
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Tabbycat: an Inexpensive Scalable Server for Video-on-Demand

Permalink
https://escholarship.org/uc/item/38s0n81n

Authors
Thirumalai, Karthik
Pâris, Jehan-François
Long, Darrell DE

Publication Date
2003

DOI
10.1109/icc.2003.1204467

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/38s0n81n
https://escholarship.org
http://www.cdlib.org/

Tabbycat: an Inexpensive Scalable Server for Video-on-Demand

Karthik Thirumalai1 Jehan-François Pâris1

Department of Computer Science
University of Houston

Houston, TX 77204-3010

{karthik, paris}@cs.uh.edu

Darrell D. E. Long2

Department of Computer Science
Jack Baskin School of Engineering

University of California
Santa Cruz, CA 95064

darrell@cse.ucsc.edu

Abstract—Tabbycat is a video server prototype demonstrating
the benefits of a proactive approach for distributing popular
videos on demand to a large customer base. Rather than reacting
to individual customer requests, Tabbycat broadcasts the contents
of the most popular videos according to a fixed schedule. As a
result, the number of customers watching a given video does not
affect the cost of distributing it. We found that one workstation
with a single ATA disk drive and a Fast Ethernet interface could
distribute three two-hour videos while achieving a maximum
customer waiting time of less than four minutes. 12

I. INTRODUCTION
Current wisdom is that the size of a server distributing

videos on demand is more or less proportional to the maximum
number of concurrent users the server has to support. Hence a
metropolitan video-on-demand service capable of handling
thousands of concurrent users is generally assumed to require a
complex infrastructure, typically consisting of a large number
of computing nodes and a sophisticated interconnection net-
work. The Tiger and the nCUBE video servers are good
examples of this approach [1, 13].

We built the Tabbycat video server to demonstrate that a
simpler, cheaper alternative is possible. Instead of assigning a
separate data stream to each customer request, Tabbycat broad-
casts each video according to a deterministic schedule guaran-
teeing that customers will never have to wait more than a few
minutes for the video of their choice. Hence, it is the ideal
solution for services offering ten to twenty “hot” videos to a
large customer base. All studies of video and movie popularity
indicate that these top ten or twenty video would be the most
profitable to distribute [5]. Even videocassette rental stores
focus their efforts in having on hand enough videocassettes of
the top videos of the day.

To demonstrate the cost-effectiveness of the approach, we
build our Tabbycat using off-the-shelf hardware and software.
Our prototype runs on a PC running an unmodified version of
Red Hat Linux and is connected to the network through a
standard Fast Ethernet interface. Despite these limitations, it
can broadcast three two-hour videos and achieve a customer
waiting time of less than four minutes.

1 Supported in part by the Texas Advanced Research Program under grant
003652-0124-1999 and the National Science Foundation under grant CCR-
9988390.
2 Supported in part by the National Science Foundation under grant CCR-
9988363.

First Channel S1 S1 S1 S1
Second Channel S2 S3 S2 S3

Third Channel S4 S5 S6 S7

Figure 1. The first three channels for fast broadcasting (FB).

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the relevant broadcasting protocols for video-
on-demand. Section 3 presents our server architecture. Section
4 discusses two possible extensions to the Tabbycat
architecture while Section 5 reviews some relevant work.
Finally, Section 6 contains our conclusions.

II. BROADCASTING PROTOCOLS FOR VIDEO-ON-DEMAND
All recent VOD broadcasting protocols derive in some way

from Viswanathan and Imielinski’s pyramid broadcasting
protocol [16]. Like it, they require special customer set-top
boxes (STBs) (a) capable of receiving data at data rates
exceeding the video consumption rate and (b) having enough
buffer space to store up between, say, ten to sixty minutes of
video data. This allows the server to distribute the different
segments of each popular video according to a deterministic
schedule ensuring that no customer would have to wait more
than a few minutes.

The simplest broadcasting protocol is Juhn and Tseng's fast
broadcasting (FB) protocol [11]. The FB protocol allocates to
each video k data channels whose bandwidths are all equal to
the video consumption rate b. It then partitions each video into
2k – 1 segments, S1 to S2

k
–1, of equal duration d. As Figure 1

indicates, the first channel continuously rebroadcasts segment
S1, the second channel transmits segments S2 and S3, and the
third channel transmits segments S4 to S7. More generally,
channel j with 1 ≤ j ≤ k transmits segments S2

j-1 to S2
j
–1.

When customers want to watch a video, they wait until the
beginning of the next transmission of segment S1. They then
start watching that segment while their STB starts receiving
data from all other channels. By the time the customer has
finished watching segment S1, segment S2 will either have been
already received or be ready to be received. More generally,
any given segment Si will either be already received or ready to
be received by the time the customer has finished watching
segment Si-1.

896
0-7803-7802-4/03/$17.00 © 2003 IEEE

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on June 22,2021 at 21:22:37 UTC from IEEE Xplore. Restrictions apply.

The newer fixed-delay pagoda broadcasting (FDPB) proto-
col [15] requires all users to wait for a fixed delay w before
watching the video they have selected. This waiting time is
normally a multiple m of the segment duration d. Hence the
FDPB protocol can assume that all its clients will start
downloading data from the moment they order the video rather
than from the moment they start receiving the first segment.
The FDPB protocol also uses more sophisticated segment-to-
channel mappings than the FB protocol: it uses time-division
multiplexing to partition each of the k channels allocated to the
video in a given number si of subchannels of equal bandwidth
and allocates the n segments of the video to these subchannels
in strict sequential order. As a result, it can achieve smaller
waiting times than protocols that do not impose a fixed delay
on their customers.
Figure 2 summarizes the segment-to-channel mappings of a
FDPB protocol requiring customers to wait for exactly nine
times the duration of a segment. The first channel is parti-
tioned into three subchannels each having one third of the
channel segment slots. This allows the protocol to repeat
segments S1 to S3 every 9 slots, segments S4 to S7 every 12 slots
and segments S8 to S12 every 15 slots. By repeating the same
process over all successive channels, the FDPB protocol can
map 308 segments into four channels and achieve a determi-
nistic waiting time of 9/308 of the duration of the video, that is,
three and half minutes for a two-hour video. Adding a fifth
channel would allow the server to broadcast 814 segments and
achieve a waiting time of 80 seconds for the same two-hour
video.

III. THE TABBYCAT PROTOTYPE
Our goal in building the Tabbycat server was to develop a

proof-of-concept prototype of a video server using a state-of-
the-art broadcasting protocol. We picked the fixed-delay
pagoda broadcasting protocol (FDPB) for several reasons.
First, it requires less server bandwidth than most other proto-
cols to achieve the same customer waiting times. Second, it
uses fixed-size segments and fixed-bandwidth channels,
making it easier to implement than protocols that use variable-
bandwidth channels [14] or variable-length segments [8].
Finally, the protocol ensures that each and every segment can
be completely received by the STB before the customers start
to watch it. As a result, it provides implicit forward buffering,
which was expected to take care of most of the bandwidth
fluctuations inherent to compressed video signal.

A. The Tabbycat Server
A Tabbycat server consists of one or more workstations

each distributing a few of the most popular videos. These
workstations act autonomously under normal circumstances.
Our prototype consisted of a single Pentium 4 system whose
characteristics are summarized in Table 1.

We first benchmarked the transfer rate of the ATA drive
and found it was about 40 MB/s. Having measured the
instantaneous bandwidths of several MPEG-2 videos [12], we
found that a typical MPEG-2 would require an average channel
bandwidth of 750 kB/s with cartoons having a slightly higher
bandwidth than other videos. We also found that the

Channel Number of
Subchannels

First
Segment

Last
Segment

C1 3 S1 S12
C2 5 S13 S42
C3 7 S43 S116
C4 11 S117 S308
C5 18 S309 S814

Figure 2. The first five channels for the FDPB protocol with m = 9.

TABLE I. OUR PROTOTYPE CONFIGURATION

Server Intel Pentium 4 1.7 GHz
512 MB Rambus RAM
40 GB ATA-100 (7200 RPM) HDD
100 Mb/s Ethernet Interface
Linux Kernel 2.4.x with ext2fs

Network Fast Ethernet
Clients Intel Pentium III 600 MHz

256 MB RAM
10 GB ATA-66 HDD
100 Mb/s Ethernet Interface
Linux Kernel 2.4.x with ext2fs

Videos Full-length videos in DVD format (MPEG-2)

TABLE II. TABLE 2. SUMMARY OF RELEVANT BANDWIDTHS

VOD Channel 750 kB/s
ATA-100 Drive 50 channels (around 40 MB/s)
Fast Ethernet 13 channels (around 10 MB/s)
Gigabit Ethernet 100 channels (around 80 MB/s)

occasional peaks in bandwidth would average out because of
forward buffering of the FDPB. Hence a Tabbycat with a
single ATA drive should be able to broadcast 50 channels.
With these 50 channels, we could broadcast 10 videos using 5
channels per video.

We decided to use UDP instead of TCP because of its low
overhead. Though UDP is an unreliable protocol, we found
that in a LAN there was almost no packet loss as long as the
client and the server were connected to the same Ethernet
switch. Moreover, using FDPB in a cable TV environment
would mean that the network would have majority of its traffic
from the server and given the improvements in network reli-
ability, this seems to be a reasonable choice.

We found that we could achieve speeds of about 10MB/s
on a 100Mb/s Ethernet. As a result, we could have about 13
channels per server.

B. The Clients
As shown on Table 2, the clients were older workstations with
600 MHz processors and 256 MB of memory. They rely on
the freely available xine video player for decoding and

897

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on June 22,2021 at 21:22:37 UTC from IEEE Xplore. Restrictions apply.

Channel Number of
Subchannels

First
Segment

Last
Segment

C1 3 S1 S12
C2 5 S13 S42
C3 8 S43 S119
C4 13 S120 S318
C5 19 S319 S847

Figure 3. The first five channels for the modified version of
the FDPB protocol with m = 9.

playing videos. We increased their kernel network buffer sizes
from 65kB to about 70MB to avoid packet losses due to
congestion on the client kernel buffers.

C. The Distribution Protocol
Tabbycat uses a slightly modified version of the FDPB

protocol. First, Tabbycat clients keep in their buffer all the
previously watched segments of each video until the end of
that video. As a result, Tabbycat customers are provided with
equivalents of the VCR pause and rewind commands: they can
either temporarily suspend the viewing process or return to any
video scene they have already watched. Since these two addi-
tional features are provided by the STB alone without any
server intervention, their sole cost is a few extra gigabytes of
additional temporary data on the STB hard drive.

Second, Tabbycat uses a slightly different heuristic for
partitioning each channel into subchannels. In the original
FDPB protocol, channel Ci was partitioned into a number of
subchannels equal to the square root of the period of lowest
numbered segment broadcast by Ci. Returning to Figure 2, we
see that the lowest numbered segment broadcast by channel C1
is segment S1. Since customers have to wait for exactly nine
times the duration of a segment, that segment has to be
repeated once every 9 slots. Hence channel C1 is partitioned
into 39 = subchannels.

We found that slightly more efficient segment-to-channel
mappings could be achieved by increasing the number of
subchannels by one or two in some channels. As seen on
Figure 3, this optimization allowed us to map 847 segments
into 5 channels and achieve a waiting time of 77 seconds for a
two-hour video.

D. Experimental Results
We measured the performance of our server when it was

broadcasting three videos on twelve 720 kB/s channels.
All three videos were broadcast using the modified version

of the FDPB protocol with m = 9. As shown on Figure 3, this
allowed us to partition each video in exactly 318 segments,
which should allow us to achieve a customer waiting time
equal to 9/318 of the duration of each video. Note that this
value assumes that the client can start downloading data from
segments that have already started. Since our clients could not
do that, our customer waiting times will be closer to 10/318 of
the video duration

Our first video is a full-feature movie in MPEG-2 format
lasting 140 minutes. The observed customer waiting time on a
client machine was 273 seconds, that is, 9 seconds more than
expected. Our second video is another full-feature movie last-
ing 130 minutes. Unlike the first video it was encoded at a
lower bandwidth (slightly below than 360 kB/s). As a result,
our segment transmission time is roughly equal to half its
viewing time. This resulted in an observed customer waiting
time of 156 seconds. Our third video shows highlights of
professional hockey games in MPEG-2 format. The video lasts
25 minutes and the observed customer waiting time is 52
seconds, that is, 5 seconds more than expected.

E. Attacking the Network Interface Bottleneck
Using a 100Mb Ethernet causes the network bandwidth to

be a bottleneck as we can only use 25 percent of the available
disk bandwidth.

A better solution would be to use a gigabit Ethernet inter-
face. This would allow transfer rates of about 80 MB/s.
Unfortunately, the disk bandwidth limits us to 40 MB/s, that is,
half of that bandwidth.

F. Attacking the Disk Bottleneck
There would be several ways to eliminate that disk bottle-

neck. First we could attach to each workstation two SCSI disk
drives and divide the disk workload among these two drives.
The main disadvantage of this solution is the higher cost of
SCSI drives.

A second option would be to wait for newer and better
ATA drives. Disk densities have been doubling every year
over the last few years and there is no reason to expect a
sudden halt to this trend. Even without an increase of disk
rotational speeds, we can thus expect disk transfer rates to
increase by a factor of 2 every year. Within two years, we
should be able broadcast 100 channels from a single disk drive.
This will be enough to broadcast the 20 hottest videos using 5
channels per video and achieve a waiting time of 81 seconds.

A third option would be to store in the server’s main mem-
ory the most frequently transmitted segments of each video .
Since we are using a deterministic broadcasting protocol, we
can predict ahead of time the I/O bandwidth savings that could
thus be achieved.

Assume that our broadcasting protocol partitions each
video to be broadcast into n fixed size segments of equal
duration d = D/n where D is the duration of the video. Assume
also that the protocol repeats segment Si every z(i) slots. For
all protocols that impose a fixed delay, we would have z(i) > i.
Then the total bandwidth required to broadcast the first k
segments of the video is given by:

∑ =

n

i iz
b

1)(

where b is the video consumption rate.
The fraction of the total bandwidth occupied by the first k

segments is then given by:

898

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on June 22,2021 at 21:22:37 UTC from IEEE Xplore. Restrictions apply.

∑

∑

∑

∑

=

=

=

=
=

n
i

k
i

n
i

k
i

iz

iz

iz
b
iz

b

1

1

1

1

)(
1

)(
1

)(

)(

Recall that the bandwidth of a single ATA drive allows us
to broadcast up to 10 two-hour videos on 50 channels and
achieve a waiting time of 81 seconds. Assuming m = 9, the
first channel allocated to each video would broadcast the first
12 segments of the video, that is 12/847th of the total duration
of the video. Caching these 12 segments in main memory
would require 12/847×7200×0.75 = 76.5 MB per video and
reduce the disk bandwidth by one channel. Caching the first
12 segments of the 10 videos would reduce the disk bandwidth
by the equivalent of ten channels. This would allow us to
broadcast 2 additional videos at the cost of 765 MB of
additional main memory. Note that the cost of caching the first
few segments of a video is directly proportional to the duration
of these segments and the duration of the video. Hence,
caching would work very well for a server distributing shorter
video clips.

G. Fault-Tolerance Issues
 In the current state of the technology, a reasonably sized
Tabbycat server would probably consist of 3 workstations
connected to the net through Gigabit Ethernet interfaces that
would allow it to broadcast the 18 most popular videos on a
total of 90 channels, using slightly less than two-thirds of the
available bandwidth. Each video would be replicated on two of
the three workstations in such a way that each workstation will
have backup copies of one half of the videos normally broad-
cast by the two other workstations. Should one of the
workstations fail, each of the two remaining workstations will
add to its normal broadcast schedule one half of the videos that
were broadcast by the machine that failed.

IV. POSSIBLE EXTENSIONS
Two possible extensions could greatly enhance the current

implementation of our Tabbycat prototype.

A. Implementing a Reliable Multicast Protocol
Since our prototype relies on UDP for distributing the

videos, its applicability is limited to either cable TV
environments or well-controlled LANs, where packet losses
are small enough to be tolerated by the video-encoding
scheme. Deploying Tabbycat over a shared WAN would
require implementing a reliable multicast protocol. We are
currently investigating several possible solutions.

B. Limiting the Client Bandwidth
Tabbycat now requires each STB to receive at the same

time data from all the k channels allocated to the video being
currently watched. This requirement complicates the design of
the client and increases its cost [9, 6]. A better solution would
be to use a FDPB protocol limiting the STB receiving band-
width to two channels.

Channel Number of
Subchannels

First
Segment

Last
Segment

C1 3 S1 S12
C2 5 S13 S42
C3 6 S43 S95
C4 8 S96 S193
C5 11 S194 S369

Figure 4. The first five channels for a FDPB protocol with m = 9 restricting
the client bandwidth to two channels and not allowing channel hopping.

Channel Number of
Subchannels

First
Segment

Last
Segment

C1 3 S1 S12
C2 5 S13 S42
C3 6 S43 S100
C4 10 S101 S220
C5 14 S237 S474

Figure 5. The first five channels for a FDPB protocol with m = 9 restricting
the client bandwidth to two channels and allowing channel hopping.

One possible solutions to this problem is to design an
FDPB protocol assuming that the client STB will not be able to
receive data from channel Cl + 1 until it is done with all channels
Ci with i < l [15]. The main advantage of this approach is that
the STB will never have to hop back and forth between the
channels. Its major drawback is that we will not be able to
map as many segments into the same number of channels.
This will result into either an increase of the customer waiting
time or an increase of the number of channels required to
achieve the same waiting time.

As shown in Figure 4, a FDPB protocol with m = 9 restrict-
ing the client bandwidth to two channels and not allowing
channel hopping would only be able to map 193 segments into
four channels. Hence it would only achieve a waiting time
equal to 9/193th of the video duration, that is, a little less than 6
minutes for a two-hour video. Adding a fifth channel would
bring the waiting time below three minutes for the same two-
hour video.

We present here a more efficient solution. Rather than wait-
ing for the STB to be entirely done with channel Ci before
starting to receive data from channel Ci+2, we will let the STB
receive data from some of the subchannels of channel Ci+2 at
the same rate it stops receiving data from some of the subchan-
nels of channel Ci. This process will be conducted in such
fashion that the customer STB will never have to receive data
at the same time from channels Ci and Ci+2.

As shown in Figure 5, a FDPB protocol with m = 9 restrict-
ing the client bandwidth to two channels while allowing
channel hopping could map 220 segments into four channels.
Hence it would achieve a waiting time equal to 9/220th of the
video duration, that is, a little less than 5 minutes for a two-
hour video. Adding a fifth channel would allow us to partition
the video into 474 segments and achieve a waiting time of`137

899

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on June 22,2021 at 21:22:37 UTC from IEEE Xplore. Restrictions apply.

seconds for the same two-hour video. Hence allowing
channel-hopping results in a 22 percent reduction of the
customer waiting time.

V. RELEVANT WORK
The Berkeley Distributed Video-on-Demand System [3]

allowed clients across the Internet to submit requests to view
audio, video and graphical streams. Playback was accom-
plished by streaming data from a media file server through the
network to the client's computer. No effort was made to share
data among overlapping requests.

The Tiger system was a scalable, fault-tolerant multimedia
file system using commodity hardware [1]. Unlike Tabbycat,
it dedicated a separate data stream to each customer request
and made no attempts to share data among overlapping
requests. Hot spots were avoided by striping all videos across
all workstations and disks in a Tiger system. Tiger prevented
conflicts among requests by scheduling incoming requests in a
way that ensures that two requests will never access the same
resource at the same time. This task was distributed among all
of the workstations in the system, each of which having an
incomplete view of the global schedule. The main disadvan-
tage of the approach was its poor scalability: Tiger designers
found that a system with ten workstations could only handle
one hundred concurrent user requests.

More recently, Bradshaw et al. have presented an Internet
streaming video testbed [2] using both periodic broadcast and
patching/stream tapping [4, 10]. This allowed the server to
select the best distribution protocol for each video, namely,
broadcasting videos in very high demand while distributing
less popular videos through stream tapping/patching. This
feature resulted in a much more complex system than our
Tabbycat server. In addition, the greedy disk-conserving
broadcasting protocol [7] used by their system is less band-
width-efficient than the optimized FDPB protocol used by
Tabbycat. While the optimized FDPB protocol only requires
five channels to achieve a waiting time of 77 seconds for a
two-hour video, the greedy disk-conserving broadcasting
protocol requires 6 channels to achieve a waiting time of 114
seconds for the same video.

VI. CONCLUSION
Current wisdom is that distributing video on demand to

large audiences requires complex expensive farms of video
servers. We built the Tabbycat video server to show that a
metropolitan video server distributing the top ten to twenty
videos could consist of a few powerful workstations running
unmodified versions of a standard operating system. The
secret of Tabbycat’s low cost is the broadcasting protocol it
uses to distribute the videos. We knew ahead of time that the
FDPB protocol would provide smaller waiting times than any
other protocol broadcasting fixed-size segments over channels
of equal bandwidth [15]. We found it easy to implement and
easy to tune thanks to its regularity. In addition, we showed
that a FDPB protocol restricting the client bandwidth to two
channels could still achieve a waiting time of slightly less than
126 seconds for a two-hour video broadcast over five channels.

As it stands now, Tabbycat is a mere proof-of-concept
prototype. More work is still needed to allow its deployment
in environments where packet losses are likely to happen.

REFERENCES
[1] W. J. Bolosky, R. P. Fitzgerald and J. R. Douceur. “Distributed schedule

management in the Tiger video fileserver.” Proc. 16th ACM Symp. on
Operating Systems Principles, pp. 212–223, October 1997.

[2] M. K. Bradshaw, B. Wang, S. Sen, L. Gao, J. Kurose, P. Shenoy, and D.
Towsley “Periodic Broadcast and Patching Services—Implementation,
Measurement, and Analysis in an Internet Streaming Video Testbed.”
Proc. 9th ACM Multimedia Conf., Oct. 2001

[3] D. W. Brubeck and L. A. Rowe. “Hierarchical storage management in a
distributed video-on-demand system.” IEEE Multimedia, 3(3):37–47,
1996.

[4] S. W. Carter and D. D. E. Long. “Improving video-on-demand server
efficiency through stream tapping.” Proc. 5th Int’l Conf. on Computer
Communications and Networks, pp. 200–207, Sept. 1997.

[5] A. Dan, D. Sitaram, and P. Shahabuddin. “Dynamic batching policies for
an on-demand video server.” Multimedia Systems, 4(3):112–121, June
1996.

[6] D. L. Eager, M. K. Vernon and J. Zahorjan. “Minimizing bandwidth
requirements for on-demand data delivery.” IEEE Trans, on Knowledge
and Data Engineering, 13(5):742-757, Sept.-Oct. 2001.

[7] L. Gao, J. Kurose, and D. Towsley. “Efficient schemes for broadcasting
popular videos.” Proc. Int'l Workshop on Network and Operating System
Support for Digital Audio and Video, July 1998.

[8] A. Hu, I. Nikolaidis, P. van Beek. “On the design of efficient video-on-
demand broadcast schedules.” Proc. 7th Int’l Symp. on Modeling, Analy-
sis and Simulation of Computer and Telecommunication Systems, pp.
262–269, Oct. 1999.

[9] Hua, K. A., and S. Sheu, “Skyscraper broadcasting: a new broadcasting
scheme for metropolitan video-on-demand systems,” Proc. SIGCOMM
97 Conf., pp. 89–100, Sep. 1997.

[10] K. A. Hua, Y. Cai, and S. Sheu. Patching: a multicast technique for true
video-on-demand services. Proc. 6th ACM Multimedia Conf, pp. 191–
200, Sep. 1998.

[11] L. Juhn and L. Tseng. “Fast data broadcasting and receiving scheme for
popular video service.” IEEE Trans. on Broadcasting, 44(1):100–105,
March 1998.

[12] Saurabh Mohan. Characterizing the Bandwidth Requirements of
Compressed Videos. MS Thesis, Department of Computer Science,
University of Houston, May 2001.

[13] nCUBE Corp., http://www.ncube.com/vod/index.html.
[14] J.-F. Pâris, S. W. Carter and D. D. E. Long. “A low bandwidth

broadcasting protocol for video on demand.” Proc. 7th Int’l Conf. on
Computer Communications and Networks, pp. 690–697, Oct. 1998.

[15] J.-F. Pâris. “A fixed-delay broadcasting protocol for video-on-demand.”
Proc. 10th Int’l Conf. on Computer Communications and Networks, pp.
418–423, Oct. 2001.

[16] S. Viswanathan and T. Imielinski. “Metropolitan area video-on-demand
service using pyramid broadcasting.” Multimedia Systems, 4(4):197–
208, 1996.

900

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on June 22,2021 at 21:22:37 UTC from IEEE Xplore. Restrictions apply.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

