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Abstract— In this paper we present a family of quasi-
orthogonal space-time codes for correlated MIMO (multi-
input/multi-output) channels using four and eight transmit an-
tennas when only partial channel state information is sent back
to the transmitter. Transmit diversity is improved up to nearly
the optimum diversity value. This high diversity can be exploited
with zero forcing receivers as well as with maximum-likelihood
receivers.

I. INTRODUCTION

Since the pioneering work of Alamouti [1], several orthog-
onal and quasi-orthogonal space-time block codes (STBCs)
have been investigated. It has been shown in [2], that orthog-
onal full-rate design offering full diversity for any arbitrary
complex symbol constellation is limited to the case of two
transmit antennas. Either diversity, data rate or decoding com-
plexity must be sacrificed if the number of transmit antennas
is increased. To preserve the full symbol rate, however with
a small loss in performance, quasi-orthogonal designs have
been proposed [3]. Exploiting channel state information (CSI)
at the transmitter and at the receiver the bit error ratio (BER)
and outage performance is improved compared to the case
when only the receiver has perfect channel knowledge. In
some schemes, low decoding complexity, high diversity and a
higher code rate can be obtained even if only partial channel
information is sent back to the transmitter. An example of
this is given in [4] where the the space time block code is
combined with limited feedback to take advantages of it.

Research on adapting the block code to partial feedback has
been an intensive area of research [5]–[7]. However, mostly
channel models with independent and identical distribution
(i.i.d.) have been used. While this is far from practical setups,
the advantage of such simplification is that much of the
performance can be predicted in closed form mathematical
expressions.

In this paper, STBCs are investigated under correlated
channels as can be expected due to the nature of transmit
and receive antennas and the wireless environment. Since
for general MIMO transmission closed form expressions are
available only for limited cases [8], our work concentrates on
simulations. In particular, we utilize the so called Kronecker
channel model [9] and extended Alamouti STBCs, designed
for four and eight transmit antennas. First we present a
transmission system where only one channel information bit

b per code block is returned to the transmitter. Depending on
the value of b the transmitter switches between two predefined
STBCs and chooses that code matrix which achieves better
error performance. In a second approach, sending back two
information bits per code block to the transmitter, the trans-
mitter can switch between four predefined space-time block
codes achieving still lower BER, nearly to optimum.

The paper is organized as follows. First, an overview of the
Extended Alamouti space-time block codes (EACs) for four
and eight transmit antennas is given. Section III describes
channel adaptive EACs and transmission schemes using one
or two bits fed back per code block. Simulation results for cor-
related channels are presented in Section IV and conclusions
are summarized in Section V.

II. EXTENDED ALAMOUTI CODES FOR FOUR AND EIGHT

TRANSMIT ANTENNAS

A. Extended Alamouti Scheme for four transmit antennas

In the following the extended Alamouti Scheme for four
and eight antennas is explained. In the case of four transmit
antennas, the well-known Alamouti Code [1]

S(2) =
[

s1 s2

s∗2 −s∗1

]
(1)

can be used as a building block to obtain a (4×4) code block
given in Equ.(2) [11]:

S(4) = S(4)
1 =

[
S(2)

1 S(2)
2

S(2)∗
2 −S(2)∗

1

]
=



s1 s2 s3 s4

s∗2 −s∗1 s∗4 −s∗3
s∗3 s∗4 −s∗1 −s∗2
s4 −s3 −s2 s1


 .(2)

S(2)
1 and S(2)

2 correspond to (2 × 2) code blocks defined in
(1). Using one receive antenna during 4 successive time slots
an equivalent (4 × 4) virtual structured channel matrix H(4)

v1

results as:

H(4)
v1=

[
H(2)

v1 H(2)
v2

−H(2)∗
v2 H(2)∗

v1

]
=




h1 h2 h3 h4

−h∗
2 h∗

1 −h∗
4 h∗

3

−h∗
3 −h∗

4 h∗
1 h∗

2

h4 −h3 −h2 h1


 , (3)

where H(2)
v =

[
h1 h2

−h∗
2 h∗

1

]
(4)

is an orthogonal, (2×2) sub matrix. In this way, the extended
Alamouti Scheme simulates a MIMO system with a highly
structured virtual (4 × 4) MIMO channel.
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B. Extended Alamouti Scheme for eight transmit antennas

Extending the Alamouti signalling scheme given in Equ.(2)
once more, an EAC for eight transmit antennas can be ob-
tained. The EAC for eight transmit antennas is now defined
as [10]:

S(8) =

[
S(4)

1 S(4)
5

S(4)∗
5 −S(4)∗

1

]
= (5)




s1 s2 s3 s4

s∗2 −s∗1 s∗4 −s∗3
s∗3 s∗4 −s∗1 −s∗2
s4 −s3 −s2 s1

s∗5 s∗6 s∗7 s∗8
s6 −s5 s8 −s7
s7 s8 −s5 −s6

s∗8 −s∗7 −s∗6 s∗5

s5 s6 s7 s8

s∗6 −s∗5 s∗8 −s∗7
s∗7 s∗8 −s∗5 −s∗6
s8 −s7 −s6 s5

−s∗1 −s∗2 −s∗3 −s∗4
−s2 s1 −s4 s3

−s3 −s4 s1 s2

−s∗4 s∗3 s∗2 −s∗1




,

where we have defined a new block of four symbols S(4)
5

containing the symbols {s5, s6, s7, s8}. With this code block
eight information symbols and their conjugates are transmitted
in various combinations over the eight transmit antennas in
eight successive time slots. As explained before, the system
can be equivalently described as an (8×8) MIMO system with
an (8 × 8) virtual channel matrix H(8)

v resulting in :

H(8)
v =

[
H(4)

v1 H(4)
v5

−H(4)∗
v5 H(4)∗

v1

]
= (6)




h1 h2 h3 h4

−h∗
2 h∗

1 −h∗
4 h∗

3

−h∗
3 −h∗

4 h∗
1 h∗

2

h4 −h3 −h2 h1

−h∗
5 −h∗

6 −h∗
7 −h∗

8

h6 −h5 h8 −h7

h7 h8 −h5 −h6

−h∗
8 h∗

7 h∗
6 −h∗

5

h5 h6 h7 h8

−h∗
6 h∗

5 −h∗
8 h∗

7

−h∗
7 −h∗

8 h∗
5 h∗

6

h8 −h7 −h6 h5

h∗
1 h∗

2 h∗
3 h∗

4

−h2 h1 −h4 h3

−h3 −h4 h1 h2

h∗
4 −h∗

3 −h∗
2 h∗

1




.

Unfortunately, both virtual channel matrices H(4)
v and H(8)

v

are no more orthogonal. However, in the following it will be
shown that H(4)

v and H(8)
v are ”nearly orthogonal”.

III. CHANNEL ADAPTIVE EXTENDED ALAMOUTI

CODES(CAEACS)

A. CAEACs using one feedback bit per code block

Here CAEACs for four transmit antennas using a family
of two EACs are introduced. The corresponding transmission
scheme is shown in Fig. 1. The transmitter selects one of
two very similar EACs S(4)

1 or S(4)
2 to transmit the signal

vector s over the real channel h. The selection algorithm is
controlled by the receiver, that tells the transmitter which one
of the two EACs will achieve a more reliable transmission.
At the receiver this knowledge is gained from the knowledge
of the channel transfer vector h (we assume that the receiver
has perfect channel knowledge). The family of EACs consists
of two (4 × 4) code blocks S(4)

1 and S(4)
2 corresponding

to four transmit antennas and T = 4 time intervals. The
channel transfer vector h = [h1, h2, h3, h4]T may fade in

H

Feedback Information: quant |X |min

S1

(4)

S2

(4)

STBC

y = Gs +v

Receiver

XminXmin

S

v

S

Fig. 1. Scheme with One Feedback Bit per Code Block and Four Transmit
Antennas

any arbitrary way but it is assumed that h remains constant
during the code block of length T. The signal transmission can
be described by

yi = S(4)
i h + v; i = 1, 2, (7)

where yi is the (4×1) vector of received signals. S(4)
i is either

S(4)
1 or S(4)

2 depending on the channel parameter b, defined
below, which is fed back from the receiver. v is the (4 × 1)
noise vector with complex Gaussian components with zero
mean and variance σ2

v . S(4)
1 and S(4)

2 are defined as:

S(4)
1 =




s1 s2 s3 s4

s∗2 −s∗1 s∗4 −s∗3
s∗3 s∗4 −s∗1 −s∗2
s4 −s3 −s2 s1


 ; (8)

S(4)
2 =




−s1 s2 s3 s4

−s∗2 −s∗1 s∗4 −s∗3
−s∗3 s∗4 −s∗1 −s∗2
−s4 −s3 −s2 s1


 . (9)

Equ.(7) can be rewritten as

yi = H(4)
vi s + v; i = 1, 2,

with s = [s1, s2, s3, s4]T and a virtual channel matrix Hvi,
resulting in:

H(4)
v1 =




h1 h2 h3 h4

−h∗
2 h∗

1 −h∗
4 h∗

3

−h∗
3 −h∗

4 h∗
1 h∗

2

h4 −h3 −h2 h1


 , if S(4)

i = S(4)
1 ; (10)

H(4)
v2 =




−h1 h2 h3 h4

−h∗
2 −h∗

1 −h∗
4 h∗

3

−h∗
3 −h∗

4 −h∗
1 h∗

2

h4 −h3 −h2 −h1


 , if S(4)

i = S(4)
2 . (11)

Applying matched filtering at the receiver with H(4)H
vi we

obtain a Grammian matrix [11] of the following form:

G
(4)
i = H

(4)H
vi H

(4)
vi = H

(4)
vi H

(4)H
vi = h2

[
I2 XiJ2

−XiJ2 I2

]
(i = 1, 2) with

I2 =
[

1 0
0 1

]
, J2 =

[
0 1
−1 0

]
, (12)

h2 = |h1|2 + |h2|2 + |h3|2 + |h4|2

and an interference parameter Xi equal to

X1 =
2Re(h1h

∗
4 − h2h

∗
3)

h2
, if S(4)

1 transmitted (13)

X2 =
2Re(−h1h

∗
4 − h2h

∗
3)

h2
, if S(4)

2 transmitted
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It is well known that G(4)
i should approximate a scaled

identity-matrix as far as possible to get full diversity and
optimum BER performance. This means, |Xi| should be as
small as possible. As G(4)

i indicates, our scheme inherently
supports full diversity d = 4, if Xi = 0. Therefore, our
strategy is to transmit that code S(4)

1 or S(4)
2 that minimizes

|Xi|. As it is assumed that the receiver has full information of
the channel state knowing h1 to h4, the receiver can compute
X1 and X2. With this information the receiver returns the
feedback bit b informing the transmitter to select that code
block S(4)

i (i = 1, 2) which leads to the smaller value of Xi.
With this information the transmitter switches between the
EACs S(4)

1 and S(4)
2 such that the resulting Xi will correspond

to min(|X1|, |X2|). The statistics of this interference parameter
are discussed in [10]. In the simulation it has been assumed
that the channel varies slowly such that the delay of the
feedback information can be neglected.

B. CAEACs using two feedback bits per code block

In a quite similar way as discussed in section A we can
switch between four different EACs. In this case, the receiver
must send back two bits per code block to support the trans-
mitter to choose the best code matrix for the actual channel
realization. The family of our EACs consist of S(4)

1 and S(4)
2

already defined in Equ.(8) and Equ.(9), and additionally of
S(4)

3 ,S(4)
4 defined as:

S(4)
3 =




js1 −js2 s3 s4

js∗2 js∗1 s∗4 −s∗3
js∗3 −js∗4 −s∗1 −s∗2
js4 js3 −s2 s1


 (14)

S(4)
4 =




js1 js2 s3 s4

js∗2 −js∗1 s∗4 −s∗3
js∗3 js∗4 −s∗1 −s∗2
js4 −js3 −s2 s1


 . (15)

In case of transmitting S(4)
3 and S(4)

4 , the corresponding virtual
channel matrices H(4)

v result in:

H(4)
v3 =




jh1 −jh2 h3 h4

−jh∗
2 −jh∗

1 −h∗
4 h∗

3

−h∗
3 −h∗

4 −jh∗
1 jh∗

2

h4 −h3 jh2 jh1


 (16)

H(4)
v4 =




jh1 jh2 h3 h4

jh∗
2 −jh∗

1 −h∗
4 h∗

3

−h∗
3 −h∗

4 −jh∗
1 −jh∗

2

h4 −h3 −jh2 jh1


 . (17)

The corresponding Grammian matrices G(4)
i and the channel

gain h can be written as in Equ.(12). In case of S(4)
3 and S(4)

4

the channel dependent interference parameter Xi result now
in:

X3 = −2Im(h1h
∗
4 + h2h

∗
3)

h2
(18)

X4 = −2Im(h1h
∗
4 − h2h

∗
3)

h2
.

In case of 4 distributed EACs the receiver has to calculate X1

to X4 and to inform the transmitter which code S(4)
i leads to

minimal interference. Then the transmitter switches between
the four space-time block codes S(4)

i and chooses that block-
code S(4)

i which leads to an interference parameter Xi with
minimum absolute value.

C. CAEACs for eight transmit antennas

In a similar way, this feedback scheme can be applied to a
family of extended Alamouti codes for eight transmit antennas.
In case of two EACs the codes S(4)

1 given in Equ.(8), S(4)
2 in

Equ.(9) and S(4)
5 given in (5) are used as building blocks for

S(8)
1 and S(8)

2 :

S(8)
1 =

[
S(4)

1 S(4)
5

S(4)∗
5 −S(4)∗

1

]
, S(8)

2 =

[
S(4)

2 S(4)
5

S(4)∗
5 −S(4)∗

2

]
. (19)

The corresponding virtual channel matrices are:

H(8)
v1 =

[
H(4)

v1 H(4)
v5

−H(4)
v5 H(4)∗

v1

]
, H(8)

v2 =

[
H(4)

v2 H(4)
v5

−H(4)
v5 H(4)∗

v2

]

For G(8)
i we get in both cases:

G(8)
i = H(8)H

vi H(8)
vi = h2




I2 UiJ2 −ViJ2 YiI2

−UiJ2 I2 −YiI2 −ViJ2

ViJ2 −YiI2 I2 UiJ2

YiI2 ViJ2 −UiJ2 I2


 ,

where the channel dependent interference parameters Ui, Yi

and Vi can be calculated as:

U1 = 2Re(h1h
∗
4 − h2h

∗
3 + h5h

∗
8 − h6h

∗
7)/h2

Y1 = 2Re(h1h
∗
7 − h3h

∗
5 + h2h

∗
8 − h4h

∗
6)/h2

V1 = 2Re(−h1h
∗
6 + h2h

∗
5 + h4h

∗
7 − h3h

∗
8)/h2

if S(8)
1 is sent, and

U2 = 2Re(−h1h
∗
4 − h2h

∗
3 + h5h

∗
8 − h6h

∗
7)/h2

Y2 = 2Re(−h1h
∗
7 − h3h

∗
5 + h2h

∗
8 − h4h

∗
6)/h2

V2 = 2Re(h1h
∗
6 + h2h

∗
5 + h4h

∗
7 − h3h

∗
8)/h2

if S(8)
2 is sent. I2 and J2 are defined in Equ.(12).

In case of 4 EACs the transmitter can switch between S(8)
1 ,

S(8)
2 , given in Equ.(19), and S(8)

3 and S(8)
4 defined as:

S(8)
3 =

[
S(4)

3 S(4)
5

S(4)∗
5 −S(4)∗

3

]
, S(8)

4 =

[
S(4)

4 S(4)
5

S(4)∗
5 −S(4)∗

4

]
.(20)

The corresponding virtual channels can be calculated as:

H(8)
v3 =

[
H(4)

v3 H(4)
v5

−H(4)∗
v5 H(4)∗

v3

]
, H(8)

v4 =

[
H(4)

v4 H(4)
v5

−H(4)∗
v5 H(4)∗

v4

]
with

U3 = (−2Im(h1h
∗
4 + h2h

∗
3) + 2Re(h5h

∗
8 − h6h

∗
7))/h2

Y3 = (−2Im(h1h
∗
7 − h2h

∗
8) + 2Re(−h3h

∗
5 − h4h

∗
6))/h2

V3 = (−2Im(−h1h
∗
6 − h2h

∗
5) + 2Re(h4h

∗
7 − h3h

∗
8))/h2,
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if S(8)
3 is sent, and in case S(8)

4 is sent:

U4 = (−2Im(h1h
∗
4 − h2h

∗
3) + 2Re(h5h

∗
8 − h6h

∗
7))/h2

Y4 = (−2Im(h1h
∗
7 + h2h

∗
8) + 2Re(−h3h

∗
5 − h4h

∗
6))/h2

V4 = (−2Im(−h1h
∗
6 + h2h

∗
5) + 2Re(h4h

∗
7 − h3h

∗
8))/h2.

In case of eight transmit antennas we have three channel
dependent parameters Ui, Yi and Vi causing cross-signal in-
terference. To obtain full diversity and optimum BER perfor-
mance, all three parameter Ui, Yi and Vi should be as small as
possible. There are different ways to approach this minimum.
The best method we found, relates to minimizing the condition
number of the Grammian G defined as the ratio of the largest
to the smallest eigenvalue (κ = cond(G) = max(λG)

min(λG)
). In [10]

it is shown that the eigenvalues of G can easily be computed
given the triple {U, Y, V }.

IV. SIMULATIONS RESULTS

In our simulations, we have used a QPSK signal constel-
lation. The Rayleigh fading channel has been kept constant
during the transmission of each code block but has faded
independently between successive blocks. At the receiver side,
we have implemented a zero forcing (ZF) receiver and a
maximum likelihood (ML) receiver. The resulting curves are
compared with an ideal two, four and eight path diversity
transmission (no cross interference). The BER results have
been averaged over 2,048 QPSK information symbols and
10,000 realizations of the i.i.d. channel matrix.

Fig. 2 and Fig. 3 show the BER as a function of Eb/N0

applying the ZF and ML receiver, respectively, utilizing 4
transmit antennas. The resulting BER for the (8 × 1) scheme
for both receiver types are depicted in Fig. 4. Obviously
a substantial improvement of the BER can be achieved by
returning only a small amount of channel information to the
transmitter. Typically just one bit of feedback information
improves the diversity considerably, while two bits nearly
preserve full diversity. In the (8 × 1) scheme an ML receiver
achieves the full diversity of d = 8 with only one feed back
bit.

Applying the Kronecker Model [9], we model fading corre-
lation by the following channel matrix:

H =
1√

tr(RT )
R

1
2
RWR

1
2
T (21)

where RR =E{HHH} is the nR × nR receive correlation
matrix, and RT =E{HHH} is the nT × nT transmit cor-
relation matrix. The term W describes a random nR × nT

matrix with independent complex-valued elements with zero
mean and unit variance. The elements of W are assumed to
be Gaussian distributed. The normalization coefficient

tr(RT ) = tr(RR) = E




nR∑
i=1

nT∑
j=1

|hij |2

 (22)

can be interpreted as the channel’s total power transmission
factor. We simulated the (4× 1) MIMO system with RR = I,

RT =




1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ
ρ3 ρ2 ρ 1


 (23)

assuming antenna elements correlated by factors of ρ =
{0.5, 0.75, 0.95}. Figures 5-8 show the simulation results for
ZF and ML receiver when the transmitter switches between 2
and 4 EACs. It turns out that for small correlation up to ρ =
0.5 the feedback information still gives strong improvement as
in the i.i.d case. However with larger correlation the feedback
information does not improve the transmission very much.

−15 −10 −5 0 5 10 15 20 25
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0

B
E

R

ideal 2−path diversity
ZF with one EAC
ZF with two EACs
ZF with four EACs
ideal 4−path diversity

Fig. 2. BER of (4 × 1) extended Alamouti scheme with feedback and ZF
Receiver

−15 −10 −5 0 5 10 15 20 25
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0

B
E

R

ideal 2−path diversity
ML without feedback
ML with one bit feedback
ML with two bits feedback
ideal 4−path diversity

Fig. 3. BER of (4 × 1) extended Alamouti scheme with feedback and ML
Receiver

V. CONCLUSIONS

In this work, we present a MIMO-system, where the trans-
mitter switches between 2 and 4 EACs depending on an
instantaneous channel parameter fed back from the receiver to
the transmitter. We have shown that this simple transmission
scheme improves diversity and BER compared to the case
of an open loop transmission system as far as the channel
correlation is not to high. The simple ZF receiver performs
essentially as well as the ML receiver.
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Fig. 4. BER of (8 × 1) extended Alamouti scheme with feedback, ZF and
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Fig. 5. BER of (4 × 1) extended Alamouti scheme with one bit feedback,
ZF Receiver and fading correlation
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Fig. 6. BER of (4 × 1) extended Alamouti scheme with two bits feedback,
ZF Receiver and fading correlation
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Fig. 7. BER of (4 × 1) extended Alamouti scheme with one bit feedback,
ML Receiver and fading correlation
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Fig. 8. BER of (4 × 1) extended Alamouti scheme with two bits feedback,
ML Receiver and fading correlation
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