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On LDPC Codes over Channels with Memory
Giulio Colavolpe

Abstract— The problem of detection and decoding of low-
density parity-check (LDPC) codes transmitted over channels
with memory is addressed. A new general method to build a
factor graph which takes into account both the code constraints
and the channel behavior is proposed and the a posteriori
probabilities of the information symbols, necessary to implement
maximum a posteriori (MAP) symbol detection, are derived by
using the sum-product algorithm. With respect to the case of a
LDPC code transmitted on a memoryless channel, the derived
factor graphs have additional factor nodes taking into account
the channel behavior and not the code constraints. It is shown
that the function associated to the generic factor node modeling
the channel is related to the basic branch metric used in the
Viterbi algorithm when MAP sequence detection is applied or in
the BCJR algorithm implementing MAP symbol detection. This
fact suggests that all the previously proposed solutions for those
algorithms can be systematically extended to LDPC codes and
graph-based detection.

When the sum-product algorithm works on the derived factor
graphs, the most demanding computation is in general that
performed at factor nodes modeling the channel. In fact, the
complexity of the computation at these factor nodes is in general
exponential in a suitably defined channel memory parameter. In
these cases, a technique for complexity reduction is illustrated. In
some particular cases of practical relevance, the above mentioned
complexity becomes linear in the channel memory. This does not
happen in the same cases when detection is performed by using
the Viterbi algorithm or the BCJR algorithm, suggesting that the
use of factor graphs and the sum-product algorithm might be
computationally more appealing. As an example of application
of the described framework, the cases of noncoherent and flat
fading channels are considered.

Index Terms— Factor graphs, sum-product algorithm, chan-
nels with memory, phase-noise, flat fading, low-density parity-
check codes, iterative detection/decoding.

I. INTRODUCTION

IN RECENT years, the extraordinary success of turbo codes
has stimulated the rediscovery of another class of codes

exhibiting similar performance and characteristics [1]. These
codes, called low-density parity-check (LDPC) codes, were
first introduced by Gallager [2] in their original regular ver-
sion. The recently conceived irregular LDPC codes exhibit an
impressive performance outperforming the best known turbo
codes [3]-[5]. This paper proposes a new general framework,
based on factor graphs (FGs) and the sum-product algorithm
(SPA) [6], for designing decoding schemes for channel codes
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transmitted over channels with memory with particular empha-
sis to LDPC codes. Since the derived algorithms are iterative,
they are particularly suited to turbo codes and LDPC codes
whose decoding is iterative even when they are transmitted
over a memoryless channel.

In the technical literature there are a lot of recent papers
on detection and decoding of LDPC codes over channels with
memory. In [7]-[12], the case of magnetic channels, where
the memory is due to the presence of known intersymbol
interference (ISI), is considered, and separate trellis-based
detection, performed by means of the BCJR algorithm [13]
as in turbo equalization [14]-[16], is proposed.

In the case of a noncoherent channel, i.e., a channel which
introduces an unknown and possibly time-varying channel
phase, the algorithms developed in [17]-[20] are designed for
turbo codes and can be applied to LDPC codes only if trellis-
based separate detection is performed. In [21] a channel model
where the unknown carrier phase is constant over a block
of N symbols and independent from block to block (the so-
called block noncoherent channel) is considered, and detection
algorithms for LDPC codes based on this model are developed.
A non-Bayesian approach is adopted in [22], [23]. In [22]
the channel phase is estimated by using the expectation-
maximization (EM) algorithm, as originally proposed in [24]-
[27] for turbo codes, and the estimation algorithm is embedded
into the LDPC iterative decoding process. On the contrary,
in [23] a class of problems is identified for which the op-
timal (in the sense of the generalized-likelihood ratio test)
computation of the symbol a posteriori probabilities can be
performed with polynomial complexity and the application to
LDPC codes and the noncoherent channel is discussed.

For flat correlated Rayleigh fading channels, the algorithms
in [28]-[30] can be applied to LDPC codes only performing
trellis-based separate detection. On the contrary, for the block
fading channel, an algorithm which can be directly applied to
the case of LDPC codes is described in [31]. This algorithm
is based on an estimation of the fading amplitude and a
quantization of the channel phase for each fading block but
similar approaches can be conceived for correlated fading
channels, for example based on a channel Markov model (e.g.,
see [29]) and a Kalman smoothing approach [6], [32].

A more detailed discussion must be devoted to [33]. In
that paper, a general framework to solve the problem of
joint decoding and estimation, in the presence of unknown
parameters, is described. The approach is Bayesian, i.e., the
channel parameters are modeled as stochastic processes with
known statistics and the use of FGs [6] that include both
code constraints and channel statistics is advocated in a very
general setting. The SPA [6] is then used to implement the
maximum a posteriori (MAP) symbol detection strategy. Since
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the channel parameters, which are continuous random vari-
ables, are explicitly represented in the graph, the application
of the SPA becomes impractical. To solve this problem, the
method of canonical distributions is adopted. By specializing
the approach of [33] to particular channel phase statistics
and canonical distributions, several algorithms for noncoherent
detection of LDPC codes have been proposed [34]-[37]. For
fading channels, it can be shown that the algorithm in [31] can
be rederived using the framework in [33] and also the well-
known Kalman smoother can be seen in this light [6], [32].
From the above mentioned papers, it is clear that the choice
of the canonical distribution becomes crucial to determine the
performance and the complexity of the derived algorithms.

In this paper, an alternative Bayesian framework is de-
scribed. As in [33], our framework is based on FGs and the
SPA [6] and, in fact, by means of a factorization of the joint
a posteriori probability of the information symbols, we derive
an FG representing both the code constraints and the channel
model. In this FG, however, the channel parameters are not
explicitly represented since they are a priori averaged out.
The application of the SPA to this FG leads to an iterative
scheme for joint detection and decoding. The above mentioned
factorization is exact in the case of channels with finite
memory, such as a channel with known ISI, and approximate
for channels with infinite memory. This latter case includes
a noncoherent channel and a flat correlated Rayleigh fading
channel. For these channels, the factorization is approximate
in the sense of a finite dependence assumption.

The proposed framework generates algorithms non-trellis-
based. Although the logarithm of the function associated
to the generic factor node is the same basic metric used
in trellis-based algorithms (in the Viterbi algorithm when
MAP sequence detection is applied or in the BCJR algorithm
implementing MAP symbol detection), this must be considered
a new result. In fact, the structure and the characteristics of
the derived algorithms are very different. As an example, the
algorithms developed by using our framework are well suited
for a fully parallel implementation of the detector/decoder.

As shown in the numerical results, it is not possible to say,
in general, which approach is better in terms of performance
and/or complexity since for some channels the approach in
[33] is favorable, whereas for other channels it is not. In the
approach in [33], the choice of the used canonical distribution
is a critical point and must be performed “ad-hoc” for the
channel at hand [37], whereas the proposed framework is
independent from subjective choices and in general gives
good performance and affordable complexity, as it will be
shown in the numerical results. Hence, it is interesting to have
multiple frameworks since there is no a clear advantage of one
framework on the other.

The case of a channel which introduces known ISI is not
explicitly considered in this paper since analyzed in depth
in [38]. On the contrary, the focus will be on LDPC codes
transmitted on noncoherent or flat correlated Rayleigh fading
channels. For these channels and equal energy signals, a
modified version of the described FGs may be devised. The
application of the SPA to these modified graphs has a com-
plexity linear in a suitably defined channel memory parameter
C, allowing a low-complexity receiver implementation for all

practical values of C. Notice that this does not occur in the
corresponding trellis-based algorithms in which the complex-
ity is exponential in C. The possibility of an implementation
of the receiver for any value of C is a key point since this
parameter has a fundamental role in determining the receiver
performance. In fact, the optimal value of C must be chosen
as a function of the channel rate of change—the faster the
channel, the lower the optimal value of C.

The remainder of this paper is organized as follows. Section
II introduces the channel model. The basic concepts on FGs
and the SPA are also reviewed. The proposed framework
for approaching the problem of joint detection and decoding
of LDPC codes is described in Section III and possible
complexity reduction methods are described in Section IV. In
Section V some examples of applications are detailed. Finally,
in Section VI we present some numerical results and in Section
VII we point out some concluding remarks.

II. SYSTEM MODEL AND PRELIMINARIES

A. System model

In the considered transmission system, a sequence of M -ary
code symbols c = {ck} is transmitted from epoch 0 to epoch
K−1. These code symbols are obtained from the encoding, by
means of a code C, of a sequence of information symbols a =
{ak}. The encoding function mapping information sequences
a into the codewords c will be denoted by ηC . This function
will also include pilot symbols inserted in the sequence c
to avoid phase ambiguity problems. A sub-sequence of code
symbols is denoted in vector notation as

ck2k1 = (ck1 , ck1+1, . . . , ck2) , k2 > k1. (1)

The sequence of code symbols is then modulated and transmit-
ted over a channel which is modeled as a noiseless filter (pos-
sibly stochastic) rendered noisy by additive white Gaussian
noise (AWGN) with one-sided power spectral density N0.

At the receiver side, by means of a discretization process,
the received signal r(t) is converted into a discrete-time
sequence r = {rk} [39]. We assume that a single sample rk
is used for each code symbol, which is practically sufficient
in many cases. In the case of oversampling, the extension
is straightforward—the observation rk must be considered as
a vector whose dimensionality is given by the number of
samples per code symbol. With a notation similar to that used
for code symbols, the sub-sequence of observations {rk}k2k=k1
is denoted by rk2k1 .

We also assume that the channel is causal, that is the
observation sequence rk0 up to epoch k depends on the
code sequence up to epoch k only. This condition may be
formulated in terms of the following statistical dependence

p(rk0 |c) = p(rk0 |ck0) (2)

and is verified in all commonly used channel models. As an
example, for the cases of a noncoherent channel, a flat or a
frequency-selective fading channel, and a channel with known
and time-invariant ISI, the condition is verified, by considering
both linear or continuous phase modulations (CPM).

Two channel models will be considered in the following. For
a noncoherent channel, which is characterized by an unknown
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stochastic and possibly time-varying phase θk, considering a
linear modulation at the transmitter side and assuming that
one sample per code symbol is adequate (as in the absence of
strong phase variations), if transmit and receive filters are such
that there is absence of ISI, we have the following observation
model:

rk = cke
jθk + wk (3)

where wk is a discrete-time complex AWGN noise sample
with each component of variance σ2 = N0. In Section V-A,
for the phase noise process {θk}, different statistics will be
considered leading to different detection algorithms.

For a flat correlated Rayleigh fading channel, assuming for
simplicity that a sampling rate of one sample per information
symbol is adequate, the observation can be expressed as

rk = fkck + wk (4)

where {fk} is a sequence of zero-mean complex Gaussian
random variables with autocorrelation sequence modeled ac-
cording to isotropic scattering [40], i.e., given by E{fkf∗

k−n}
= J0(2πfDTn), where J0(·) is the zero-th order Bessel
function and fDT is the normalized Doppler rate.

B. Factor graphs and the sum-product algorithm.

We now review the basic concepts of FGs and the SPA
by using the notation of the excellent tutorial paper [6]. Let
X = {x1, . . . , xN} denote a set of variables and f(X)
a multivariate function. Let B1, . . . ,Bm denote subsets of
X . We say that f(X) admits a factorization with supports
B1, . . . ,Bm, if f(X) can be written as the product of the
functions {fj : j = 1, . . . ,m}, where fj has the variables
in Bj as arguments. The FG representing the factorization
f =

∏
j fj is a bipartite graph G = {V ,F , E}, where nodes in

V (variable nodes) are associated with the variables xi ∈ X ,
nodes in F (factor nodes) are associated with the functions
fj , and there exists an edge e ∈ E joining xi and fj if and
only if xi ∈ Bj (i.e., if xi is an argument of fj).

Let f(X) be a probability mass function (pmf). Then, if the
FG corresponding to the factorization of f has no cycles,1 the
marginal pmfs can be computed exactly in a finite number of
steps by the SPA [6]. The SPA is defined by the computation
rules at variable and at factor nodes, and by a suitable node
activation schedule. Denoting by μxi→fj (xi) a message sent
from the variable node xi to the factor node fj , by μfj→xi(xi)
a message in the opposite direction, and by Ai the set of
functions fj having xi as argument, the message computations
performed at variable and factor nodes are, respectively [6]

μxi→fj (xi) =
∏

h∈Ai\{fj}
μh→xi(xi) (5)

μfj→xi(xi) =
∑

∼{xi}

⎡
⎣fj({y ∈ Bj})

∏
y∈Bj\{xi}

μy→fj (y)

⎤
⎦

(6)

1A cycle is a closed path in the graph and its length is defined as the
corresponding number of path edges. The length of the smallest cycle is the
girth of the graph.

where, following the notation of [6], we indicate by
∑

∼{xi}
the summary operator, i.e., a sum over all variables excluding
xi. If the FG contains cycles, convergence to the exact mar-
ginal pmfs is not guaranteed. Moreover, the SPA is inherently
iterative. Nevertheless, for many relevant problems character-
ized by FGs with cycles, the SPA was found to provide very
good results and therefore it represents a viable solution to the
approximated marginalization of multivariate pmfs when exact
calculation is not feasible because of complexity. Remarkably,
the ubiquitous belief propagation iterative decoding algorithm
used to decode LDPC codes [41], the turbo-decoding algo-
rithm [42], [43], [6], turbo multiuser detection/decoding [44]
and turbo equalization algorithms [14], [16] are instances of
the SPA or approximations thereof.

A message-passing schedule in the SPA is the specification
of the order in which messages are updated. In general, espe-
cially for graphs with cycles, the so-called flooding schedule
is adopted [45]: in each iteration, all variable nodes and
subsequently all factor nodes pass new messages to their
neighbors. This schedule is well suited for a fully parallel
implementation of the iterative detectors/decoders presented
in the next section. Other schedules may be adopted, serial or
mixed serial-parallel, according to the specific implementation
requirements.

III. DETECTION ALGORITHM

The application of the SPA [6] to an FG representing
the joint a posteriori pmf of the information sequence a
conditioned on a given observation sequence r, allows the
exact or approximate computation of the marginal a posteriori
pmfs P (ak|r) [6]. Therefore, this algorithm may be used to
implement the MAP symbol detection algorithm. In fact, the
optimal MAP symbol detection rule minimizing the average
symbol-error probability is given by

âk = argmax
ak

P (ak|r). (7)

From the definition of the encoding function ηC we obtain the
factorization

P (a|r) ∼ P (a)p(r|a) ∼ P (a)χ[c = ηC(a)]p(r|c)

∼ χ[c = ηC(a)]
K−1∏
k=0

p(rk|rk−1
0 , ck0) (8)

where we have used the causality condition (2) and the fact
that the output signal pdf p(r) does not depend on a, assumed
that the information symbols are independent, uniformly and
identically distributed (hence P (a) = const.), and denoted by
χ[c = ηC(a)] the code indicator function, equal to 1 if c is
the codeword corresponding to a and to zero otherwise. In (8),
the symbol ∼ indicates that two quantities are monotonically
related with respect to the variable of interest (in this case, a).

If the probability density function p(rk|rk−1
0 , ck0), which

appears in (8), satisfies the condition

p(rk|rk−1
0 , ck0) = p(rk|rk−1

0 , ckk−C) (9)

where C is a suitable parameter, the channel has finite mem-
ory [46], [47]. For this reason, parameter C will be nicknamed
finite memory parameter. Substituting (9) into (8), the joint
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Fig. 1. Overall factor graph for C = 2.

a posteriori pmf of the information symbols P (a|r) may be
expressed as

P (a|r) ∼ χ[c = ηC(a)]
K−1∏
k=0

p(rk|rk−1
0 , ckk−C). (10)

The corresponding FG is shown in Fig. 1 for C = 2,
and represents both the code constraints (described by χ(c))
and the channel behavior. In general, the code constraint
function can be also represented by means of an FG. This
graph is a portion of the overall FG and is connected with
the graph representing the channel behavior. With respect
to SPA-based decoding schemes for LDPC codes over a
memoryless channel, additional factor nodes must be added at
the bottom of the graph, as shown in Fig. 1. These additional
factor nodes perform a marginalization, based on the channel
model, without taking into account the code constraints. The
complexity of this marginalization is, in general, exponential
in C.

The finite memory condition (9) is exactly verified in the
case of channels with known ISI. In fact, in this case it is

p(rk|rk−1
0 , ck0) = p(rk|ckk−C) (11)

where C is the length of the discrete-time channel impulse
response. This case is not further considered in this paper since
it is analyzed in depth in [38]. If the finite memory condition
(9) is not verified in an exact sense as for a noncoherent or a
fading channel (channels with infinite memory), an FG may
be devised but the complexity of the message computation at
the factor node p(rk|rk−1

0 , ck0) modeling the channel grows
exponentially with k and thus becomes impractical. For this
reason, an approximation is introduced assuming that rk
depends on the R most recent observations and the most recent
C ≥ R code symbols only. This finite dependence assumption
may be expressed as

p(rk|rk−1
0 , ck0) � p(rk|rk−1

k−R, c
k
k−C). (12)

This property, in general adopted in all practical detection
schemes, is intuitive in the case of time-varying channels. In
fact, in this case the conditional observations are asymptoti-
cally independent for increasing index difference. Also in this
case, parameter C will be denoted to as memory parameter.

The resulting (approximate) expression of P (a|r) becomes

P (a|r) � χ[c = ηC(a)]
K−1∏
k=0

p(rk|rk−1
k−R, c

k
k−C) (13)

and the corresponding FG is similar to that corresponding to
(10) with p(rk|rk−1

0 , ckk−C) substituted by p(rk|rk−1
k−R, c

k
k−C).

The logarithm of the function p(rk|rk−1
k−R, c

k
k−C) associated

to the generic factor node modeling the channel is the same
basic branch metric used in the Viterbi algorithm when MAP
sequence detection is applied or in the BCJR algorithm imple-
menting MAP symbol detection [47]. However, the structure
and the characteristics of the derived algorithms are very
different. As an example, as already mentioned the algorithms
developed by using our framework are well suited for a
fully parallel implementation of the detector/decoder. Other
differences will be outlined in the next sections.

The quality of the convergence of the SPA to the exact
marginal probabilities is in general determined by the girth of
the graph. As an example, in designing LDPC codes, cycles of
length 4 must be avoided to ensure decoding convergence. The
FG derived from the proposed factorization has, in general,
girth 4 (as one can see in Fig. 1). Surprisingly, we verified by
computer simulations that these length-4 cycles involving two
factor nodes which model the channel behavior often do not
affect the convergence of the algorithm. If this is not the case,
as for transmissions over ISI channels, FG transformations can
be adopted [38].

IV. COMPLEXITY REDUCTION

The complexity of the proposed algorithms may be re-
duced following a technique similar to that described in [48]
for BCJR algorithms or to reduced-state sequence detection
(RSSD) used for MAP sequence detection [49]-[51]. In fact,
by choosing an integer Q < C, the updating rule (6) at factor
nodes modeling the channel can be simplified as follows: the
C − Q symbols with highest reliability are hard-quantized
based on the messages on the graph and the sum is performed
over the Q symbols with lowest reliability.2 In this way, the
complexity becomes exponential in Q. With respect to the
BCJR or the Viterbi algorithm, the complexity of these novel
detection algorithms can be reduced more efficiently, due to
the different structure of the algorithm. In fact, we are able to
hard-quantize the symbols with highest reliability regardless of
their position. On the contrary, when the BCJR or the Viterbi
algorithm is used, we are constrained by the trellis structure
to a truncation of the farthest symbols [48]-[51].

For equal energy signals, a modified version of the de-
scribed FGs for noncoherent and flat fading channels may
be devised. In fact, in the next Section we will show that for
fading channels the function p(r|c) factors into the product of
functions of two code symbols. For noncoherent channels this
factorization is not exact but involves a simple approximation.
The SPA on these modified graphs has a complexity linear in
C, allowing a low-complexity receiver implementation for all
practical values of C: in other words, no complexity reduction
is needed.

2A partial representation by using set partitioning can be also adopted.



COLAVOLPE et al.: ON LDPC CODES OVER CHANNELS WITH MEMORY 1761

V. EXAMPLES OF APPLICATIONS

A. Noncoherent Channel

In this Section, we consider the application of the frame-
work described in the previous Section to the case of a
noncoherent channel. The system model is given by (3).
First algorithm — For the time being, we model the channel
phase as a time-invariant random variable θ with uniform
distribution in [0, 2π). However, the finite dependence property
(12) will lead to a detection algorithm that can be used for
slowly-varying channels also. In this case, it is R = C and the
probability density function p(rk|rk−1

k−C , c
k
k−C) which appears

in (13) may be expressed, as

p(rk|rk−1
k−C , c

k
k−C) =

Eθ{p(rkk−C |ckk−C , θ)}
Eθ{p(rk−1

k−C |ck−1
k−C , θ)}

. (14)

The pdfs p(rkk−C |ckk−C , θ) and p(rk−1
k−C |ck−1

k−C , θ) which appear
in (14) are now Gaussian pdfs. By averaging with respect to
θ, after straightforward manipulations we obtain

p(rk|rk−1
k−C , c

k
k−C) ∼

I0
(

1
σ2

∣∣∣∑C
i=0 rk−ic

∗
k−i
∣∣∣)

I0
(

1
σ2

∣∣∣∑C
i=1 rk−ic

∗
k−i
∣∣∣)e

− |ck|2
2σ2 (15)

where I0(x) is the zeroth order modified Bessel function
of the first kind. Unless the above mentioned technique for
complexity reduction is adopted, at these factor nodes the SPA
performs a marginalization whose computational burden grows
exponentially with C.

The described algorithm is the graph-based version of
the trellis-based algorithms in [52] and [19]. As previously
mentioned, although the logarithm of the function associated
to the generic factor node is the same basic metrics used
in [52] and [19], the algorithm has different structure and
characteristics.
Second algorithm — We now consider the case of a time-
varying channel phase. A realistic model of phase noise is
based on a discrete-time Wiener process θk = θk−1 + Δk,
characterized by i.i.d. Gaussian increments Δk with mean
zero and standard deviation σΔ, descriptive of the phase noise
intensity. Hence3

p(θk|θk−1, θk−2, . . . , θ0) = p(θk|θk−1)

=
1√

2πσ2
Δ

e
− (θk−θk−1)2

2σ2
Δ , k = 1, . . . ,K − 1 (16)

p(θ0) =
1
2π

, θ0 ∈ [0, 2π). (17)

Considering the channel model (3), the pdf
p(rk|rk−1

k−C , c
k
k−C) which appears in (13) may be expressed,

as

p(rk|rk−1
k−C , c

k
k−C) =

Eθk

k−C

{p(rkk−C |ckk−C ,θkk−C)}
Eθk−1

k−C

{p(rk−1
k−C |ck−1

k−C ,θ
k−1
k−C)} (18)

having denoted by θk2k1 = (θk1 , θk1+1, . . . , θk2). In
this case, however, an exact closed form expression of
Eθk

k−C

{p(rkk−C |ckk−C ,θkk−C)} which appears in (18), does

3Note that, since the channel phase is defined modulus 2π, the pdf
p(θk|θk−1) can be approximated as Gaussian only if σΔ � 2π.

not exist. However, a very good approximation can be found.
By using the following approximate result [53]

1√
2πσ2

Δ

∫ 2π

0

eRe[ze−jx]e
− (x−y)2

2σ2
Δ dx

� I0(|z|)
I0( z

1+σ2
Δ|z|)

e
Re[

|z|
1+σ2

Δ|z|e
−jy ]

(19)

where z is a complex number and x and y are real numbers,
it is possible to express

Eθk

k−C

{p(rkk−C |ckk−C ,θkk−C)}

�
k∏

i=k−C
I0(|zi|)e−

|ci|2
2σ2

k∏
i=k−C+1

1

I0(
|zi|

1+σ2
Δ|zi|)

(20)

where coefficients zi can be recursively computed as

zk =
rkc

∗
k

σ2

zi−1 =
zi

1 + σ2
Δ|zi| +

ri−1c
∗
i−1

σ2

i = k, k − 1, . . . , k − C + 1. (21)

The term Eθk−1
k−C

{p(rk−1
k−C |ck−1

k−C ,θ
k−1
k−C)} which appears in

(18) can be computed similarly. Even in this case, the com-
putational burden grows exponentially with C and the com-
plexity reduction technique described in the previous section
becomes necessary.
Third algorithm — For a general time-varying phase process
θk, assumed stationary, zero-mean and described by a given
autocorrelation sequence of the phasor process hk = ejθk ,
denoted by Rh(n) = E{ejθn+ke−jθk}, we can extend the
approximate linear predictive approach described in [54] for
Viterbi-based MAP sequence detection receivers.4 In this case,
the probability density function p(rk|rk−1

k−C , c
k
k−C) may be

approximated as (omitting irrelevant constant terms) [54]

p(rk|rk−1
k−C , c

k
k−C)

� exp

⎧⎨
⎩− 1

σ2
e

∣∣∣∣∣rk − ck

∑C
i=1 pi

rk−i

ck−i

|∑C
i=1 pi

rk−i

ck−i
|

∣∣∣∣∣
2
⎫⎬
⎭ (22)

where, in this case, C assumes the meaning of prediction or-
der, {pi}Ci=1 are the prediction coefficients and σ2

e is the mean
square prediction error. The prediction coefficients {pi}Ci=1

can be computed by solving a Wiener-Hopf linear system
Rp = b, where R is a square C×C matrix whose elements
have the following expression

[R]�,m =

{
Rh(|�−m|) if � �= m

Rh(0) + 2σ2

|ck−�|2 if � = m
(23)

p Δ= [p1 · · · pC ]T is the unknown vector, and b =
[Rh(1), Rh(2), · · · , Rh(C)]T . The mean square prediction
error may be expressed as [54]

σ2
e = Rh(0) +

2σ2

|ck|2 −
C∑
i=1

piRh(i). (24)

4For the above mentioned discrete-time Wiener process, it is easy to verify
that Rh(n) = e−|n|σ2

Δ/2.
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For phase shift keying (PSK) signals, the prediction coeffi-
cients and the mean square prediction error become indepen-
dent of the considered sequence. In addition, approximating
|∑C

i=1 pi
rk−i

ck−i
| � |∑C

i=1 pi|, and taking into account that
|ck| = 1, we have

p(rk|rk−1
k−C , c

k
k−C)

∼ exp

{
2

σ2
e |
∑C

i=1 pi|
Re

[
rkc

∗
k

C∑
i=1

pir
∗
k−ick−i

]}

=
C∏
i=1

exp

{
2Re

[
pirkc

∗
kr

∗
k−ick−i

]
σ2
e |
∑C

i=1 pi|

}

=
C∏
i=1

gk−i,k(ck−i, ck) (25)

having defined

gk−i,k(ck−i, ck) = exp

{
2Re

[
pirkc

∗
kr

∗
k−ick−i

]
σ2
e |
∑C
i=1 pi|

}
. (26)

This further factorization has a direct impact on the graph
structure. In fact, each factor node can be decomposed into C
simpler degree-2 factor nodes. As an example, for C = 2, the
corresponding FG is that in Fig. 2 (for brevity, the arguments
of functions gk−i,k(ck−i, ck) are omitted). Hence, for increas-
ing values of C, the number of factor nodes increases linearly
but the computational burden at each factor node remains the
same. In addition, in this modified FG there are no cycles of
length 4 in the part of the graph modeling the channel. This
approach can also be used when the phase is time-invariant.
In this case, it is pi = 1/C and σ2

e = 2σ2.

B. Flat Fading Channel

We now consider the case of a transmission over a flat
Rayleigh fading channel. The system model is given by (4). In
this case also, it is R = C. Omitting irrelevant constant terms,
the probability density function p(rk|rk−1

k−C , c
k
k−C) which ap-

pears in (13) may be expressed, based on linear prediction
[55]-[58], [28], as5

p(rk|rk−1
k−C , c

k
k−C)

∼ exp

⎧⎨
⎩− 1

σ2
e

∣∣∣∣∣rk − ck

C∑
i=1

pi
rk−i
ck−i

∣∣∣∣∣
2
⎫⎬
⎭ . (27)

As for the third algorithm in Section V-A, parameter C can be
interpreted as the prediction order, {pi}Ci=1 are the prediction
coefficients, and σ2

e represents the mean square prediction
error. Coefficients {pi} and the mean square prediction error
can be computed by solving a Wiener-Hopf linear system, and
in general depend on the considered code sequence.

For PSK signals the prediction coefficients and the mean
square prediction error become independent of the considered

5The case of a different flat fading model such as, for example, the
Nakagami fading [59], can be easily managed by simply changing the
expression of p(rk|rk−1

k−C , ck
k−C).

c0 c1 c2 c4c3 c5

Code constrai nt s, χ (c)

g0,2g0,1 g1,3g1,2 g2,3 g2,4 g3,4p(r0|c0) g3,5 g4,5

Fig. 2. Simplified overall factor graph for PSK signals and C = 2.

sequence. Taking into account that |ck| = 1, after straightfor-
ward manipulations we have

p(rk|rk−1
k−C , c

k
k−C)

∼ exp

{
2
σ2
e

C∑
i=1

Re[pirkr∗k−ic
∗
kck−i]

}

· exp

{
− 2
σ2
e

C∑
i=1

C∑
�=i+1

Re[pip�rk−ir∗k−�c
∗
k−ick−�]

}
.

(28)

Substituting (28) into (13), it can be easily shown, by grouping
the exponential terms which depend on the same argument
rk−ir∗k−�c

∗
k−ick−�, that the resulting (approximated for the

finite dependence assumption only) joint a posteriori pmf of
the information symbols becomes

P (a|r) � χ[c = ηC(a)]
K−1∏
k=0

C∏
i=1

e
2

σ2
e
Re[qirkr

∗
k−ic

∗
kck−i] (29)

where qi = pi −
∑C−i

�=1 p�p�+i. The corresponding FG is
similar to that depicted in Fig. 2 and hence the complexity is
linear in C. This is a fundamental difference with respect to
trellis-based linear predictive receivers [55]-[58], [28], whose
complexity is exponential in the prediction order, and suggests
that by using the tool represented by FGs and SPA new com-
putationally efficient algorithms can be derived. In addition, as
already mentioned, the derived algorithms are also well suited
for a fully parallel implementation of the detector/decoder.

VI. NUMERICAL RESULTS AND COMPARISON WITH

EXISTING ALGORITHMS

In this Section, the performance of the proposed detection
schemes is assessed by computer simulations in terms of
bit error rate (BER) versus Eb/N0, Eb being the received
signal energy per information bit. The considered code is a
(3,6)-regular LDPC code with codewords of length 4000. The
binary PSK (BPSK) modulation is used and a maximum of
200 iterations of the SPA on the overall graph, by using the
flooding schedule, is allowed. A pilot symbol every 19 code
bits is added to avoid ambiguity problems. This corresponds
to a decrease in the effective transmission rate of a factor
19/20, resulting in an increase in the required signal-to-noise
ratio of 0.223 dB which has been introduced artificially in the
curves labeled “perfect channel state information” (CSI) for
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Fig. 3. Performance of the first algorithm in Section V-A.

the sake of comparison. Hence, the gap between the “perfect
CSI” curves, which refer to the case of perfect knowledge of
the channel phase/fading, and the others is uniquely due to the
need for phase/fading estimation/compensation, and not to the
rate decrease due to pilot symbols insertion.

A. Noncoherent Channel

In Fig. 3 and Fig. 4, we show the performance of the first
and third detection algorithm of Section V-A for different
values of C in the case of a noncoherent time-invariant
channel. In Fig. 3, the first algorithm is considered and
compared with the ideal coherent receiver. To demonstrate
that, in this case, the presence of cycles of length 4 does
not affect the convergence of the algorithm, we also show,
for C = 3 and C = 5, the performance obtained when the
detector is implemented by using the BCJR-type algorithm
in [19]. In this case a BCJR step is run, by using the classical
forward-backward schedule, every LDPC decoder iteration.
It can be easily shown that this algorithm can be derived
starting from the proposed graph-based algorithm, introducing
hidden variables representing ck−1

k−C , and changing the adopted
schedule [6]. It can be observed that, although the proposed
algorithm employs a fully parallel schedule and operates on
a graph with girth 4, the performance loss is negligible. The
complexity reduction is also considered to increase the phase
memory C without an increase in complexity. As intuitively
expected, the performance of the ideal coherent receiver is
approached with limited complexity. In fact, a value of Q = 1
is in practice sufficient to attain the performance of the full-
complexity receiver. For the third algorithm of Section V-A,
which for BPSK has a complexity linear in C, similar consid-
erations do not hold. It can be observed that larger values of
C are required with respect to the first algorithm to obtain a
given performance and, in addition, from Fig. 4 it seems that
this algorithm is not able to reach the optimal “perfect CSI”
performance, due to the approximations introduced to obtain
an algorithm with complexity linear in C (see Section V-A).

We now consider (see Fig. 5) a time-varying noncoherent
channel. The phase noise is modeled as a discrete-time Wiener
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Fig. 4. Performance of the third algorithm in Section V-A.
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Fig. 5. Performance in the case of a time-varying channel phase. The value
of C is optimized in each individual case.

process described by

θk = θk−1 + Δk (30)

where {Δk} is a white real Gaussian process with zero mean
and variance σ2

Δ. The performance of the algorithms described
in Section V-A, with the corresponding values of C optimized
by computer simulations, is shown for σΔ = 6, 12, and 16
degrees. All the proposed detection algorithms are very robust,
especially those designed taking into account the channel
statistics. A wide range of possibilities are available to the
designer to choose the desired trade-off between performance
and complexity.

For a Wiener phase model with σΔ = 6 degrees, in Fig. 6
we compare the performance of our best algorithm (in this
case, the algorithm based on linear prediction) with four other
algorithms described in the technical literature. The first and
the second algorithms are based on the canonical distribution
approach in [33]. Namely, in the first case we consider
a discretization of the parameter space which corresponds
to letting the canonical distribution be a weighted sum of



1764 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 5, NO. 7, JULY 2006

10-5

10-4

10-3

10-2

10-1

100

 0.5  1  1.5  2  2.5  3  3.5

B
ER

Eb/N0

perfect CSI
3rd alg.
discret., L=16
Tikhonov
EM-SW
ultra fast, N =20

Fig. 6. Performance in the case of a time-varying channel phase. Comparison
with other schemes.

impulses. This approach has been adopted for Viterbi- and
BCJR-like receivers in [60] and [17], respectively. The channel
phase θk is assumed to take on the following L values: Θ =
{0, 2π/L, . . . , 2π(L − 1)/L}. Obviously, the corresponding
receiver becomes “optimal” (in the sense that it approaches
the performance of the exact SPA) for a sufficiently large
number of discretization levels, at the expenses of an in-
creasing computational complexity. We found that L = 16
values are sufficient to have no performance loss. The second
algorithm is based on a Tikhonov canonical distribution [36],
[37]. This algorithm is computationally very efficient since
a couple of complex parameters only must be updated in a
forward-backward fashion [36], [37]. The third algorithm is
the “ultra fast” algorithm with overlapped windows described
in [23], with the value ofN optimized by computer simulation.
Finally, the fourth one is based on the EM algorithm [24]-
[27], [22]. In order to adapt this algorithm to a time-varying
channel phase, different phase estimates are computed for
each code symbol, taking into account the contribution of the
adjacent symbols belonging to a window whose dimension
is optimized by computer simulation. For this reason the
algorithm is denoted by EM with sliding window (EM-SW).
We found that the optimal window has width of 60 symbols
for the considered phase noise.

In the third and fourth case, the performance loss is due to
the fact that these two algorithms are designed for a different
phase model, i.e., a block-constant phase. The more efficient
algorithm, both in terms of performance and complexity,
is that based on the Tikhonov canonical distribution. This
algorithm is however specifically tailored for the Wiener phase
model and, from a theoretical point of view, could not be
extended to variables {θk} which do not form a Markov chain.
In addition it is not suited for a fully parallel detector/decoder
implementation since a forward-backward schedule is nec-
essary to assure a good performance. On the contrary, the
proposed third algorithm, which exhibits an almost optimal
performance (and the slope of the curve is the same of the
practically optimal approach based on discretization) with
limited complexity, is expected to work well also for different

phase noise models, since it uses the information of the phase
autocorrelation function.

B. Flat Fading Channel

Finally, we consider the performance of the algorithm
described in Section V-B for a flat correlated Rayleigh fading
channel with normalized Doppler rate fDT = 10−2. The
performance in the case of perfect CSI is also considered for
comparison. Obviously, for increasing values of the memory
parameter C there is a performance improvement. A similar
behavior is observed for different values of the normalized
Doppler rate. In addition, due to the linear complexity of
the detection algorithm, it is possible to implement receivers
with values of C higher than those used in [55]-[58], [28] for
Viterbi- or BCJR-based algorithms, thus closely approaching
the performance of the receiver with perfect CSI.

The flat fading channel is a case in which our framework
is favorable with respect to the framework in [33]. In fact,
the explicit representation of the channel parameters into the
FG and a fading model autoregressive of order N (AR(N ))
leads to an algorithm for joint decoding and estimation in
which the fading estimate is obtained through a Kalman
smoother [6], [32]. The value of N = 1 is the only one
considered in the literature on graph-based algorithms [32],
yielding the so-called scalar Kalman smoother which, how-
ever, is not sufficient to attain a good performance, as shown
in Fig. 7. Greater values N should be adopted to obtain
a good performance comparable with that of the proposed
algorithm. In this case, however, the number of parameters to
be recursively updated in the forward and backward recursions
[32] is N + N(N + 1)/2 and therefore the complexity is
quadratic in N [61]. Hence, for a value of N � C, the
proposed algorithm is less complex since its complexity is
linear in C.6 In addition, a fully parallel schedule, such that
adopted by the proposed algorithm, would havily degrade the
performance of the Kalman smoother.

VII. CONCLUSIONS

In this paper, the problem of joint detection and decoding of
LDPC codes transmitted over channels with memory has been
considered. A general method to build a factor graph, taking
into account both the code constraints and the channel behav-
ior has been described. The application of the sum-product
algorithm to this graph allows the (approximate) computation
of the marginal a posteriori probabilities of the information
symbols, thus implementing maximum a posteriori symbol
detection.

The function associated to factor nodes modeling the chan-
nel is shown to be the same basic branch metric used in
the Viterbi algorithm when maximum a posteriori sequence
detection is applied or in the BCJR algorithm implementing
maximum a posteriori symbol detection. This fact suggests
that all the previously proposed solutions for those algorithms

6From a theoretical point of view, at least in the absence of noise, the
inverse of the innovation filter [62] generating an AR(N ) process is a finite
impulse response filter whose coefficients are the prediction coefficients.
Hence the prediction order is C = N . In case of isotropic scattering, the
fading is not exactly AR, and in the considered case noise is present.
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Fig. 7. Performance in the case of a flat correlated Rayleigh fading channel
with fDT = 10−2.

simply extend to LDPC codes and graphical models. We
demonstrated that this approach leads to algorithms with
good performance and acceptable complexity. In addition, in
some significant cases, the complexity of the graph-based
derived algorithms is linear and not exponential in the channel
memory, as in the trellis-based algorithms occurs, thus allow-
ing decoding even for large values of the channel memory
parameter.

The proposed framework is alternative to that proposed
in [33]. It cannot be concluded that one framework is better
than the other since this evaluation must be performed for
the particular considered channel model. Nevertheless, the
computational advantages and the good performance of the
proposed framework, along with the possibility of a fully
parallel implementation represent some important aspects of
clear interest in practical applications.
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