 graphs with the same 
number of nodes statistically and obtain the average Pr  and 
the 95% confidence interval for each B . 

Figure 4 shows the average inefficiency probability Pr  
with the 95% confidence interval versus B  for random 
graphs with 50, 100, 200 and 500 nodes.  When the node 
number is relatively small, the proportion of unknown area is 
very little.  With the increase of node number, the proportion 
Pr  increases.  This shows the larger the network, the more 
the path number between a particular source-destination pair.  
With the increase of path number, the ability to optimize a path 
increases and optimization of a particular weight increases.  
This leads to the situation in which the uppermost point ap  is 
closer to the Y-coordinate and the rightmost point bp  is 
closer to the X-coordinate.  However, the 95% confidence 
interval decreases with the increase of network scale.  This 
shows the adaptability of LEFPA for large-scale network. 

Although Pr decreases with B  increasing, Fig. 4 shows 
that when B  is large enough, the inefficiency probability Pr  
is insignificant.  For example, when 7=B  and 500=N , 

0.00220.0482Pr ±=  with a 95% confidence interval.  If we 
regard that algorithms are practical if Pr is less than 5%, 

7=B  is enough.  This shows that in practice, to ensure high 
performance, we need only 7 uniform LEFs to find enough 
paths of different characteristics.  With larger B , most of the 
newly found paths are reduplications and Pr nearly goes down 
no more.  This is consistent with the conclusion in [9].  
Therefore, the Pr in LEFPA with 7=B  is close to that in the 
mathematical model with continuous change of the coefficient.  
That is to say, UNKNOWNM  with 7=B  in practical is close 
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to that in theory. 
Although we demonstrated that the unknown area is small 

( Pr  is little), we now demonstrate that the feasibility for a 
request UNKNOWNMc ∈  is also small.  First, we generate the 
constraints for requests within the unknown area in Fig. 2.b 
randomly.  Then, we use H_MCOP [6], one of the most 
efficient QoSR algorithms, to calculate the feasible paths for 
each request.  Fig. 5 shows the SR for each B .  The 
experiment shows that when 7=B , the SR is less than 5% 
and most requests do not have a feasible path. 

Having established that (1) the unknown area is small, and 
(2) the request within the unknown area has a low feasibility, 
LEFPA can refuse the request within the unknown area with a 
small probability of misjudgment (refuse the requests that have 
a feasible path), i.e., about %25.005.005.0 =× .  As a result, 
LEFPA achieves a high absolute performance. 
C. Comparison between LEFPA and H_MCOP 

Current precomputation algorithms tend to have a 
prohibitive computing complexity, and most are based on 
distance vectors, so they are not fit for large-scale networks.  
In order to show the performance of LEFPA, we compare 
LEFPA with H_MCOP [6], one of the most efficient 
algorithms, which is also based on Dijkstra's algorithm. 

To compare the routing performance of LEFPA and 
H_MCOP, we use two methods to generate constraints for QoS 
requests, including random constraints used in [6] and 
simulated constraints.  These two methods are omitted for 
brief in this paper and detailed in [10].  Showing the SR with 
the random constraints, Fig. 6 demonstrates that when 7≥B , 
the SR of LEFPA is higher than that of H_MCOP.  Fig. 7 
shows the SR with simulated constraints.  When 7≥B , 
LEFPA overmatches H_MCOP and is more insensitive to the 
network scale than H_MCOP. 

As a summary, the next-generation networks that provide 
QoS can follow the current precomputation routing 
architecture.  When calculating the SPT, it only needs to 
change the current cost to the energy with a number ( 7=B ) of 
uniform LEFs.  The computation complexity of QoSR is only 
B  times the current complexity.  Our extensive simulations 
below will show that LEFPA has a higher SR than H_MCOP, 
although H_MCOP has to compute a feasible path pertinently 
for each individual request.  On the aspect of complexity, 
H_MCOP is ))1(loglog( 2 mknnknkmO +++  with 
k-shortest path algorithm, while LEFPA is 

))log(( nnnmBO ++ .  When 7=B , LEFPA is better than 
H_MCOP, not only on computation complexity but also on the 

running time in practical experiments.  For example, the 
running time of LEFPA is 51.8 millisecond in a 500-node 
graph, while that of H_MCOP is 15.3 millisecond.  
Considering the difference between precomputation and 
on-line computation, if on a given source node, there are 50 
requests to the other 50 nodes in the network for instance, the 
running time of LEFPA keeps fixed while that of H_MCOP 
will increase 50 times of origin to 765 millisecond. 

V. CONCLUSION  

Based on the theoretical analysis of LEF, this paper proposes 
a novel precomputation heuristic, LEFPA, for QoSR.  In this 
algorithm, a node can use a number ( B ) of uniform LEFs to 
precompute the QoS routing table with the time complexity 

))log(( nnnmBO ++ , which is only B times original 
Dijkstra's algorithm.  The size of the QoS routing table is less 
than or equal to B  times that of the current routing table with 
a single weight named cost.  When requests arrive at a high 
speed, the router only needs routing table look-up rather than 
online computation.  Further enhancing the scalability, the 
precomputation mode is also fit for the current routing 
architecture of the Internet.  Extensive simulations show that 
our LEFPA performs well in complexity, performance and 
scalability.  Therefore, we conclude that the precomputing 
LEFPA promises to be a valuable QoSR algorithm for 
high-speed next-generation networks. 
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Fig. 5. Unfeasibility of requests in unknown area 
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Fig. 7. Comparison with simulated constraints 
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Fig. 6. Comparison with random constraints 
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