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Abstract— In this paper, the cyclic shifts of low Peak
to Average Power Ratio (PAPR) codes used in OFDM
transmission is proposed. They comprise a superclass
of Golay Complementary Codes (GCC) with the same
level of PAPR (viewed by the discrete OFDM symbols).
These codes achieve higher information rate with the
expense of lower error correction capabilities. We have
proposed a framework for constructing these codes
out of GCC. The framework can be applied to obtain
the cyclic shift of any code represented by Boolean
algebraic functions. An efficient transmission scheme is
proposed such that the coding scheme can be switched
between the Golay and cyclic Golay codes, based on a
feedback from the receiver to perform a better trade-
off between the coding rate, and Bit Error Rate (BER).

I. INTRODUCTION

Supporting high data rate and acceptable quality trans-
mission in wireless media, requires high SINR at the
receiver side. However, the power limitation in mobile de-
vices has made this a challenging goal. As a result, efficient
utilization of the power in mobile devices, is an attractive
area of research. OFDM is a parallel data transmission
scheme that has recently attracted lots of interest. One
of the problems of OFDM is its high Peak to Average
Power Ratio (PAPR) [1]. Usually, the transmitters are
constrained to a limited peak power. This in turn reduces
the average power allowed under OFDM. In addition, to
prevent the inter-channel interference among subcarriers,
the transmitter amplifier must operate in a linear region. A
large PAPR may force the amplifier to operate in nonlinear
region. This may reduce the mobile battery lifetime.

The conventional solution to this problem is to use a lin-
ear amplifier or to back-off the operating point of nonlinear
amplifier, both result in efficiency penalty. Another solution
[2] is to simply clip the signal before amplification. This
approach causes performance degradation.

One of the recent and efficient approaches in this area
uses Golay Complementary Sequences (GCS) [3], resulting
in OFDM signals with PAPR at most 2. The correlation
properties of these codewords have made them a suitable
choice for several applications like CDMA systems. The
IEEE802.11 standard committee has adopted Complemen-
tary Code Keying (CCK) signals, that are basically QPSK
GCS, as the physical layer of Wireless LAN IEEE802.11b
standard. Davis and Jedwab in their landmark paper [4]
obtained a large set of length 2m binary Golay Comple-
mentary Pairs (GCP) from certain second order cosets of
the first order Reed-Muller [5] codes. By allowing higher

PAPR, they were able to guarantee higher coding rates.
Paterson [6] generalized Davis and Jedwab’s results and
used q-ary instead of 2h-ary alphabets (with q even). The
authors in [7] found a trade-off between the PAPR, the
data rate and the minimum distance of the codebook. In
other words, given the data rate and minimum distance,
they found a lower bound for the PAPR that increases
with increasing data rate. As a matter of fact, one of
the major drawbacks of exploiting block codes (including
Golay codes) in OFDM, despite their low PAPR, is their
low data rate.

In this paper we will set an upper bound for the PAPR
(3dB) and provide some trade-offs between the coding
rate and the error correction capabilities of the OFDM
code, by developing the concept of cyclic Golay codes.
We will present a method for constructing these codes
out of Golay codes. This construction method is suitable
for generating the cyclic shift of any code described by
means of Boolean functions. We will show that if cyclic
Golay codes are applied to the IFFT block in an OFDM
system, the PAPR defined over discrete symbols is bounded
up by 3dB. We will also present a trade-off between the
coding rate and minimum distance of the code. The error
correction capabilities of these codes are in general lower
than GCC. However, if the signal to noise ratio in an
environment is above a threshold, we might be able to
tolerate lower distance codes for higher rates. We will
present an OFDM transmission system that demonstrates
the trade-off between the bit error rate and the coding
rate. It is worthwhile to mention that although this paper
does not offer a significant rate increase over the GCC, it
outlines a methodology to generate the cyclic shift of any
code, presented by Boolean algebraic functions. We have
provided efficient decoding scheme for these codes in [8].

The remainder of this paper is organized as follows:
Section II outlines the definition of cyclic Golay codes
and their properties. In Sections III and IV, we’ll find con-
struction method for binary and non-binary cyclic Golay
codes out of GCC. In Section V, we will demonstrate an
OFDM transmission system using these codes and present
some simulation results and finally, Section VI concludes
the paper. II. CYCLIC GOLAY SEQUENCES

The instantaneous envelope power of an N -tones OFDM
signal is

px(t) =
N−1∑
i=0

N−1∑
u=0

x[i]x∗[u] exp[j2π(i − u)∆ft], (1)

where x is an N -valued complex sequence applied to IFFT
block, a∗ denotes the complex conjugate of the complex
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number a, j =
√−1, and ∆f is the frequency separation

between OFDM subcarriers. The actual peak of OFDM
time domain signal depends on the pulse shaping and the
low-pass filter we use after the IFFT block. It is obvious
that this peak is in general different from the peak of the
samples of the OFDM signal at the multiples of 1

N∆f .
However, there is a direct relation between the peak of the
continuous OFDM signal and the maximum of the discrete
OFDM symbols sampled at the multiples of 1

N∆f [9]. By
some proper time shaping, we can consider the PAPR of
the discrete sequence obtained after IFFT operation, as a
measure of the PAPR of the OFDM signal. In the sequel,
we define the PAPR of a codeword x to be

PAPR(x) =
1
Px

max
k

[
N−1∑
i=0

x[i]x∗[u]e
j2π(i−u)k

N

]
,

where Px = ‖x‖2 is the energy of the codeword x.
By defining the auto-correlation of an N -valued complex

sequence x with replacement l to be Al(x) =
N−l−1∑

i=0

x[i +

l]x∗[i], the power of the kth OFDM channel symbol can
be restated as:

px[k] = A0(x) +
N−1∑
|l|=1

Al(x)wl
k, (2)

where wk � e
j2πk

N is the N th root of unity. Note that
A0(x) is actually the same as Px, the power of the code x,
and by Parseval equation, this is the same as the average
power of OFDM channel symbols.

Definition 2.1: Two N -valued complex sequences x and
y are called Golay Complementary Pairs (GCP) if Al(x)+
Al(y) = 0, ∀l �= 0. Each of the sequences x and y is
called Golay complementary sequence.
Since the power of each channel symbol is non-negative,
if the sequences x and y are GCP and have the same
power (A0(x) = A0(y)), it is straightforward to see that
PAPR(x) ≤ 2 = 3dB and PAPR(y) ≤ 3dB. Conse-
quently, if we choose the codewords from a set of Golay
sequences, the PAPR is bounded up by 3dB.

For simplicity, we will denote ”k mod n” by ”k % n”
in the following definition and what comes hereafter.

Definition 2.2: The cyclic auto-correlation of an N -
valued complex sequence x, with nonzero replacement l,

is defined as CAl(x) =
N−1∑
i=0

x∗[i]x[(i + l) % N ].

Using this definition, one can see that

CAl(x) = Al(x) + A∗
N−l(x). (3)

Definition 2.3: Two N -valued complex sequences x and
y are called cyclic Golay complementary pairs if CAl(x)+
CAl(y) = 0, ∀l �= 0. Each of the sequences x and y is
called Cyclic Golay Complementary Sequence (CGCS).
Using (3), it is obvious that if two sequences are Golay
pairs, they are cyclic Golay pairs, too. The following
theorem is easily followed from (2) and (3):

Theorem 2.1: The PAPR (viewed by discrete symbols)
of cyclic Golay sequences is upper bounded by 3dB.
Theorem 2.1 states that the number of codewords achieving
a PAPR at most equal to 3dB (in discrete domain), is more

than just the number of Golay sequences. This is translated
to higher coding rates.

If x is an N -sized sequence, we denote its cyclic l-shift
by xl (0 ≤ l ≤ N − 1). The kth element of xl is given by
xl[k] = x[(k + l) % N ].

Lemma 2.1: The property of being cyclic Golay is pre-
served under any cyclic l-shift of a sequence with size N.
Thus, if two sequences are cyclic Golay sequences, their
shifted version by any replacement l are cyclic Golay, too.

Theorem 2.1 can be generalized for non-Golay se-
quences in the following way:

Theorem 2.2: The PAPR achieved by any cyclic shifted
versions of a sequence x is the same as the PAPR achieved
by the sequence x itself.

In [10], we have listed several transformations that when
performed on Golay pairs, the resultant pairs are still
GCP. These transformation are reflection with respect to
the origin, with respect to both axes, with respect to the
bisectors of all regions, and the rotation of one or both
sequences. The same was true for the concatenation and
interleaving of Golay pairs, reversing each sequence in
Golay pairs, and alternatively multiplying the elements of
each sequence by −1. Considering equation (3), we can
deduce that the property of being cyclic Golay pairs is
invariant under each of these transformations.

III. CONSTRUCTION OF BINARY CYCLIC GOLAY

CODES
Let’s correspond a generalized Boolean function of m

variables, f(x1, x2, ..., xm) : Zm
2 −→ Z2h , to a sequence

f of length 2m, by listing the values taken by the function
f as (x1, x2, ..., xm) ranges over all its 2m combinations
in lexicographic order. In other words, if (i1, i2, ..., im) is

the binary representation of integer i, i.e. i =
m∑

k=1

ik2k−1,

the ith element of the sequence f is f(i1, i2, ..., im).
We assume that the elements of the codeword to be

transmitted using an OFDM system, are chosen from an
equal-energy constellation like QPSK or 8-PSK. Therefore,
without loss of generality, the elements of a codeword y
can be written as y[i] = exp( j2π

2h ai), where ai is chosen
from a 2h-ary alphabet, Z2h . As a result, constructing
the sequence a, will provide the sequence y. Using these
notations, the main result of [4] states that if

f =

[
2h−1

m−1∑
k=1

xπ(k)xπ(k+1) +
m∑

k=1

ckxk + c

]
, (4)

where additions are in modula 2h, π is a permutation of
the symbols {1, 2, ...,m}, and c, ck ∈ Z2h , the sequences
f and

(
f + 2h−1xπ(1) + c′ mod 2h

)
comprise a Golay

pair of length 2m over Z2h , for any c′ ∈ Z2h .
For h ≥ 1 and 0 ≤ r ≤ m, the rth order linear Reed-

Muller code of length 2m over Z2h , RM2h(r,m), is
defined to be generated by all monomials in the xi of
degree at most r. Using this definition, the authors in
[4] have restated their main result as: Each of the m!

2
cosets of RM2h(1,m) having a coset representation of

the form 2h−1
m−1∑
k=1

xπ(k)xπ(k+1) comprises 2h(m+1) Golay
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Shifts/Coset Rep. x1x2 + x2x3 x1x3 + x2x3 x1x3 + x1x2

l = 1 c3 = 0 & (c2 = 1 or c2 = 3) c3 = 0 & (c2 = 0 or c2 = 2)

c3 = 2 & (c2 = 0 or c2 = 2) c3 = 2 & (c2 = 1 or c2 = 3)

l = 2 c3%2 = 0 c3%2 = 1

l = 3 c3 = 0 & (c2 = 0 or c2 = 2) c3 = 0 & (c2 = 1 or c2 = 3)

c3 = 2 & (c2 = 1 or c2 = 3) c3 = 2 & (c2 = 0 or c2 = 2)

l = 4 all
l = 5 c3 = 0 & (c2 = 1 or c2 = 3) c3 = 0 & (c2 = 0 or c2 = 2)

c3 = 2 & (c2 = 0 or c2 = 2) c3 = 2 & (c2 = 1 or c2 = 3)

l = 6 c3%2 = 0 c3%2 = 1

l = 7 c3 = 0 & (c2 = 0 or c2 = 2) c3 = 0 & (c2 = 1 or c2 = 3)

c3 = 2 & (c2 = 1 or c2 = 3) c3 = 2 & (c2 = 0 or c2 = 2)

# of non-Golay 1024 1024 1024
TABLE I

LIST OF REPEATED GOLAY SEQUENCES UNDER CYCLIC SHIFTS FOR m = 3 AND h = 2

sequences over Z2h of length 2m, where π is a permutation
of the symbols {1, 2, ...,m}.

By varying ck’s and c over Z2h in (4), this the-
orem generates m!

2 2h(m+1) Golay sequences of length
2m. So, the coding rate of Davis-Jedwab construction is
h(m+1)+log2(

m!
2 )

h2m . If we start from one of the their Golay
sequences with size 2m over Z2h , and make a cyclic
shift, the resultant sequence is cyclic Golay. This construc-
tion can create 2m cyclic Golay sequences out of each
Golay sequence by l-shifting the original sequence with
0 ≤ l ≤ 2m − 1. However, some of these newly generated
sequences are also part of original Golay sequences that
can be created by different values of ck’s and c in (4).
As a result, we need to carefully develop a structure for
constructing the cyclic Golay sequences. In what follows,
we will design a framework for obtaining the cyclic shifts
of a sequence, presented by Boolean functions. To this end,
we start from the field Z2 with the addition defined modula
2. We define the basis codeword {xn | n = 1 . . . m} to have
1 in positions k where k %2n ≥ 2n−1 and zero otherwise.
By considering the relation (t % ab) % b = t % b, we can
represent the cyclic l-shift of xn as:

xl
n[k] =

{
0 if (k + l) % 2n < 2n−1,

1 if (k + l) % 2n ≥ 2n−1.
(5)

In the sequel, all additions are performed modula 2
and all codeword products are Hadamard product, unless
otherwise stated. After some mathematical manipulations,
the following Lemma is proved:

Lemma 3.1: The cyclic 2k-shift of a basis codeword xn,
when n > 1 and 0 ≤ k < n − 1, is

x2k

n = xn +
n−1∏

i=k+1

xi. (6)

Moreover, x2n−1

n = 1 + xn, and x2k

n = xn for k ≥ n ≥ 0
and all n .

Lemma 3.2: The following relations hold:

• For 2n−1 ≤ l%2n, the l-shift of xn is xl
n = 1 +

xl%2n−1

n .
• For l ≥ 2n, the l-shift of xn is xl

n = xl%2n

n .
• If l = 2a + 2b with n − 1 > a > b we have

xl
n = xn +

(
xa+1 +

a+1∏
i=b+1

xi +
a∏

i=b+1

xi

)
yn, (7)

where yn is 1 for a = n−2 and
n−1∏

i=a+2

xi for a < n−2.

Also, a Boolean function can be found for xl
n with l =

2a + b, by replacing each xn′ in xb
n, by xn′ +

n′−1∏
i=a+1

xi.

The following lemma, states the counterpart of Lemma
3.1 for right cyclic shifts.

Lemma 3.3: For n ≥ 1 and 0 ≤ k < n − 1, the right
cyclic 2k-shift of a basis codeword xn, is

x−2k

n = xn +
n−1∏

i=k+1

(1 + xi). (8)

Also, x−2n−1

n = 1 + xn and x−2k

n = xn for k ≥ n ≥ 0.
Finally, the following Lemma relates the left cyclic (2n−1−
l)-shift of xn to the right cyclic l-shift of the basis
codewords.

Lemma 3.4: For 1 ≤ l < 2n−1, the left cyclic (2n−1 −
l)-shift of xn, is

x2n−1−l
n = 1 + x−l

n .

IV. CYCLIC SHIFT OF NON-BINARY CODES

If the Boolean functions are defined over Z2h , there
is an ambiguity over modula-2 addition and modula-2h

additions. This ambiguity can be avoided by using the
relation c [(x + y) % 2] = (cx + cy − 2cxy) % 2h, where
c is a constant number defined over Z2h and x and y are
two binary codewords. By induction, we can generalize
this relation for m sequences fi (i = 1, . . . m).

As an application of this framework, we will construct
the cyclic Golay code of size 8 over Z4. The Golay coset
representations of RM4(1, 3) in RM4(2, 3), shown in (4),
are 2(x1x2 +x2x3), 2(x1x3 +x2x3), and 2(x1x2 +x1x3).
Table I shows the Golay sequences that are repeated under
cyclic shifts. The sequences are categorized based on the
coset representative and the coefficient values from Z4.
These values are obtained by applying the above mentioned
framework to each basis codeword. As an example, when
the coset representative is 2(x1x2+x2x3), the requirements
for the 3rd cyclic shift of the Golay sequence represented
in (4) to be Golay (and therefore the shift does not create
a new codeword) are

• (2c3 = 0 mod 4) to delete the term x1x2x3,
• One of the three terms ” − c3 − 2c2” or ”2 − 2c3”

or ”2 − 2c3” must be equal to zero, to create a valid
second order coset.

• The other two nonzero terms must be equal to 2.
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Coeff. / Coset x1x2 + x2x3 x1x3 + x2x3 x1x3 + x1x2

c3 = 0; c2%2 = 0 None l = 1, 2, 3 l = 2, 3

c3 = 0; c2%2 = 1 None l = 2 l = 1, 2

c3 = 1 l = 1, 2, 3, 5, 6, 7 None l = 1, 3, 5, 7

c3 = 2; c2%2 = 0 None l = 2 None
c3 = 2; c2%2 = 1 None l = 1, 2, 3 None

c3 = 3 None
TABLE II

LIST OF NON-REPEATED CYCLIC SHIFTS ON GOLAY SEQUENCES.

These requirements are translated into c3%2 = 0. More-
over, if c3 = 0 then c2%2 = 0, and if c3 = 2
then c2%2 = 1. Therefore, out of 256 Golay sequences
generated by this coset, the 3rd cyclic shift of only 64
sequences are repetitions of Golay codes. The last row of
Table I, shows the total number of cyclic Golay sequences
created by each cost representative that are not Golay.
Considering all 3 cosets, the cyclic shifts generate 3072
new sequences. However, some of the newly generated
sequences by a coset representative can be created by some
other cosets with different values of ck’s. For example,
when c3 = 3, all of the sequences generated by cyclic
shifts of Golay codewords are similar to the ones created
by c3 = 1, with different values of c1, c2, and c, and
different coset representatives. To find this out, we need
to create a table containing all of the coefficients for each
coset representatives, and each shift, for different values
of c3. By deleting the similar columns, we can find the
non-repeated cyclic Golay sequences. We have performed
such inspection for m = 3 and h = 2. The result shows
that 1024 of these cyclic Golay sequences are non-repeated
and can be generated from Golay sequences, using the
procedure presented in Table II.

The rate of size 8 Golay sequences over Z4 is
log2( 3!

2 22(3+1))
2×23 = 0.599, while the rate of size 8 cyclic

Golay sequences over Z4 is
log2(1024+ 3!

2 22(3+1))
2×23 = 0.690.

The cyclic Golay code we generated, is clearly non-
linear. Therefore, we cannot define a minimal generator
polynomial for generating this code. It is known that a
linear cyclic code created by polynomials cannot be of size
2m and our code is of size 2m. Massey [11] has introduced
cyclic Reed-Muller codes by puncturing the first column
of the generator matrix and reordering the first order rows
to create m-sequences. The size of the codewords in this
case is 2m − 1.

The major drawback of cyclic Golay code is the low
Hamming and Lee distances of the code. It is proved in
[5] and [4] that the Hamming distance and Lee distance of
the RM2h(r,m) are both 2m−r. Therefore, the Hamming
and Lee distance of the code defined in (4) are both 2m−2.
The cyclic Golay code defined in this section, is in general
a subset of RM2h(m,m), and therefor, in general has a
very low distance. However, by reducing the coding rate,
we can increase the distances, while maintaining the same
upper bound for the PAPR. This trade-off can be explained
by an example. Take m = 4, and h = 2. If we start from (4)
with the coset representation x1x2 +x2x3 +x3x4, and find
the Boolean function representation of the cyclic 1-shift of

each codeword, by avoiding c4%2 = 1, the resulting code
is in RM4(3, 4), instead of RM4(4, 4).

V. SYSTEM CONFIGURATION AND SIMULATION

For the comparison of bit error rate, we used an OFDM
system with m = 3 and 4, corresponding to 8 and 16
subchannels. A white Gaussian noise with variance 0.5 per
dimension was assumed at each subchannel. The symbols
were chosen from Z4, corresponding to h = 2. The bit
error rate versus SNR for Golay and cyclic Golay schemes
is shown in Fig. 1.a for AWGN channels. It is obvious
that the cyclic Golay codes with m = 4, order 4 and m =
3, order 3 have the worst bit error rates, and the Golay
code with m = 4 has the best performance. The second
order cyclic Golay code with m = 4 performs better than
other codes. As the difference between the dimension of
the code and the order is decreased, the bit error rate of
the code increases. This is attributed to the fact that the
cyclic Golay code is a subset of RM2h(r,m). Note that,
the difference between the BER’s are better observed at
high SNRs. Fig. 1.b shows the rate we obtained for these
codes. The following facts can be seen from this figure.
First, the code with m = 4, normally have lower rate than
the cases with m = 3. Second, for each dimension, the
pure Golay code has the worst coding rate. Third, as the
difference between the dimension and the order of cyclic
Golay code decreases, the code can achieve better coding
rate. Finally, although the cyclic Golay code can result in
different rates at different OFDM block, the rate of the
code in a long frame size is almost constant for all values
of SNR. These two figures show the trade-off between the
coding rate and the coding distance, while the PAPR is
bounded up to 3dB.

The results for the 2-path fading channels is shown
in Fig. 2.a. Both paths have a Raleigh envelope and the
delay equal to the OFDM symbol duration divided by
the number of subchannels. We have also considered the
same white Gaussian noise as in Fig. 1 in these figures. In
this figure we assume that the receiver knows the channel
characteristics. We can observe the same trend as in Fig.
1.a, of course with lower bit error rates. We saw that
the cyclic Golay code can perform higher coding rate at
the expense of lower distance. However, in high SINR
environment, we might be able to tolerate lower distance
codes. We can use an OFDM system, with adaptive coding
scheme. If the SINR is above a threshold, we use cyclic
Golay codes at the transmitter to transmit higher data rates.
If the SINR is below the threshold, we switch to the Golay
codes having better error correcting property, but lower
rates. The threshold can be chosen according to the upper
bound of BER we can tolerate. We use this system along
with m = 4, for our simulation purposes in Figs. 3.a and
3.b. We assume that the SNR of the received signal changes
randomly according to a uniform distribution. Notice that,
the x-axis in these figures shows the SNR threshold on
which we switch the coding scheme, not the actual SNR.
The actual SNR is changed from one OFDM block to
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another, according to a uniform distribution. When the
threshold is set to the lowest value, the Golay codes are
never used, and therefore we expect poor BER performance
with a better coding rate. As the threshold becomes larger,
the cyclic Golay code is less used and therefore the BER
tends to be lower. When the SNR is set at the highest value,
we use the Golay code, all the time.

Fig. 2.b shows the changes in bit error rate versus the
coding rates for m = 4, when the SNR is kept constant.
The figure is in agreement with our expectation that for a
fixed SNR, as the rate increases the code performs higher
bit error rate. For example, by fixing the SNR at 6dB, as
the coding rate goes from 0.40625 to 0.50358, the bit error
rate is increased from 5.4 × 10−4 to 6.7 × 10−2.

VI. CONCLUSION

We have introduced the concept of cyclic Golay codes
and shown that, with appropriate time shaping, they main-
tain the same level of PAPR as the Golay codes. Moreover,
we have shown that the set of cyclic Golay codes is a super-
set of Golay codes and therefore results in higher coding
rate. The increase in the coding rate is about 22% for a
system with 16 tones. We have designed a construction
method to find the cyclic shift of any code represented by
Boolean algebraic forms. The cyclic shifts of the Golay
second order cosets of the first order Reed-Muller codes
generated by our construction has a low Hamming and Lee
distance. However, we have introduced a trade-off between
the coding rate and the distance of the code. An OFDM
system, with a SNR threshold is introduced that according
to the SNR of the received signal switches between Golay
code, and its cyclic shifts with different orders. We have
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Fig. 3. (a) BER (b) Coding rate vs. SNR threshold or AWGN channels, when
m = 4

demonstrated (Figs. 3.a and 3.b) that by increasing the
threshold, both the BER and the coding rate are decreased.

REFERENCES

[1] R. van Nee, “OFDM Codes for Peak-to-Average Power Reduction
and Error Correction,” Proc. of IEEE Globecom’96, pp. 740–744,
1996.

[2] X. Li and L. J. Cimini, “Effects of Clipping and Filtering on the
Performance of OFDM,” Proc. of IEEE Vehicular. Tech. Conf.,
pp. 1634–1638, May 1997.

[3] M. J. E. Golay, “Complementary Series,” IRE Trans. on Information
Theory, pp. 82–87, Apr. 1961.

[4] J. A. Davis and J. Jedwab, “Peak-to-Mean Power Control in OFDM,
Golay Complementary Sequences, and Reed-Muller Codes.,” IEEE
Trans. on Information Theory, vol. 45, pp. 2397–2417, Nov. 1999.

[5] S. B. Wicker, Error Control Systems for Digital Communication
and Storage. Prentice Hall, New Jersey, 1995.

[6] K. G. Paterson, “Generalized Reed-Muller Codes and Power Control
in OFDM Modulation,” IEEE Trans. on Comm., vol. 46, pp. 104–
120, Jan. 2000.

[7] K. G. Paterson and V. Tarokh, “On the Existence and Construction
of Good Codes with Low Peak-to-Average Power Ratios,” IEEE
Trans. on Information Theory, vol. 46, pp. 1974–1987, 2000.

[8] M. Olfat and K. J. R. Liu, “Low Peak to Average Power Ratio
Cyclic Golay Sequences in OFDM systems,” submitted to IEEE
Trans. on Information Theory, June 2003.

[9] M. Sharif, M. G. Alkhansari, and B. H. Khalaj, “On the peak-to-
average power of ofdm signals based on oversampling,” IEEE Trans.
on Comm., vol. 51, pp. 72–78, Jan. 2003.

[10] M. Olfat and K. J. R. Liu, “Recursive Construction of 16-QAM
Super-Golay Codes for OFDM systems,” to appear in the Proc. of
IEEE Int’l. Conf. on Comm., ICC, 2003.

[11] J. L. Massey, “The Ubiquity of Reed-Muller Codes,” Applied
Algebra, Algebraic Algorithms and Error-Correcting Codes (Eds.
S. Boztas and I. E. Shparlinski), New York, Springer, no. 2227,
pp. 1–12, 2001.

IEEE Communications Society 0-7803-8533-0/04/$20.00 (c) 2004 IEEE997


	footer1: 


