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Abstract—In this paper, we present an efficient IP packet 
forwarding technique and its architecture. One forwarding 
table is decomposed into two balanced smaller sub-forwarding 
tables by a novel splitting rule. Therefore, an IP lookup can be 
converted into a pair of small sub-lookups. The output of an 
incoming packet can be determined by comparing the 
information, attached to the matching sub-prefixes of both sub-
lookups. The sub-lookups and information comparison can 
perform in parallel. Our approach not only speeds up the Best 
Matching Prefix (BMP) search, but also reduces storage space 
at the same time. 

Keywords-IP address lookup 

I. INTRODUCTION 
The major function of a router is to forward packets. 

Since the Internet traffic increases rapidly, speeding up the 
link rate is required in order to provide good service [1]. It is 
difficult to make the performance of a router keep up with 
this increasing demand. In particular, the address lookup 
operation is a major problem. 

Many lookup algorithms create a data structure that 
takes advantage of the binary search tree method, which is 
among the mature search algorithms [2]. The binary trie [3] 
method and its variations including Patricia trie [4], multibit 
trie [5] and LC trie [6] have been presented in the literature. 
Some heuristic approaches were designed to facilitate the 
use of binary trees [2], such as search on prefix range [7,8] 
and search on prefix length [9]. Unfortunately, these 
approaches usually suffer from large storage requirements 
or poor updating features. In addition, some hardware-based 
solutions are proposed by using a large DRAM for the entire 
forwarding table [10].  Using CAM is also presented in [11]. 
A good survey of these methods can be found in [12]. 

The main contribution of this paper is two-fold. First, a 
forwarding table is decomposed into a pair of balanced sub-
tables by using the Comb Extraction Scheme (CES). The 
two independent search processes can work simultaneously. 
In order to determine the output port the packet should be 
sent to, the comparison of information pairs, attached to 
those matching sub-prefixes in both sub-tables, needs to be 
executed in the end. CES can reduce storage space, speed up 
search time, alleviate distribution dependent problems, and 

minimize information comparison load.  Secondly, we 
propose an efficient architecture to realize this methodology. 
The flexibility of this architecture allows IP address lookup 
to be easily integrated within routing SoCs and generic 
network packet processing units. 

TABLE I.  A SAMPLE FORWARDING TABLE 

Index Prefix Len Port 
1 11000110100110* 14 1 
2 11000110011* 11 1 
3 11000110010* 11 1 
4 1101011100001011* 16 1 
1 1100011001* 10 2 
2 011110000011* 12 2 
3 11000110100* 11 2 
4 10001010110011* 14 2 
5 100010101011* 12 2 
6 1110111101* 10 2 
7 01111000101* 11 2 
8 0111100011100* 13 2 
1 1100011010011010* 16 3 
2 1100011001110* 13 3 
3 1000101011001* 13 3 
4 01111000001110* 14 3 

 

In this paper, we focus on the unicast (single-source, 
single-destination) routing of backbone routers. In an IP 
forwarding table, an entry usually has this structure: 
<DesPrx, PrxLen, ForInf>. DesPrx is the Destination Prefix, 
PrxLen is the length of the prefix, and ForInf usually is a 
next hop address or an output port number, respectively. 
Suppose },,,{ 21 MpppP ⋅⋅⋅=  is the set of M prefixes with N 
outputs recognized by a router. When examining the 
forwarding tables carefully, we can find that the number of 
distinct next hops in a routing table is very small, comparing 
with the tens of thousands of prefixes. It is shown clearly in 
sample Table 1 (only 3 ports for 16 entries). All the entries 
are sorted in terms of the ports, and the index is a number to 
distinguish between entries sharing the same port. 
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II. NEW DATA STRUCTURE 
For IPv4, an IP address A  is 32-bit long. It can be 

decomposed into two 16-bit long sub-sequences by the 
following strategy: From the left-most bit to the right-most 
bit, all the bits in the odd positions are extracted to form 
sub-sequence α , and all the bits in the even positions are 
extracted to form sub-sequence β . We call this splitting 
approach the Comb Extraction Scheme (CES). For example, 
consider the following IP address in binary bits, 10100001 
00110110 11010000 11101001. After the decomposition, α  
and β  will be 1100010110001110 and 0001011011001001, 
respectively. Similarly, a prefix also can be decomposed 
into two sub- sub-prefixes α  and β . Both of them end by 
the wildcard *. 

TABLE II.  SUB-FORWARDING OF TABLE 1 (EXTRACTING BITS IN ODD 
POSITIONS) 

Index Sub-Prefix Len Port 
Indicator 

Forwarding 
Information 

1 011001* 6 010 2(2) 
2 0110011* 7 001 3(4) 
3 011011* 6 010 2(7) 
4 0110110* 7 010 2(8) 
5 10010* 5 010 2(1) 
6 100100* 6 100 1(3) 
7 10010011* 8 100 1(4) 
8 100101* 6 100 1(2) 
9 1001010* 7 001 3(2) 
10 100110* 6 010 2(3) 
11 1001101* 7 100 1(1) 
12 10011011* 8 001 3(1) 
13 1011101* 7 011 2(4), 3(3) 
14 101111* 6 010 2(5) 
15 11110* 5 010 2(6) 

TABLE III.  SUB-FORWARDING OF TABLE 1 (EXTRACTING BITS IN EVEN 
POSITIONS) 

 
 

Sub-Prefix Len Port 
Indicator 

Forwarding 
Information 

1 000001* 6 010 2(5) 
2 000010* 6 001 3(3) 
3 0000101* 7 010 2(4) 
4 10100* 5 010 2(3) 
5 1010010* 7 100 1(1) 
6 10100100* 8 001 3(1) 
7 10101* 5 110 2(1), 1(2), 1(3) 
8 101011* 6 010 3(2) 
9 10111* 5 010 2(6) 
10 11000* 5 010 2(7) 
11 110001* 6 010 2(2) 
12 1100010* 7 001 3(4) 
13 110010* 6 010 2(8) 
14 11110001* 8 100 1(4) 

 

Hence, a forwarding table can be converted into two 
extended sub-forwarding tables. Table 2 and Table 3 are the 
examples of the pair of sub-forwarding tables of Table 1. 
Each sub-entry has the same structure <sub-prefix, length, 
port-indicator, forwarding information>. 

In Table 2 and Table 3, the Forwarding Information not 
only contains the information of the port number, but also 

contains the information of the corresponding index based 
on the port in Table 1. It is composed of a set of forwarding 
units a(b), which implies that, in Table 1, the original prefix 
of this sub-prefix is forwarded to port a, and the 
corresponding index is b. In general, the forwarding 
information of each sub-entry in a sub-table consists of 
several forwarding units. For example, the sub-prefix of the 
7th entry in Table 3 is 10101*, which collects the 
information of the original prefixes whose bits in the even 
positions are 10101*. It contains three forwarding units, 2(1), 
1(2), and 1(3). Usually, a core router has no more than 128 
output ports. So the length of port can satisfy that 

≤)( portlen 7 in bits. Therefore, a 20-bit long sequence is 
enough to represent a forwarding unit, leaving 13 bits for 
the index (up to 8,12 entries could have the same port). 

In a sub-table, a −N bit port indicator vector is attached 
to every sub-entry. A bit i  is set in the bit vector if and only 
if the thi  port occurs in its forwarding information. Usually 
the width of it is no more than 128. The total storage cost for 
the extra information is shown in last column in Table 4. 

What is the benefit of the CES approach? Primarily, one 
lookup will be divided into a pair of shorter and parallel 
sub-lookups. Can CES make the two sub-lookups balance 
the time access and the memory consumption? After the two 
parallel sub-lookups, some sub-prefixes will match the pair 
of sub-search key. In order to find the BMP, we need to 
combine the results, comparing the information of any 
reasonable pair of matching sub-prefixes from both sub-
lookups. This leads to the next question: can CES cause 
heavy comparison loads, which will cost extra time?  We 
discuss this point in the rest of the section. 

Firstly, let us point out that CES makes the entries of the 
pair of sub-tables well distributed. 

In comparing two bit patterns, the Hamming distance is 
the count of bits different in the two patterns. Here, we give 
a new definition to determine the distance between two 
prefixes, which is similar to the Hamming distance. 

Definition 1: Let a and b be two prefixes in a table. || a  
and || b  represent their lengths. Let |)||,min(| baML = . We 
define the Pseudo-Hamming Distance (PHD) between two 
prefixes as: 

∑

=
−−= ML

i ii baiLbaPHD
0

||)(),( , where ia  and ib  are 

the left-most thi  bits of a  and b , and L  is the maximum 
length of sequences (In IPv4, L  in the original forwarding 
table is 32, 16 for sub-forwarding tables). Let MPHD be the 
mean of PHD of any two different prefixes in one table. 
PHD is affected by both the number of bits that are not 
identical, and their positions. For example, let us assume a , 
b  and c  are 011001*, 0110010*, and 10010011* 
respectively. Let L  be 16. 
Then: 0),( =baPHD , 69),( =caPHD , and 79),( =cbPHD .  

Lemma:  Let a and b are two prefixes. If one is a prefix 
of the other, then ),( baPHD  equals to zero. 
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TABLE IV.  PERFORMANCE OF SUB-TABLES BY USING THE CES

 Entries  Sub-
entries MPHD MPL Max(B

LFI) MLFI SDFI CCF Storage Cost 
(in Byte) 

Sub-table 1 4026 55.22 11.18 93 11.73 13.41 186.06K Mae-
east 47206 Sub-table 2 5341 56.56 11.18 86 8.84 9.71 8 209.15K 

Sub-table 1 5703 56.47 11.22 100 13.05 15.49 270.81K Mae-
west 77002 Sub-table 2 6989 57.84 11.22 78 11.02 12.57 8 241.95K 

Sub-table 1 5689 56.80 11.35 110 11.25 14.28 245.14K Aads 63980 Sub-table 2 6735 57.45 11.35 89 9.50 10.84 8 261.44K 
Sub-table 1 4077 54.59 11.15 40 5.42 5.35 117.65K Paix 22116 Sub-table 2 4704 55.67 11.15 28 4.70 4.23 7 127.48K 

TABLE V.  PERFORMANCE OF SUB-TABLES BY SUCH A SPLITTING RULE: EXTRACTING THE HIGHER 16 BITS TO FORM SUB-TABLE 1 AND EXTRACTING THE 
LOWER 16 BITS TO FORM SUB-TABLE 2 

 Entries  Sub-entries MPHD MPL Max(BLFI) MLFI SDFI 
Sub-table 1 6939 59.85 16.00 280 6.80 13.63 Mae-east 47206 Sub-table 2 1349 43.24 6.47 2735 34.99 93.62 
Sub-table 1 10794 23.32 16.00 253 7.13 15.33 Mae-west 77002 Sub-table 2 1692 51.63 4.79 5939 45.50 164.45 
Sub-table 1 8314 61.54 16.00 465 7.69 16.65 Aads 63980 Sub-table 2 3540 49.03 9.94 3385 18.07 73.38 
Sub-table 1 4540 59.68 16.00 128 4.87 7.98 Paix 22116 Sub-table 2 1238 48.85 5.03 1406 17.86 49.95 

 

The value of MPHD can stand for the distribution of 
entries in a table. If MPHD is large, it implies that, in a trie 
of a forwarding table, nodes spread widely, rather than just 
focus on several deep branches. This allows for a faster 
search. CES is almost the best of splitting rules to maximize 
the MPHD of each sub-table, and there is not much variance 
between the two values, which implies that CES leads to a 
balanced distribution of entries in the two sub-tables. 

Secondly, CES also balances the sub-prefix lengths in 
the two sub-tables. 

Definition 2: Let the Mean Prefix Length (MPL) in 

any sub-table be expressed by: ∑
=

SM

i
i

i
IFOM Lenn

0

1 , where M  is 

the number of entries in the original forwarding table, SM  
is the number of sub-entries in this sub-table, i

IFOn  is the 
number of forwarding units attached to the thi  sub-entry, 
and iLen  is the length of it.  

Let a  be an original prefix in a forwarding table. After 
having been decomposed, it will be converted into two sub-
prefixes, named 1a and 2a . The difference between the 
lengths of 1a  and 2a  satisfies the 
inequality: 1||||0 21 ≤−≤ aa . In other words, CES is an 
efficient way to enable the search in the pair of sub-tables to 
keep in pace with the lookup. 

Thirdly, CES makes the forwarding units well 
distributed in each sub-table. 

Definition 3: (1) The Basic load of Forwarding 
Information (BLFI) of thi  sub-entry in each sub-table is 
defined as the total number of forwarding units in the thi  
sub-entry.  

(2) The Mean load of Forwarding Information (MLFI) 

of sub-entries in each sub-table is defined by ∑
=

SN

i
iSN BLFI

1

1 , 

where SN  is the total number of sub-entries in this sub-
table. 

 (3) The Standard Deviation of Forwarding 
Information (SDFI) of sub-entries in each sub-table is 

defined by ∑
=

−
SN

i
iSN MLFIBLFI

1

21 )( .  

These metrics are significant when analyzing CES’s 
performance. Their desirable values should be as low as 
possible. Whether the comparing time between sub-prefixes 
in the second phase is reasonable or not depends on these 
three values. In our small example, 067.11 =MLFI , 

143.12 =MLFI , 25.01 =SDFI , and 51.02 =SDFI . 

Fourthly and finally, CES balances the comparison cost. 

Definition 4: The comparison cost factor (CCF) is 
used to judge whether the comparison load of those 
matching sub-prefixes in two sub-tables for an address 
lookup next is heavy or not. CCF is a statistical value from 
experiments, by counting the pairs for which a comparison 
was really needed. 

Actually, it is not necessary to compare every pair of 
matching sub-prefixes, for there are constraints among the 
matching sub-prefixes, once they are the final ones we are 
looking for. We know that if 1α  and 2α  are two the final 
matching sub-prefixes in the two-tables for an address, then 
they should satisfy the following: (1) || 2α  only can be equal 
to || 1α  or 1|| 1 −α ; (2) In the two corresponding port 
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indicator vectors, 1.PIV PIV, , 2

i

1

i ==<∃ Nii  (where PIV is 
the port indicator vector). 

Only if the matching sub-prefixes 1α  and 2α , which 
come from different sub-tables, meet the demands above, 
comparison is needed. CCF is a parameter to observe the 
number of pairs which satisfy the conditions, and need to 
execute real comparison. Anyway, CCF has its upper bound: 
Let ),min( 21 NumNumMinNum = , where 1Num  and 2Num  
are the numbers of matching sub-prefixes of the two sub-
tables. Then: MinNumCCF ×≤ 2 . 

Table 4 and Table 5 give us the performances of sub-
tables by using different splitting rules respectively. It is 
clear that the CES is much better than the other one 
(extracting the higher 16 bits to form sub-table 1 and 
extracting the lower 16 bits to form sub-table 2). 

III. COMPARISON SET 
In this section, we describe how to analyze the matching 

sub-prefixes from two sub-tables, in order to find the 
common matching prefix. This part can be implemented in 
an ASIC. 

TABLE VI.  COST FOR COMPARISON/MATCHING SUB-PREFIX 

 Entries 
Average 

delay 
(ns) 

Delay( 80% of 
comparisons) 

(ns) 

Worst case 
(ns) 

Mae-east 47206 1.39 <8.58 36.9 
Mae-west 80000 3.04 <12.87 56.5 

Aads 63980 2.74 <9.06 54.5 
Paix 22116 0.40 <1.55 5.26 
 

The first step is to decide whether further comparing is 
necessary, which has already been explained above. The 
second step is to compare the forwarding units, only when 
the first step succeeds. 

If iP1  and jP2  are two matching sub-prefixes of the 
pair of sub-tables, each of them contains a set of forwarding 
units. We need to compare every unit in a set with the all the 
units in another set, if the port numbers attached belong to 
the set of common port numbers. Let iInfo1  and jInfo2  be 
the information sets of iP1  and jP2 , which contain 1M  and 

2M  such information units. Therefore, for each comparison, 
21 MM ×  pairs of comparison units are needed.  

In the comparison between iInfo1 and jInfo2 , if there 
exists an exact match in one comparison unit, it implicates 
that iP1  and jP2  are the right decomposition parts of an 
original prefix in a forwarding table. 

Lemma: In the comparison between iInfo1  and jInfo2 , 
there at most exists one exact match in all pairs of 
comparison units. 

Proof: Assume that there exists two pairs of units, 
( kiInfo ,1 , mjInfo ,2 ) and ( liInfo ,1 , njInfo ,2 ), which match 

exactly. That is, kiInfo ,1 = mjInfo ,2 , and liInfo ,1 = njInfo ,2 . It 
means that in the original forwarding table, there are two 
entries, which have the same prefix, but will be forwarded to 
different ports. It is impossible for unicast. As a 
consequence, the assumption is not right, which means that 
there at most exists one exact match in all pairs of 
comparison units.  

Since each forwarding unit is 20 bit long, based on 
present-day technology, VLSI feature size of mµλ 13.0= , 
it is possible to input 5 forwarding units of each matching 
sub-prefix at the same time, allowing 25 comparison units to 
work in parallel. Therefore, all comparison units work in 
serial to the end until there is a comparison unit exact match. 
The delay of every 25 parallel comparisons is 250ps. Table 
6 shows the time cost for comparing every forwarding unit 
of two matching sub-prefixes. We find that this time 
increases when the forwarding table’s size increases. 
Actually, the real cost is smaller than this, since the 
comparison stops when there exists an exact match. 
Although the cost of most cases is small, the worst case is 
not good enough. 

IV. ARCHITECTURE OF THE NEW ALGORITHM 
Fig. 1 describes a rough picture on how this system 

works. We provide two structures based on CES. 

A. CES + Index tables 
The maximum length of the entries is sharply reduced 

due to CES. The size of the array is 162  for IPv4. Each entry 
of the array has the structure: {length[4], port-indicator[128], 
pParent[16],  pInformation[16] }, in which, pParent is the 
pointer to its parent, the most specific prefix of it, and 
pInformation is the pointer to its forwarding information. 

Each main index table consumes 1.28Mbytes, however 
the additional table for forwarding information is small 
(memory cost is shown in Table 4). The total memory 
consumption is about 3Mbytes. It is not scalable to IPv6, for 
the size of the index table is 642 , which is still impossible 
for current technology. 

B. CES + Binary Trie 
The binary trie is a basic structure in IP lookups. A 

forwarding table is decomposed into a pair of half-level sub-
tables. The storage cost for two 16-level tries is much 
smaller than one 32-level trie. Table 7 gives the memory 
cost when we use CES + Binary trie, smaller than when 
only binary trie is used. Most memory is consumed at the 
nodes with forwarding information.  The updating time is 

)( 2
WO , where W  is the prefix length. 

Different architectures of a sub-table will lead to 
different search strategies. 

If CES + Index table is used, when a search starts, the 
first sub-prefixes we reach in two sub-tables are the longest 
matching sub-prefixes. Not only is the forwarding 
information of both of them sent to the comparison set, but 
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also they will point to their own most specific parent rows, 
and output another pair of forwarding information to 
compare. But now the lengths of sub-prefixes are shorter 
than the former ones.  Therefore once there is an exact 
match in the comparison set, the search stops. The average 
comparison times in our experiments were 1.272, so the 
average of total delay in comparison is not more than 8ns (if 
the total entries are not more than 80K). 

IP Address

01001100 00111101 11011000 01100111

00100110 10100101 10100111 11001011

Sub-table
 1

Sub-table
 2

Comparison
Set

Judge

Yes

Output port  
Figure I. The Architecture of the System 
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Figure II. The Structure of CES + Index tables 

If CES + Binary tries is used, when a search starts, the 
first matching sub-prefixes we reach in two sub-tables are 
the shortest. We need to do the comparison of their 
forwarding information, and on the same time, we need to 
continue traversing the sub-tries until they are exhausted. 
The last exact match is the final output port of this IP packet. 
The total average delay in comparison is no more than 25ns, 
since the CCF is less than 8 (if the total entries are not more 
than 80K). 

TABLE VII.  STORAGE COST COMPARISON (CES+BINARY TRIE VS 
BINARY TRIE) (IN BYTE) 

Storage Cost Mae-east Mae-west Aads Paix 
Sub-table1 215.5K 310.2K 285.6K 147.8K 
Sub-table2 247.2K 288.9K 308.3K 161.6K 

Original Table 1295.3K 2003.8K 1657.8K 718.8K 
 

There is a pipeline benefit, no matter which architecture 
we use: the comparison set works when both sub-lookups 
are preparing for the next pair of comparing sub-prefixes. 
From the experiment, we can see that the comparison set is 
fast enough not to be a speed bottleneck, if the forwarding 
table is not too big.   

V. CONCLUSION 
We proposed a new methodology and architecture for IP 

address lookup. Our approach advocates decomposing a 
forwarding table into a pair of sub-forwarding tables using 
CES. Comparison is only needed for the reasonable 
matching sub-prefixes of the two sub-tables. Two sub-
lookups and comparison can work in parallel, which provide 
a new way to speed up the average search time efficiently to 
handle OC-192 line rates (10 Gb/s).  

Unfortunately, with the size of a forwarding table 
increasing, the forwarding units attached to a sub-prefix 
increases. If both comparing sub-prefixes carry hundreds of 
forwarding units, the comparison delay will affect the 
performance of the whole system. CES cannot improve the 
performance in worst cases, but can make a big 
improvement for the average search time. There are lots of 
potentials to improve performance of comparison set, when 
the load is heavy. The authors will focus on solving this 
problem in the future. 
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