
IP Packet Forwarding Based on

Comb Extraction Scheme

Zhen Xu]1[, Gerard Damm]2[, Ioannis Lambadaris]3[, and Yiqiang Q. Zhao]1[
]1[School of Mathematics and Statistics, Carleton University, Ottawa, Canada, {zxu, zhao}@math.carleton.ca

]2[Alcatel, Ottawa, Canada, Gerard.Damm@alcatel.com
]3[Department of System and Engineering, Carleton University, Ottawa, Canada, ioannis@sce.carleton.ca

Abstract—In this paper, we present an efficient IP packet
forwarding technique and its architecture. One forwarding
table is decomposed into two balanced smaller sub-forwarding
tables by a novel splitting rule. Therefore, an IP lookup can be
converted into a pair of small sub-lookups. The output of an
incoming packet can be determined by comparing the
information, attached to the matching sub-prefixes of both sub-
lookups. The sub-lookups and information comparison can
perform in parallel. Our approach not only speeds up the Best
Matching Prefix (BMP) search, but also reduces storage space
at the same time.

Keywords-IP address lookup

I. INTRODUCTION
The major function of a router is to forward packets.

Since the Internet traffic increases rapidly, speeding up the
link rate is required in order to provide good service [1]. It is
difficult to make the performance of a router keep up with
this increasing demand. In particular, the address lookup
operation is a major problem.

Many lookup algorithms create a data structure that
takes advantage of the binary search tree method, which is
among the mature search algorithms [2]. The binary trie [3]
method and its variations including Patricia trie [4], multibit
trie [5] and LC trie [6] have been presented in the literature.
Some heuristic approaches were designed to facilitate the
use of binary trees [2], such as search on prefix range [7,8]
and search on prefix length [9]. Unfortunately, these
approaches usually suffer from large storage requirements
or poor updating features. In addition, some hardware-based
solutions are proposed by using a large DRAM for the entire
forwarding table [10]. Using CAM is also presented in [11].
A good survey of these methods can be found in [12].

The main contribution of this paper is two-fold. First, a
forwarding table is decomposed into a pair of balanced sub-
tables by using the Comb Extraction Scheme (CES). The
two independent search processes can work simultaneously.
In order to determine the output port the packet should be
sent to, the comparison of information pairs, attached to
those matching sub-prefixes in both sub-tables, needs to be
executed in the end. CES can reduce storage space, speed up
search time, alleviate distribution dependent problems, and

minimize information comparison load. Secondly, we
propose an efficient architecture to realize this methodology.
The flexibility of this architecture allows IP address lookup
to be easily integrated within routing SoCs and generic
network packet processing units.

TABLE I. A SAMPLE FORWARDING TABLE

Index Prefix Len Port
1 11000110100110* 14 1
2 11000110011* 11 1
3 11000110010* 11 1
4 1101011100001011* 16 1
1 1100011001* 10 2
2 011110000011* 12 2
3 11000110100* 11 2
4 10001010110011* 14 2
5 100010101011* 12 2
6 1110111101* 10 2
7 01111000101* 11 2
8 0111100011100* 13 2
1 1100011010011010* 16 3
2 1100011001110* 13 3
3 1000101011001* 13 3
4 01111000001110* 14 3

In this paper, we focus on the unicast (single-source,
single-destination) routing of backbone routers. In an IP
forwarding table, an entry usually has this structure:
<DesPrx, PrxLen, ForInf>. DesPrx is the Destination Prefix,
PrxLen is the length of the prefix, and ForInf usually is a
next hop address or an output port number, respectively.
Suppose },,,{ 21 MpppP ⋅⋅⋅= is the set of M prefixes with N
outputs recognized by a router. When examining the
forwarding tables carefully, we can find that the number of
distinct next hops in a routing table is very small, comparing
with the tens of thousands of prefixes. It is shown clearly in
sample Table 1 (only 3 ports for 16 entries). All the entries
are sorted in terms of the ports, and the index is a number to
distinguish between entries sharing the same port.

IEEE Communications Society 0-7803-8533-0/04/$20.00 (c) 2004 IEEE1065

II. NEW DATA STRUCTURE
For IPv4, an IP address A is 32-bit long. It can be

decomposed into two 16-bit long sub-sequences by the
following strategy: From the left-most bit to the right-most
bit, all the bits in the odd positions are extracted to form
sub-sequence α , and all the bits in the even positions are
extracted to form sub-sequence β . We call this splitting
approach the Comb Extraction Scheme (CES). For example,
consider the following IP address in binary bits, 10100001
00110110 11010000 11101001. After the decomposition, α
and β will be 1100010110001110 and 0001011011001001,
respectively. Similarly, a prefix also can be decomposed
into two sub- sub-prefixes α and β . Both of them end by
the wildcard *.

TABLE II. SUB-FORWARDING OF TABLE 1 (EXTRACTING BITS IN ODD
POSITIONS)

Index Sub-Prefix Len Port
Indicator

Forwarding
Information

1 011001* 6 010 2(2)
2 0110011* 7 001 3(4)
3 011011* 6 010 2(7)
4 0110110* 7 010 2(8)
5 10010* 5 010 2(1)
6 100100* 6 100 1(3)
7 10010011* 8 100 1(4)
8 100101* 6 100 1(2)
9 1001010* 7 001 3(2)
10 100110* 6 010 2(3)
11 1001101* 7 100 1(1)
12 10011011* 8 001 3(1)
13 1011101* 7 011 2(4), 3(3)
14 101111* 6 010 2(5)
15 11110* 5 010 2(6)

TABLE III. SUB-FORWARDING OF TABLE 1 (EXTRACTING BITS IN EVEN
POSITIONS)

Sub-Prefix Len Port
Indicator

Forwarding
Information

1 000001* 6 010 2(5)
2 000010* 6 001 3(3)
3 0000101* 7 010 2(4)
4 10100* 5 010 2(3)
5 1010010* 7 100 1(1)
6 10100100* 8 001 3(1)
7 10101* 5 110 2(1), 1(2), 1(3)
8 101011* 6 010 3(2)
9 10111* 5 010 2(6)
10 11000* 5 010 2(7)
11 110001* 6 010 2(2)
12 1100010* 7 001 3(4)
13 110010* 6 010 2(8)
14 11110001* 8 100 1(4)

Hence, a forwarding table can be converted into two
extended sub-forwarding tables. Table 2 and Table 3 are the
examples of the pair of sub-forwarding tables of Table 1.
Each sub-entry has the same structure <sub-prefix, length,
port-indicator, forwarding information>.

In Table 2 and Table 3, the Forwarding Information not
only contains the information of the port number, but also

contains the information of the corresponding index based
on the port in Table 1. It is composed of a set of forwarding
units a(b), which implies that, in Table 1, the original prefix
of this sub-prefix is forwarded to port a, and the
corresponding index is b. In general, the forwarding
information of each sub-entry in a sub-table consists of
several forwarding units. For example, the sub-prefix of the
7th entry in Table 3 is 10101*, which collects the
information of the original prefixes whose bits in the even
positions are 10101*. It contains three forwarding units, 2(1),
1(2), and 1(3). Usually, a core router has no more than 128
output ports. So the length of port can satisfy that

≤)(portlen 7 in bits. Therefore, a 20-bit long sequence is
enough to represent a forwarding unit, leaving 13 bits for
the index (up to 8,12 entries could have the same port).

In a sub-table, a −N bit port indicator vector is attached
to every sub-entry. A bit i is set in the bit vector if and only
if the thi port occurs in its forwarding information. Usually
the width of it is no more than 128. The total storage cost for
the extra information is shown in last column in Table 4.

What is the benefit of the CES approach? Primarily, one
lookup will be divided into a pair of shorter and parallel
sub-lookups. Can CES make the two sub-lookups balance
the time access and the memory consumption? After the two
parallel sub-lookups, some sub-prefixes will match the pair
of sub-search key. In order to find the BMP, we need to
combine the results, comparing the information of any
reasonable pair of matching sub-prefixes from both sub-
lookups. This leads to the next question: can CES cause
heavy comparison loads, which will cost extra time? We
discuss this point in the rest of the section.

Firstly, let us point out that CES makes the entries of the
pair of sub-tables well distributed.

In comparing two bit patterns, the Hamming distance is
the count of bits different in the two patterns. Here, we give
a new definition to determine the distance between two
prefixes, which is similar to the Hamming distance.

Definition 1: Let a and b be two prefixes in a table. || a
and || b represent their lengths. Let |)||,min(| baML = . We
define the Pseudo-Hamming Distance (PHD) between two
prefixes as:

∑

=
−−= ML

i ii baiLbaPHD
0

||)(),(, where ia and ib are

the left-most thi bits of a and b , and L is the maximum
length of sequences (In IPv4, L in the original forwarding
table is 32, 16 for sub-forwarding tables). Let MPHD be the
mean of PHD of any two different prefixes in one table.
PHD is affected by both the number of bits that are not
identical, and their positions. For example, let us assume a ,
b and c are 011001*, 0110010*, and 10010011*
respectively. Let L be 16.
Then: 0),(=baPHD , 69),(=caPHD , and 79),(=cbPHD .

Lemma: Let a and b are two prefixes. If one is a prefix
of the other, then),(baPHD equals to zero.

IEEE Communications Society 0-7803-8533-0/04/$20.00 (c) 2004 IEEE1066

TABLE IV. PERFORMANCE OF SUB-TABLES BY USING THE CES

 Entries Sub-
entries MPHD MPL Max(B

LFI) MLFI SDFI CCF Storage Cost
(in Byte)

Sub-table 1 4026 55.22 11.18 93 11.73 13.41 186.06K Mae-
east 47206 Sub-table 2 5341 56.56 11.18 86 8.84 9.71 8 209.15K

Sub-table 1 5703 56.47 11.22 100 13.05 15.49 270.81K Mae-
west 77002 Sub-table 2 6989 57.84 11.22 78 11.02 12.57 8 241.95K

Sub-table 1 5689 56.80 11.35 110 11.25 14.28 245.14K Aads 63980 Sub-table 2 6735 57.45 11.35 89 9.50 10.84 8 261.44K
Sub-table 1 4077 54.59 11.15 40 5.42 5.35 117.65K Paix 22116 Sub-table 2 4704 55.67 11.15 28 4.70 4.23 7 127.48K

TABLE V. PERFORMANCE OF SUB-TABLES BY SUCH A SPLITTING RULE: EXTRACTING THE HIGHER 16 BITS TO FORM SUB-TABLE 1 AND EXTRACTING THE
LOWER 16 BITS TO FORM SUB-TABLE 2

 Entries Sub-entries MPHD MPL Max(BLFI) MLFI SDFI
Sub-table 1 6939 59.85 16.00 280 6.80 13.63 Mae-east 47206 Sub-table 2 1349 43.24 6.47 2735 34.99 93.62
Sub-table 1 10794 23.32 16.00 253 7.13 15.33 Mae-west 77002 Sub-table 2 1692 51.63 4.79 5939 45.50 164.45
Sub-table 1 8314 61.54 16.00 465 7.69 16.65 Aads 63980 Sub-table 2 3540 49.03 9.94 3385 18.07 73.38
Sub-table 1 4540 59.68 16.00 128 4.87 7.98 Paix 22116 Sub-table 2 1238 48.85 5.03 1406 17.86 49.95

The value of MPHD can stand for the distribution of
entries in a table. If MPHD is large, it implies that, in a trie
of a forwarding table, nodes spread widely, rather than just
focus on several deep branches. This allows for a faster
search. CES is almost the best of splitting rules to maximize
the MPHD of each sub-table, and there is not much variance
between the two values, which implies that CES leads to a
balanced distribution of entries in the two sub-tables.

Secondly, CES also balances the sub-prefix lengths in
the two sub-tables.

Definition 2: Let the Mean Prefix Length (MPL) in

any sub-table be expressed by: ∑
=

SM

i
i

i
IFOM Lenn

0

1 , where M is

the number of entries in the original forwarding table, SM
is the number of sub-entries in this sub-table, i

IFOn is the
number of forwarding units attached to the thi sub-entry,
and iLen is the length of it.

Let a be an original prefix in a forwarding table. After
having been decomposed, it will be converted into two sub-
prefixes, named 1a and 2a . The difference between the
lengths of 1a and 2a satisfies the
inequality: 1||||0 21 ≤−≤ aa . In other words, CES is an
efficient way to enable the search in the pair of sub-tables to
keep in pace with the lookup.

Thirdly, CES makes the forwarding units well
distributed in each sub-table.

Definition 3: (1) The Basic load of Forwarding
Information (BLFI) of thi sub-entry in each sub-table is
defined as the total number of forwarding units in the thi
sub-entry.

(2) The Mean load of Forwarding Information (MLFI)

of sub-entries in each sub-table is defined by ∑
=

SN

i
iSN BLFI

1

1 ,

where SN is the total number of sub-entries in this sub-
table.

 (3) The Standard Deviation of Forwarding
Information (SDFI) of sub-entries in each sub-table is

defined by ∑
=

−
SN

i
iSN MLFIBLFI

1

21)(.

These metrics are significant when analyzing CES’s
performance. Their desirable values should be as low as
possible. Whether the comparing time between sub-prefixes
in the second phase is reasonable or not depends on these
three values. In our small example, 067.11 =MLFI ,

143.12 =MLFI , 25.01 =SDFI , and 51.02 =SDFI .

Fourthly and finally, CES balances the comparison cost.

Definition 4: The comparison cost factor (CCF) is
used to judge whether the comparison load of those
matching sub-prefixes in two sub-tables for an address
lookup next is heavy or not. CCF is a statistical value from
experiments, by counting the pairs for which a comparison
was really needed.

Actually, it is not necessary to compare every pair of
matching sub-prefixes, for there are constraints among the
matching sub-prefixes, once they are the final ones we are
looking for. We know that if 1α and 2α are two the final
matching sub-prefixes in the two-tables for an address, then
they should satisfy the following: (1) || 2α only can be equal
to || 1α or 1|| 1 −α ; (2) In the two corresponding port

IEEE Communications Society 0-7803-8533-0/04/$20.00 (c) 2004 IEEE1067

indicator vectors, 1.PIV PIV, , 2

i

1

i ==<∃ Nii (where PIV is
the port indicator vector).

Only if the matching sub-prefixes 1α and 2α , which
come from different sub-tables, meet the demands above,
comparison is needed. CCF is a parameter to observe the
number of pairs which satisfy the conditions, and need to
execute real comparison. Anyway, CCF has its upper bound:
Let),min(21 NumNumMinNum = , where 1Num and 2Num
are the numbers of matching sub-prefixes of the two sub-
tables. Then: MinNumCCF ×≤ 2 .

Table 4 and Table 5 give us the performances of sub-
tables by using different splitting rules respectively. It is
clear that the CES is much better than the other one
(extracting the higher 16 bits to form sub-table 1 and
extracting the lower 16 bits to form sub-table 2).

III. COMPARISON SET
In this section, we describe how to analyze the matching

sub-prefixes from two sub-tables, in order to find the
common matching prefix. This part can be implemented in
an ASIC.

TABLE VI. COST FOR COMPARISON/MATCHING SUB-PREFIX

 Entries
Average

delay
(ns)

Delay(80% of
comparisons)

(ns)

Worst case
(ns)

Mae-east 47206 1.39 <8.58 36.9
Mae-west 80000 3.04 <12.87 56.5

Aads 63980 2.74 <9.06 54.5
Paix 22116 0.40 <1.55 5.26

The first step is to decide whether further comparing is
necessary, which has already been explained above. The
second step is to compare the forwarding units, only when
the first step succeeds.

If iP1 and jP2 are two matching sub-prefixes of the
pair of sub-tables, each of them contains a set of forwarding
units. We need to compare every unit in a set with the all the
units in another set, if the port numbers attached belong to
the set of common port numbers. Let iInfo1 and jInfo2 be
the information sets of iP1 and jP2 , which contain 1M and

2M such information units. Therefore, for each comparison,
21 MM × pairs of comparison units are needed.

In the comparison between iInfo1 and jInfo2 , if there
exists an exact match in one comparison unit, it implicates
that iP1 and jP2 are the right decomposition parts of an
original prefix in a forwarding table.

Lemma: In the comparison between iInfo1 and jInfo2 ,
there at most exists one exact match in all pairs of
comparison units.

Proof: Assume that there exists two pairs of units,
(kiInfo ,1 , mjInfo ,2) and (liInfo ,1 , njInfo ,2), which match

exactly. That is, kiInfo ,1 = mjInfo ,2 , and liInfo ,1 = njInfo ,2 . It
means that in the original forwarding table, there are two
entries, which have the same prefix, but will be forwarded to
different ports. It is impossible for unicast. As a
consequence, the assumption is not right, which means that
there at most exists one exact match in all pairs of
comparison units.

Since each forwarding unit is 20 bit long, based on
present-day technology, VLSI feature size of mµλ 13.0= ,
it is possible to input 5 forwarding units of each matching
sub-prefix at the same time, allowing 25 comparison units to
work in parallel. Therefore, all comparison units work in
serial to the end until there is a comparison unit exact match.
The delay of every 25 parallel comparisons is 250ps. Table
6 shows the time cost for comparing every forwarding unit
of two matching sub-prefixes. We find that this time
increases when the forwarding table’s size increases.
Actually, the real cost is smaller than this, since the
comparison stops when there exists an exact match.
Although the cost of most cases is small, the worst case is
not good enough.

IV. ARCHITECTURE OF THE NEW ALGORITHM
Fig. 1 describes a rough picture on how this system

works. We provide two structures based on CES.

A. CES + Index tables
The maximum length of the entries is sharply reduced

due to CES. The size of the array is 162 for IPv4. Each entry
of the array has the structure: {length[4], port-indicator[128],
pParent[16], pInformation[16] }, in which, pParent is the
pointer to its parent, the most specific prefix of it, and
pInformation is the pointer to its forwarding information.

Each main index table consumes 1.28Mbytes, however
the additional table for forwarding information is small
(memory cost is shown in Table 4). The total memory
consumption is about 3Mbytes. It is not scalable to IPv6, for
the size of the index table is 642 , which is still impossible
for current technology.

B. CES + Binary Trie
The binary trie is a basic structure in IP lookups. A

forwarding table is decomposed into a pair of half-level sub-
tables. The storage cost for two 16-level tries is much
smaller than one 32-level trie. Table 7 gives the memory
cost when we use CES + Binary trie, smaller than when
only binary trie is used. Most memory is consumed at the
nodes with forwarding information. The updating time is

)(2
WO , where W is the prefix length.

Different architectures of a sub-table will lead to
different search strategies.

If CES + Index table is used, when a search starts, the
first sub-prefixes we reach in two sub-tables are the longest
matching sub-prefixes. Not only is the forwarding
information of both of them sent to the comparison set, but

IEEE Communications Society 0-7803-8533-0/04/$20.00 (c) 2004 IEEE1068

also they will point to their own most specific parent rows,
and output another pair of forwarding information to
compare. But now the lengths of sub-prefixes are shorter
than the former ones. Therefore once there is an exact
match in the comparison set, the search stops. The average
comparison times in our experiments were 1.272, so the
average of total delay in comparison is not more than 8ns (if
the total entries are not more than 80K).

IP Address

01001100 00111101 11011000 01100111

00100110 10100101 10100111 11001011

Sub-table
 1

Sub-table
 2

Comparison
Set

Judge

Yes

Output port
Figure I. The Architecture of the System

B

38912
...
...

39424
...

39680
...

39935
...

47616
...

48127

6
6
6
7
7
8
8
8

7
7
7

010
010
010
100
100
001
001
001

011
011
011

NULL
NULL
NULL
38912
38912
39424
39424
39424

NULL
NULL
NULL

A
A
A
B
B
C
C
C

D
D
D

A 2(3)
1(1)

C 3(1)
... ...
D 2(4) 3(3)

100110*

1001101*

10011011*

10011011*

1011101*

1011101*
...

...

... ...

... ...

Figure II. The Structure of CES + Index tables

If CES + Binary tries is used, when a search starts, the
first matching sub-prefixes we reach in two sub-tables are
the shortest. We need to do the comparison of their
forwarding information, and on the same time, we need to
continue traversing the sub-tries until they are exhausted.
The last exact match is the final output port of this IP packet.
The total average delay in comparison is no more than 25ns,
since the CCF is less than 8 (if the total entries are not more
than 80K).

TABLE VII. STORAGE COST COMPARISON (CES+BINARY TRIE VS
BINARY TRIE) (IN BYTE)

Storage Cost Mae-east Mae-west Aads Paix
Sub-table1 215.5K 310.2K 285.6K 147.8K
Sub-table2 247.2K 288.9K 308.3K 161.6K

Original Table 1295.3K 2003.8K 1657.8K 718.8K

There is a pipeline benefit, no matter which architecture
we use: the comparison set works when both sub-lookups
are preparing for the next pair of comparing sub-prefixes.
From the experiment, we can see that the comparison set is
fast enough not to be a speed bottleneck, if the forwarding
table is not too big.

V. CONCLUSION
We proposed a new methodology and architecture for IP

address lookup. Our approach advocates decomposing a
forwarding table into a pair of sub-forwarding tables using
CES. Comparison is only needed for the reasonable
matching sub-prefixes of the two sub-tables. Two sub-
lookups and comparison can work in parallel, which provide
a new way to speed up the average search time efficiently to
handle OC-192 line rates (10 Gb/s).

Unfortunately, with the size of a forwarding table
increasing, the forwarding units attached to a sub-prefix
increases. If both comparing sub-prefixes carry hundreds of
forwarding units, the comparison delay will affect the
performance of the whole system. CES cannot improve the
performance in worst cases, but can make a big
improvement for the average search time. There are lots of
potentials to improve performance of comparison set, when
the load is heavy. The authors will focus on solving this
problem in the future.

ACKNOWLEDGEMENT
The authors would like to acknowledge that this research

is an initiative of Mathematics of Information Technology
and Complex Systems, MITACS and the National Capital
Institute of Telecommunications, NCIT in Collaboration
with Alcatel’s Research and Innovation Center in Ottawa,
Canada.

REFERENCE
[1] C. Labovitz, “Scalable of the Internet Backbone Routing

Infrastructure,” Ph.D. thesis, Univ. of Michigon, 1999.
[2] M. J. Akhbarizadeh and M. Nourani, “An IP Packet Forwarding

Technique Based on Partitioned Lookup Table,” ICC’02, April, NYC,
2002.

[3] K, Sklower, “A Tree-Based Packet Routing Table for Berkeley
Unix,” Proc. 1991 Winter Usenix Conf., 1991, pp. 93-99.

[4] D. Morrison, “PATRICIA-Practical Algorithm to Receive
Information Coded in Alphanumeric,” Journal of ACM, Oct. 1968,
vol. 15, no. 4, pp. 514-534.

[5] V. Srinivasan and G. Varghese, “Faster IP Lookups Using Controlled
Prefix Expansion,” IEEE Trans. on Computer Systems, Feb. 1996, vol.
17, no. 1, pp. 1-40.

[6] S. Nilsson and G. Karlsson “IP-Address Lookup Using LC-Tries,”
IEEE JSAC, June 1999, vol. 17, No. 6, pp. 1083-1092.

[7] S. Suri, G. Varghese, and P. R. Warkhede, “Multiway Range Trees:
Scalable IP Lookup with Fast Updates,” Tech. Rep. 99-28,
Washington Univ. 1999.

[8] B. Lanpson, V. Srinivasan, and G. Varghese, “IP Lookups Using
Multiway and Multicolumn Search,” Proc. IEEE INFOCOM’98, Apr.
1998, pp. 1248-1256.

[9] M. Waldvogel, G. Varghese, J. Turner, and B. Plather, “Scalable High
Speed IP Routing Lookups,” Proc. ACM SIGCOMM’97, Spet. 1997,
pp. 25-36.

[10] P. Gupta, S. Lin, and N. McKeown, “Routing Lookups in Hardware
at Memory Access Speeds,” Proc. IEEE INFOCOM’98, Apr. 1998,
pp. 1-11.

[11] A. McAuley and P. Francis, “Fast Routing Table Lookup Using
CAMs,” IEEE INFOCOM’93, vol. 3. March 1993, pp. 1382-1391.

[12] M. A. Ruiz-Sanchez, E. W. Biersack and W. Dabbous, “Survey and
taxonomy of IP address lookup algorithms,” IEEE Network 15, 2
March / April 2001, pp. 8-23.

IEEE Communications Society 0-7803-8533-0/04/$20.00 (c) 2004 IEEE1069

	footer1:

