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Abstract— We construct full-rank, rate-n Space-Time Block
Codes (STBC), over any a priori specified signal set for n-
transmit antennas using crossed-product division algebras and
give a sufficient condition for these STBCs to be information
lossless. A class of division algebras for which this sufficient
condition is satisfied is identified. Simulation results are presented
to show that STBCs constructed in this paper perform better
than the best known codes, including those constructed from
cyclic division algebras and also to show that they are very close
to the capacity of the channel with QAM input.

I. INTRODUCTION AND PRELIMINARIES

A Space-Time Block Code (STBC) C over a complex signal
set S, for n transmit antennas, is a finite set of n× l, (n ≤ l)
matrices with entries from S or complex linear combinations
of elements of S and their conjugates. An important perfor-
mance criteria for C, when used for a quasi-static flat fading
channel, is the minimum of ranks of difference of any two
codewords (n × l matrices) of C, called the rank of C . The
STBC C is said to be of full-rank if the rank is n and minimal
delay if n = l. We call C, a rate-R (in complex symbols
per channel use) STBC, where R = 1

l log|S| |C|. Almost all
the STBCs studied in the literature so far are obtained from
designs defined below:

Definition 1: An n×n design in k variables over a subfield
F of the complex field C is a n × n matrix with entries that
are complex linear combinations of the k variables and their
complex conjugates, which are allowed to take values from
the field F . If we restrict the variables to take values from a
finite subset S ⊂ F , then the resulting STBC is said to be a
rate-k/n linear STBC over S.
Designs over the real number field R and over C have been
studied in [1] and the well known Alamouti code [2] is based

on the design

[
x0 x1

−x∗
1 x∗

0

]
which is a rate-1, 2 × 2 design

over C. Designs over subfields of C that are neither R nor C

have been studied in [3]–[8]. From now on, we describe an
STBC C by giving the underlying design and the signal set S.
Notice that the “design along with the signal set” is a compact
way of describing the STBC. Thus Alamouti code is a rate-1
2 × 2 STBC for any complex signal set S.

1This work was partly funded by the DRDO-IISc Program on Mathematical
Engineering through a grant to B.S.Rajan.

Let n and r be the number of transmit and receive antennas
respectively. Then, if H ∈ Cr×n is the channel matrix
whose entries are iid with zero-mean, unit-variance, complex
Gaussian and if the transmitted n×l matrix over l time instants
is S, then we have

X =
√

ρ

n
HS + W (1)

where X, W are the received (r× l) and additive noise (r× l)
matrices respectively and ρ is the signal to noise ratio (SNR)
at each receive antenna. Let the STBC used in the above
equation be of rate R symbols per channel use. Then, we will
have lR independent variables describing the matrix S. Let us
denote them by f1, f2, . . . , flR and let f = [f1, f2, . . . , flR]T .
Suppose that we can rewrite (1) as

x̂ =
√

ρ

n
Ĥf + ŵ (2)

where x̂ and ŵ are the matrices X and W, respectively,
arranged in a single column, by serializing the columns. The
maximum mutual information between the information vector
f and the received vector x̂ is equal to the capacity of the
equivalent channel, Ĥ, given by [9]–[11],

CS(n, r, ρ) =
1
l
EH log2

(
det

(
IrR +

ρ

n
ĤHĤ

))
. (3)

Definition 2: If the maximum mutual information given by
(3) when an STBC C is used, is equal to the capacity of the
channel, then we call C an information lossless STBC [12].
For an information lossless STBC C we call the design used
to describe C, a capacity achieving design.

It was shown in [11], that Alamouti code is the only
complex orthogonal design which achieves capacity for 2
transmit and 1 receive antenna. In the same paper, codes that
have maximum mutual information are constructed by solving
a nonlinear optimization problem using gradient approach.
For less number of transmit and receive antennas, the mutual
information of their codes is very close to the actual channel
capacity, but as the number of antennas increase, the difference
increases. A rate-2, 2 × 2 design was given in [12], which
achieves capacity for 2 transmit and arbitrary number of
receive antennas. Galliou et al. in [13] have constructed
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1√
P



n−1∑
i=0

f (i)
σ0 ti β

(1)
0

n−1∑
i=0

f (i)
µ0,1σ1(ti) β

(2)
0

n−1∑
i=0

f (i)
µ0,2σ2(ti) · · · β

(n−1)
0

n−1∑
i=0

f (i)
µ0,n−1σn−1(ti)

n−1∑
i=0

f (i)
σ1 ti β

(1)
1

n−1∑
i=0

f (i)
µ1,1σ1(ti) β

(2)
1

n−1∑
i=0

f (i)
µ1,2σ2(ti) · · · β

(n−1)
1

n−1∑
i=0

f (i)
µ1,n−1σn−1(ti)

n−1∑
i=0

f (i)
σ2 ti β

(1)
2

n−1∑
i=0

f (i)
µ2,1σ1(ti) β

(2)
2

n−1∑
i=0

f (i)
µ2,2σ2(ti) · · · β

(n−1)
2

n−1∑
i=0

f (i)
µ2,n−1σn−1(ti)

...
...

...
. . .

...
n−1∑
i=0

f (i)
σn−1ti β

(1)
n−1

n−1∑
i=0

f (i)
µn−1,1σ1(ti) β

(2)
n−1

n−1∑
i=0

f (i)
µn−1,2σ2(ti) · · · β

(n−1)
n−1

n−1∑
i=0

f (i)
µn−1,n−1σn−1(ti)


(4)

STBCs using Galois theory and the STBCs constructed are
claimed to be information lossless. In [14], rate-n n×n designs
are constructed using cyclic division algebras for 2, 3 and 4
transmit antennas.

In this paper, we construct rate-n n × n designs over
subfields of C from crossed-product division algebras (defined
in Section II) and also give a sufficient condition for these
designs to be capacity achieving and the resulting STBCs to
be information lossless for arbitrary number of transmit and
receive antennas. Also, we identify a class of division algebras
for which this condition is satisfied. The results presented
in [7], [8] using cyclic division algebras follow as a special
case of the results in this paper. Familiarity with [3]–[8] will
be helpful. However, the presentation in this paper is self-
contained.

II. STBC CONSTRUCTION

An F -division algebra D is a division ring with the center
as the field F . It is well known [15], [16] that vector space
dimension of D over F , known as the degree of D and
denoted as [D : F ], is always a perfect square, say n2.
Let K be a maximal subfield of D. It is well known that
F ⊂ K and that [D : K] = [K : F ] =

√
[D : F ] = n.

(Throughout the paper, we will be considering only those
division algebras which have subfields of C as maximal
subfields.) Assume that K/F is in addition a Galois extension
and let G = {σ0 = 1, σ1, σ2, . . . , σn−1} be the Galois group
(1 is the identity map and the identity element of G) of
K/F . Then, from [15], [16][Noether-Skolem theorem], there
exists a set UG = {uσi

: σi ∈ G} ⊂ D such that σi(k) =
u−1

σi
kuσi

∀ k ∈ K and σi ∈ G. We can always normalize
the set UG such that uσ0 = 1. It can be seen easily that UG

is a basis of D seen as a right K-space, i.e.,

D =
⊕
σi∈G

uσi
K. (5)

In the above form of D, addition and equality are component-
wise. And the multiplication between two elements, say d =∑n−1

i=0 uσi
kσi

and d′ =
∑n−1

j=0 uσj
k′

σj
, is(

n−1∑
i=0

uσi
kσi

)n−1∑
j=0

uσj
k′

σj

 =
n−1∑
l=0

uσl
k′′

σl

where k′′
σl

=
∑

σj∈G φ(σlσ
−1
j , σj)σj(kσlσ

−1
j

)k′
σj

and φ : G×
G �→ K∗ is given by φ(σi, σj) = u−1

σiσj
uσi

uσj
. From the fact

that uσh

(
uσi

uσj

)
= (uσh

uσi
) uσj

we have

φ(σh, σiσj)φ(σi, σj) = φ(σhσi, σj)σj(φ(σh, σi)). (6)

The condition on the elements of G given in (6) is called a
cocycle condition and any map from G×G to K∗ satisfying
this condition is a cocycle. With addition and multiplication as
above, we denote the decomposition of D in (5) as (K,G, φ)
and call D a crossed-product algebra. Let {t0, t1, . . . , tn−1}
be a basis of K seen as a vector space over F . Consider the
set of matrices of the form (4), where µi,j = σiσ

−1
j , β

(j)
i =

φ(σiσ
−1
j , σj) and f

(j)
σi ∈ F for all i, j = 0, 1, . . . , n − 1. The

scaling factor 1√
P

is to normalize the power transmitted by
each antenna per channel use to unity. Under the assumption
that σj preserves |ti| and |φ(σi, σj)| = 1 for all σi, σj ∈ G,

we have P =
√∑n−1

i=0 |ti|2. We have the following theorem:
Theorem 1: With D, K, F , G and φ as above, the set

of matrices of the form as in (4) have the property that the
difference of any two distinct matrices in it is invertible.

Proof: The proof follows from the fact that the set
of matrices of the form as in (4) is the representation of
D = (K,G, φ) seen as a right vector space over K via left
multiplication.
From Theorem 1 it is clear that if we restrict f

(j)
σi to some

finite subset S of F , then all such matrices will constitute a
full-rank, rate-n STBC over S. If G is cyclic with generator σ,
D is called a cyclic division algebra, and the element uσi

can
be chosen so that φ(σi, σj) = 1 if i+j < n and φ(σi, σj) = δ
if i + j ≥ n, for some δ ∈ F ∗ (ui

σuj
σ = ui+j

σi
if i + j < n and

un
σ = δ). The division algebra D is then denoted as (K,σ, δ).
Example 1: Consider the set H of Hamiltonians, given by

H = {a+ib+jc+kd|a, b, c, d ∈ R}, with i2 = j2 = k2 = −1
and ij = k. It is easy to check that H is a division algebra with
R as its center and C = R⊕ jR as a maximal subfield. Since
C/R is a cyclic extension, H is a cyclic division algebra. With
UG = {uσ0 = 1, uσ1 = i} as one of the possible bases, the
cocycle with respect to this basis is φ(σ0, σ0) = φ(σ1, σ0) =
φ(σ0, σ1) = 1 and φ(σ1, σ1) = −1. Then, from Theorem 1,
we have that the difference of any two matrices of the form[

f
(0)
σ0 + jf

(1)
σ0 −(f (0)

σ1 − jf
(1)
σ1 )

f
(0)
σ1 + jf

(1)
σ1 f

(0)
σ0 − jf

(1)
σ0

]
(7)

0-7803-8533-0/04/$20.00 (c) 2004 IEEEIEEE Communications Society 828



where fσi,j ∈ R for i, j = 0, 1 is of full-rank. The STBC
defined with the above matrix is nothing but the well known
Alamouti code.
In general, every division algebra D need not be decomposable
as in (5) and hence need not be a crossed-product algebra.
However, whenever there is a maximal subfield of D Galois
over the center, D can be written as a crossed-product algebra
[15], [16]. Similarly, if K is Galois over F with G as the Ga-
lois group and φ : G×G �→ K∗ is a map satisfying the cocycle
condition (φ(σ, τγ)φ(τ, γ) = φ(στ, γ)γ(φ(σ, τ)) ∀ σ, τ, γ ∈
G), then consider the algebra given by

(K,G, φ) =
⊕
σ∈G

xσK

where equality and addition are component-wise and where
(i) σ(k) = x−1

σ kxσ and (ii) xσxτ = xστφ(σ, τ). This algebra
need not be a division algebra. However, (K,G, φ) is a central
simple algebra with center as F . Thus, if we can prove that
there are no non-zero zero divisors in it, then it is a division
algebra. In this paper, we will give some classes of division
algebras which are crossed-product algebras. The following
theorem of [7], [8] gives a crossed-product algebra which is
a cyclic division algebra and this cyclic division algebra will
be used in obtaining other crossed-product division algebras.

Theorem 2: [7], [8] Let K be a cyclic extension of F
of degree n, with σ as the generator of the Galois group.
Let δ be a transcendental element over F . Then, the algebra
D = (K(δ), σ, δ) is a cyclic division algebra.
The following example illustrates the use of Theorem 2 to
construct STBCs.

Example 2: Let n = 2 and F = Q(j), K = F (
√

j).
Clearly, K is the splitting field of the polynomial x2−j ∈ F [x]
and hence K/F is cyclic of degree 2. Note that x2 − j is
irreducible over F , since its only roots are ±√

j and none of
them is in F . The generator of the Galois group is given by
σ :

√
j �→ −√

j. Now, let δ be any transcendental element
over K. Then, (K(δ), σ, δ) is a cyclic division algebra. Thus,
we have the STBC C given by

1√
2

[
f

(0)
0 + f

(1)
0

√
j δσ(f (0)

1 + f
(1)
1

√
j)

f
(0)
1 + f

(1)
1

√
j σ(f (0)

0 + f
(1)
0

√
j)

]
=

1√
2

[
f

(0)
0 + f

(1)
0

√
j δ(f (0)

1 − f
(1)
1

√
j)

f
(0)
1 + f

(1)
1

√
j (f (0)

0 − f
(1)
0

√
j)

]
(8)

where f
(j)
i ∈ S ⊂ F for i, j = 0, 1 and the scaling factor

1/
√

2 is to ensure that the average power transmitted by
each antenna per channel use is one. We have used i for the
subscript of f instead of σi for the sake of convinience.
We will now generalize Theorem 2.

Theorem 3: Let δ1, δ2, x, and y be algebraically inde-
pendent elements over a field L containing n1-th and n2-th
primitive roots of unity, where n1 and n2 are positive integers.
Let F = L(x, y) and K = F (x1 = x1/n1 , y1 = y1/n2).
Clearly, K(δ1, δ2) is a Galois extension of F (δ1, δ2), with
the Galois group as G = 〈σx, σy〉, where σx : x1 �→ ωn1x1

and acts as identity on the other three variables, and where

similarly, σy : y1 �→ ωn2y1 and acts as identity on the other
three variables. Consider the associative algebra

D = (K(δ1, δ2), G, φ) =
⊕

0≤i<n1
0≤j<n2

ui
σx

uj
σy

K(δ1, δ2)

where uσx
and uσy

are two symbols commuting with each
other and satisfying

un1
σx

= δ1; un2
σy

= δ2

kuσx
= uσx

σx(k) and kuσy
= uσy

σy(k)

for all k ∈ K(δ1, δ2). Then, D is a division algebra.
If S is the signal set of interest, then we will consider
L = Q(S). Obtaining four algebraically independent transcen-
dental elements over L is not a difficult task as according
to Lindemann-Weierstrass Theorem [17], we have that for
any algebraic numbers ai (i = 0, 1, 2, . . .) that are linearly
independent over Q, the numbers eai are algebraically inde-
pendent transcendental numbers. In particular, given any four
real numbers a1, a2, a3 and a4 that are linearly independent
over Q, we could choose x = eja1 , y = eja2 , δ1 = eja3 and
δ2 = eja4 . We will see that having all of them on the unit
circle will give us information lossless STBCs.

An example to show how to obtain STBC from the division
algebra of Theorem 3 follows.

Example 3: Let S be the signal set of interest, say a
QAM signal set. Let n = 4, i.e, we want STBC for four
transmit antennas. Then, we take F = Q(j, x, y), where x
and y are two transcendentals independent over Q(j). Then
K = F (

√
x,

√
y) is a Galois extension of F with the Galois

group as G = 〈σx, σy〉, where σx :
√

x �→ −√
x and

σy :
√

y �→ −√
y. The map σx acts as identity on

√
y and

σy acts as identity on
√

x. Extending the action σx and σy

to K(δ1, δ2) having them act trivially on δ1 and δ2, we have
from Theorem 3, that the algebra

(K(δ1, δ2), G, φ) = K(δ1, δ2) ⊕ uσx
K(δ1, δ2)

⊕uσy
K(δ1, δ2) ⊕ uσx

uσy
K(δ1, δ2)

is a division algebra, where δ1, δ2 are independent transcen-
dentals elements over K. And φ is the cocycle given by

φ(σx, σx)=φ(σxσy, σx)=δ1;φ(σy, σy)=φ(σxσy, σy)=δ2;

φ(σx, σy) = 1; and φ(σxσy, σxσy) = δ1δ2.

Substituting for φ in (4), we have the STBC with codewords
of the form

1√
P


k0,0 δ2σy(k0,1) δ1σx(k1,0) δ1δ2σxσy(k1,1)
k0,1 σy(k0,0) δ1σx(k1,1) δ1σxσy(k1,0)
k1,0 δ2σy(k1,1) σx(k0,0) δ2σxσy(k0,1)
k1,1 σy(k1,0) σx(k0,1) σxσy(k0,0)


(9)

where ki,j = f
(0)
i,j + f

(1)
i,j

√
x + f

(2)
i,j

√
y + f

(3)
i,j

√
xy and f

(l)
i,j ∈

S ⊂ Q(j) ⊂ F . Thus, we have an STBC over a QAM signal
set for 4 transmit antennas.

Theorem 4: Let xi, δi for i = 0, 1, . . . , s − 1, be
algebraically independent transcendental elements over a
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1√
6


k0,0 δ2σx2(k0,2) δ2σ

2
x2

(k0,1) δ1σx1(k1,0) δ1δ2σx1σx2(k1,2) δ1δ2σ
2
x2

σx1(k1,1)
k0,1 σx2(k0,0) δ2σ

2
x2

(k0,2) δ1σx1(k1,1) δ1σx1σx2(k1,0) δ1δ2σ
2
x2

σx1(k1,2)
k0,2 σx2(k0,1) σ2

x2
(k0,0) δ1σx1(k1,2) δ1σx1σx2(k1,1) δ1σ

2
x2

σx1(k1,0)
k1,0 δ2σx2(k1,2) δ2σ

2
x2

(k1,1) σx1(k0,0) δ2σx1σx2(k0,2) δ2σ
2
x2

σx1(k0,1)
k1,1 σx2(k1,0) δ2σ

2
x2

(k1,2) σx1(k0,1) σx1σx2(k0,0) δ2σ
2
x2

σx1(k0,2)
k1,2 σx2(k1,1) σ2

x2
(k1,0) σx1(k0,2) σx1σx2(k0,1) σ2

x2
σx1(k0,0)

 (10)

field L containing ni-th primitive roots of unity, where
ni, i = 0, 1, 2, . . . , s − 1 are positive integers. Let F =
L(x0, x1, . . . , xs−1) and K = F (t0 = x

1/n0
0 , t1 =

x
1/n1
1 , . . . , ts−1 = x

1/ns−1
s−1 ). Clearly, K(δ0, δ1, . . . , δs−1) is a

Galois extension of F (δ0, δ1, . . . , δs−1), with the Galois group
as G =

〈
σx0 , σx1 , · · · , σxs−1

〉
, where σxi

: ti �→ wni
ti and

acts as identity on xj (j �= i) and δj for all 0 ≤ j ≤ s − 1.
Consider the associative algebra

D=(K(δ0, . . . , δs−1), G, φ)=
⊕

m0,...,ms−1

um0
σx0

· · ·ums−1
σxs−1

km0,...,ms−1

where uσxi
for i = 0, 1, . . . , s − 1 are symbols commuting

with each other and satisfying

uni
σxi

= δi and kuσxi
= uσxi

σxi
(k) for i = 0, 1, 2, . . . , s − 1.

Then, D is a division algebra.
Example 4: Let S be the 8-PSK signal set, and n =

6, i.e., we want STBC for 6 transmit antennas. Then, let
F = Q(ω8, ω3, x1, x2) (|xi| = 1), where x1 and x2 are
two transcendental elements independent over F . Then K =
F (

√
x1, 3

√
x2) (n1 = 2, n2 = 3) is a Galois extension

of F (x1, x2) with Galois group as G = 〈σx1 , σx2〉 where
σx1 :

√
x1 �→ −√

x1 and σx2 : 3
√

x2 �→ ω3
3
√

x2. Let δ1, δ2

(|δi| = 1) be two independent transcendental elements over K.
Extending the action of σx1 and σx1 to K(δ1, δ2) by having
them act as identity maps on δ1 and δ2, we have from Theorem
3, that

D = (K(δ1, δ2), G, φ) =
⊕

0≤i≤1

⊕
0≤j≤2

ui
σx1

uj
σx2

K(δ1, δ2)

is a division algebra, where uσx1
and uσx2

are symbols
satisfying

u2
σx1

= δ1 and kuσx1
= uσx1

σx1(k);

u3
σx2

= δ2 and kuσx2
= uσx2

σx2(k).

Proceeding in a similar manner as in Example 3, we
get an STBC with codewords as in (10), where ki,j =
f

(0)
i,j + f

(1)
i,j

3
√

x2 + f
(2)
i,j

3
√

x2
2 + f

(3)
i,j

√
x1 + f

(4)
i,j

3
√

x2
√

x1 +
f

(5)
i,j

3
√

x2
2

√
x1, with f

(l)
i,j ∈ 8 − PSK ⊂ F . Thus, we have

an STBC over the 8-PSK signal set for 6 transmit antennas.

III. MUTUAL INFORMATION

Observe that the matrices displayed in (4),(7), (8), (9) and
(10) are designs over some appropriate subfields of C. In
this section, we obtain a condition for which our designs
from crossed-product division algebras to achieve capacity,
i.e., the STBC’s from thecrossed-product division algebras

are information lossless. We will first obtain the equivalent
channel matrix Ĥ for our STBC’s from division algebras. Let
F be a codeword matrix of the form given in (4). First by
serializing the columns of F, we have

HF =


H 0r×n · · · 0r×n

0r×n H · · · 0r×n

...
...

. . .
...

0r×n 0r×n · · · H


︸ ︷︷ ︸

H


F0

F1

...
Fn−1



where Fj denotes the jth column of the matrix F. The column
vector Fj can be written as

Fj =
1√
P

Φjf (11)

where Φj is a matrix with ith row as[
01×n 01×n · · · 01×n φ(σiσ

−1
j , σj)σj(t) 01×n · · ·01×n

]
where σj(t) is the vector [σj(t0) σj(t1) · · · σj(tn−1)]. The
column at which the non-zero vector φ(σiσ

−1
j , σj)σj(t) starts

depends on the Galois group G of K/F . For instance, if
σiσ

−1
j = σl, then the column at which this non-zero vector

starts is after l − 1 blocks of the vector 01×n, i.e., at nlth

column. Then, (2) becomes

x̂ =
√

ρ

n

1√
P
HΦ︸ ︷︷ ︸

Ĥ

f + ŵ (12)

where Φ = [ΦT
0 ΦT

1 · · · ΦT
n−1]

T . Thus, the equivalent
channel for our STBC’s is 1√

P
HΦ. The following theorem

characterizes the capacity achievability of a design obtained
from a division algebra with the maximal subfield K with the
basis {t0, t1, . . . tn−1} over F .

Theorem 5: The design F, as in (4) constructed using the
crossed-product division algebra D = (K,G, φ) and the basis
{t0, t1, . . . , tn−1}, with the assumptions that |σj(ti)| = |ti|,
|φ(i, j)| = 1 for all 0 ≤ i, j ≤ n − 1, achieves the channel
capacity if

n−1∑
i=0

σj(ti) (σj′(ti))
∗ = 0 if j �= j′. (13)

Using the above theorem, one can prove the following:
Theorem 6: Let K,F, xi, δi be as in Theorem 4 with |xi| =

|δi| = 1 for all 0 ≤ i ≤ s − 1. Then, the STBC arising
from the division algebra D = (K(δ0, δ1, . . . , δs−1), G, φ) is
information lossless.
From the above theorem, it follows that the designs of Exam-
ples 2, 3 and 4 achieve capacity.
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IV. SIMULATION RESULTS

In this section, we present simulation results for 4 transmit
antennas and compare with some of the best known codes in-
cluding the STBCs obtained from cyclic division algebras [7],
[8]. Figure 1 shows the performance of the STBCs obtained
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Fig. 1. Comparison of STBCs with 4 transmit and 4 receive antennas

using the division algebras of this paper and cyclic division
algebras [7], [8]. The division algebra construction-1 curve is
for the STBC of Example 3, with x = ej

√
2, y = ej

√
3 and

δ1 = ej
√

5, δ2 = ej
√

7. These values are chosen arbitrarily. The
division algebra construction-2 curve is for the same STBC
with x = ej

√
2, y = ej

√
3 and δ1 = ej

√
0.23, δ2 = ej

√
0.26. The

values of x and y are chosen arbitrarily, while the values of δ1

and δ2 are chosen to be close to the value of δ = e0.5j in STBC
obtained from cyclic division algebra [7]. We can see that at
10−6 BER, the STBC, where the parameters x, y, δ1 and δ2

are chosen arbitrarily, performs better than the STBC of [13]
by about 0.3 dB, but is poorer than the STBC constructed from
cyclic division in [7] algebra by about 0.4dB. However, the
STBC, for which the x, y are chosen arbitrarily and δ1, δ2 are
chosen close to δ, performs better than the STBC of [13] by
about 0.9 dB, and better than the STBC from cyclic division
algebra by about 0.2dB. We could perform even better by
choosing a better x, y, δ1 and δ2.

V. DISCUSSION

We have constructed rate-n, n × n designs over subfields
of C, using division algebras. And using these designs we
get rate-n, full-rank STBCs over arbitrary finite subsets of
subfields of C. We gave a sufficient condition for which
these designs achieve capacity. We have given two classes of
division algebras and have proved that the designs constructed
from these classes of division algebras achieve capacity under
certain assumptions. Also, we have presented simulation re-
sults for 4 transmit and 4 receive antennas, with a transmission

rate of 8 bits per channel use. The simulation results show that

we perform better than the best known codes and can do even
better if the best codes from division algebras are used. Also,
the simulation results show that with 8 bits per channel use,
we are about 0.5 dB away from the capacity of the channel
with 4-QAM input [19].
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