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Abstract— To our knowledge, the indoor location system which
currently achieves the best performance using inexpensive off-
the-shelf equipment locates a mobile within 1.5 meters with prob-
ability 77% in hallways. Even while maintaining this accuracy,
the system often reports logical errors such as the mobile in the
wrong cubicle of an office or even on the wrong side of a wall
when broadening the domain of application to within rooms.
We propose an extension of the work using the same Markov
localization framework, however incorporating system dynamics
(necessitating no post-processing of the output) and motion
constraints which implicitly encode the physical properties of the
survey area. Our system retains the advantages of its predecessor
of low cost, wireless LAN connectivity and security, and large-
scale deployment, however extending the survey area from simple
hallways to the whole office environment, while maintaining the
same precision without logical errors.

I. INTRODUCTION

While some inexpensive receivers using the Global Position-
ing System achieve location accuracy of 10 meters with prob-
ability 95% outdoors [1], systems based on this technology
fail indoors due to limited reception and harsher environments
created by severe multi-path fading. Indoor solutions exist
which furnish submeter precision [2], [3], [4], however they re-
quire expensive hardware and/or sophisticated calibration. To
our knowledge, the system described in [5] achieves the best
performance available using cheap off-the-shelf equipment:
this benchmark algorithm locates a mobile user in hallways
within 1.5m with probability 77% given the proper placement
of IEEE 802.11 base stations. Even while maintaining this
accuracy, the system often reports logical errors such as in the
wrong cubicle of an office or even on the wrong side of a wall
when broadening the domain of application to within rooms.
Such performance proves unacceptable for applications such
as location-based recognition or emergency rescue operations.

In this paper, we describe an extension of the benchmark
algorithm using the same Markov localization, however incor-
porating system dynamics (necessitating no post-processing of
the output) and motion constraints which implicitly encode the
physical properties of the survey area. Our system retains the
benefits of theirs in its low cost, large-scale deployment to
most indoor environments without precision calibration, along
with all the features of wireless LAN including ETHERNET
connection and security, however extending the survey area
to the whole office environment while maintaining the same
precision without logical errors. Like theirs, we describe a
general Bayesian inference model which could be adapted to

a system with more sophisticated measurement instruments to
achieve submeter accuracy.

The paper organization follows: Section II describes the
physical system and defines the notation for the Markov
localization framework. Our key contribution lies in Sections
III and IV where we introduce the notions of tracks, neighbors,
and allowed and restricted states. We conduct a series of
experiments in Section V to quantify the performance of the
proposed algorithm in comparison to the benchmark algorithm,
followed by a brief conclusion in Section VI.

II. PRELIMINARIES

In our implementation, a mobile node estimates its location
by measuring the signal strengths of packets received from
a number Nb of fixed base stations deployed throughout a
survey area. The integer readings range from -255 to 0dBm.
The location system consists of two basic stages:

1) The training stage: Move the mobile node to a number
of anchor locations throughout the survey area and
compile signal strengths from the base stations to char-
acterize each location.

2) The localization stage: Move the mobile node to a
query location throughout the survey area and measure
the signal strengths from the base stations. Report the
location of the mobile node as the anchor location whose
compiled signal strengths are closest (by some norm) to
those measured at the query location.

An anchor point yi in a set Y of Np elements consists of
a location xi ∈ Rd, d = {2, 3}, an orientation θi = 1,−1,
and a collection of histograms for each base station, hik, k =
0, . . . , Nb − 1. Since no single continuous density function
for the measurement model adequately represents the signal
strength distribution [6], we model the multi-path fading char-
acteristics at each anchor point empirically through a series of
measurements. An observation z = [z0, . . . , zNb−1] comprises
a single signal strength reading from each of the base stations.
A series of Nm observations zl, l = 0, . . . , Nm − 1 at point
yi enables computing a histogram hik of signal strengths for
each base station indexed through k:

hik(ζ) =
1

Nm

Nm−1∑
l=0

δ(zl
k − ζ), −255 ≤ ζ ≤ 0 (1)

where δ represents the Kronecker delta function.
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III. MARKOV LOCALIZATION

A. First-Order Markov Process

Our model consists of a finite number Ns of states. State
sj = {s0

j , . . . , s
n−1
j } is a sequence of ordered points from

the set Y which represents the last n points traversed by the
mobile, if in that state. The benchmark algorithm uses a single
point as a state of the model; incorporating more points than
one captures not only the location of the mobile at a single
instant in time, but also the dynamics of motion. At each time
step t, the algorithm calculates the a posteriori probabilities of
the model p(st

j |z0, . . . , zt) given the observations since initial-
ization. A first-order Markov process governs the transition of
states from a time step t − 1 to the next [7]

p(st
j |z0, . . . , zt)=ηt·p(zt|st

j)
Ns−1∑
̃=0

p(st
j |st−1

̃ )·p(st−1
̃ |z0, . . . , zt−1),

(2)
where the normalizing term ηt = 1

/∑Ns−1
j=0 p(st

j |z0, . . . , zt)
enforces the law of total probability. The algorithm reports the
output point (location and orientation) of the system at each
step t as sn−1

∗ , s∗ = argmax
j

p(st
j |z0, . . . , zt).

Since an observation at time t affects only the component
of a state at the same time (and after), the a priori probability
p(zt|st

j) = p(zt|yi = sn−1
j ) is given by the histograms at

point yi

p(zt|yi) =
Nb−1∏
k=0

hik(zt
k). (3)

To improve the reliability of the system, our implementation
actually measures the signal strengths of packets both to and
from the base stations as two independent readings. Each point
in turn maintains two histograms per base station rather than
one, doubling the elements of the product in (3).

B. System Dynamics

As described in [5] and confirmed through our testing,
signal strengths fluctuate over time at the same point. Rather
than translate these perturbations into random motion, the
benchmark algorithm employs temporal averaging and out-
lier suppression by post-processing the output. While this
improves location tracking in their experiments knowing the
trajectories for simple walks up a hall and back, it fails with
more complex trajectories within a room. Rather than process
the output a posteriori, we encode the system dynamics in the
time-invariant state transition probabilities a priori to promote
fluent motion with constant velocity or direction, yet providing
for abrupt changes.

Each state maintains a limited number of states to which it
can transition at the next step in order to ensure continuity of
location in time. More precisely, the state transition probability
p(sj |s̃) is non-zero only for those candidate states sj which
meet the condition sl−1

j = sl
̃, l = 1, . . . , n−1; in otherwords,

if sj is a left-shift of s̃ with replacement of sn−1
j with another

element in Y . The system employs the first n − 1 points of

state s̃ to predict the next location x̂ in the sequence through
the (n − 1)-tap FIR filter

x̂ =
n−1∑
l=1

αl · xl
̃ =

n−2∑
l=0

αl · xl
j , (4)

where the coefficients αl denote the parameters of the op-
timum prediction filter [8] used in our implementation, but
others filters may be applied as well. The state transition
probabilities below encode the system dynamics by favoring
points sn−1

j closest to the predicated location x̂ assuming
Gaussian noise for the location model,

p(sj |s̃) =
1

σ
√

2π
d
e−

1
2σ2 ||xn−1

j
−x̂||2 , (5)

where σ controls the degree of falloff.

C. The CONDENSATION Algorithm

Grid-based Markov localization handles multi-modal and
non-Gaussian densities and can solve the wake-up robot and
kidnapped robot problems [9] by discretizing the the state
space at some resolution; however it suffers from the disad-
vantages of computational overhead and a priori commitment
to size of the state space. Computational overhead is indeed
an issue for location instruments which are often very small in
size [4], [11]. In our implementation, the number of potential
states increases exponentially with the order of the system
n, potentially burdening our COMPAQ IPAQs running only
at 200MHz, especially with most of the processing power
dedicated to the communication services.

The CONDENSATION algorithm, which falls into into the
general class of particle filters, offers an alternative approach
to grid-based Markov localization. Rather than represent a
posteriori density for each discretized state in the model,
it maintains a set of Nc << Ns samples drawn from
p(st−1

j |z0, . . . , zt−1) and propagates the density in an iterative
fashion to the next time step t. It has proven to be a powerful
tool in recent years in the context of Bayesian estimation and
computer vision. The details of the algorithm can be found in
[10].

IV. MOTION CONSTRAINTS

Radio location using signal strengths alone proves a difficult
task due to multipath fading and its intrinsic non-linearity:
points close to each other may bear very different signal
strengths while points farther apart very similar ones. This
makes raw mapping a query point to the closest anchor point
unreliable. The office environment typically offers between
25% and 40% walking space between desks, bookshelves,
cubicles, and other furniture and equipment. While such
obstacles severely constrain the paths of a human, they cannot
reliable differentiate two points a meter apart on opposite
sides of a desk given the free space between them, or even
two points a meter apart on opposite sides of a plaster or
drywall; yet applications such as location-based recognition
or fire-rescue operations require robust discrimination in these
examples respectively. While the signal strengths alone from
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multiple base stations may not suffice to isolate a signal point
in the training space, the sequence of points from the past
observations may be able to do so.

A. Tracks and Neighbors

Fig. 1 illustrates a section of the fourth floor of the NIST
North building in Gaithersburg, Maryland (not to scale to avoid
clutter). Six paths displayed in different shadings connect any
two locations in the office environment. The two arrows at
each location represent the two anchor points trained with
opposite antenna orientations, splitting a path into two tracks.
By training each point with the antenna orientation aligned
with the heading of the person, a human walking forward
on a path follows the points on either one track or its
complement track. Under the assumption that a human walks
only forward and that the antenna orientation remains constant
with respect to a person’s heading, we can impose motion
constraints to the system to promote motion along the tracks.
This assumption holds in many location systems today such as
popular ActiveBat, Cricket, or Radar, each requiring a beacon
device which could be fastened to a human’s belt or security
badge, or in other applications to a firefighter’s helmet.

Let each point in Y have a limited set of points, called
neighbors, that can immediately succeed it in a state seqeunce.
We impose motion constraints such that a mobile must traverse
a sequence of neighbors in order to reach one point from an-
other. Using a sequence of neighbors as an allowed state of the
model (and restricting states which do not so conform) proves
a highly effective manner to reconstruct a path from a series
of observations. While classical Kalman filtering may predict
the trajectory of a human through a wall by considering only
trajectory locations, motion constraints provide a blueprint of
the area encoded through the allowed states, so the system
knows that humans must go through doors to reach locations
on opposite sides of a wall. Both the notion of neighbors and
tracks can be encoded in the state model of the system.

Most points have three neighbors: 1. itself to allow static
motion in time; 2. next point on same track to allow motion
in the same direction; 3. point at same location on the
complement track to allow a change in direction. Exceptions
occur for points at the end of a track with no next point and
as a result only two neighbors, i.e. point 36; and for points
falling at the T-junction of paths with additional neighbors
enabling the mobile to switch paths, i.e. points 19 and 54
have additional neighbor 105 to enter Room 444 from either
direction in Hallway, and point 94 has neighbors 19 and 54
to exit the room walking into either direction. Note that point
105 does not have neighbors 19 and 54 and points 19 and 54
do not have neighbor 94, prohibiting walking backwards. In
order to promote motion along tracks, we restrict states with
more than one track transition between any two consecutive
points in its sequence and penalize state transition probabilities
in (5) between s̃ with no track transitions and sj with one
track transition by multiplying them by 0 < ptrans < 1. Table
I lists examples of allowed and restricted states in reference
to Fig. 1.

Clearly the system can also be trained for humans walking
backwards, penalizing the corresponding states with a smaller

TABLE I

ALLOWED AND RESTRICTED STATES FOR n = 4

Allowed Restricted Reason

0-0-1-2 0-2-2-3 2 not neighbor of 0
0-1-1-1 0-1-2-1 1 not neighbor of 2

0-1-72-73 0-1-71-72 71 not neighbor of 1
72-73-0-1 72-73-0-73 Changes tracks twice in sequence

71-71-72-73 2-71-2-71 Changes tracks twice in sequence

probability of occurrence. The system can also localize in
large, open spaces by creating a grid of points rather than
tracks and applying appropriate motion constraints.

V. EXPERIMENTAL SETUP AND RESULTS

A. Experimental Setup

In order to assess the performance of the proposed algorithm
in comparison with the benchmark algorithm, we conduct four
separate experiments in the confined areas labeled Room 441,
Room 444, Conference Room, and Hallway in Fig. 1. The
circles indicate the Nb = 5 base stations placed strategically
throughout the floor, from which we gather Nm = 100
measurements at each of the Np = 124 points at the rate
of 10Hz to compile the histograms; so it took roughly a half
hour to train the system plus the assignment of neighbors.
The localization stage was run at 2Hz: high enough to allow
tracking from normal to fast walking speed, yet low enough
to recognize state sequences with points at multiple locations.

To replicate the benchmark algorithm we took our algorithm
and set n = 1, removing our system dynamics and motion
constraints and replacing them with more relaxed ones such
“that people don’t travel too fast or change directions too
frequently,” as described in [5]. Our algorithm was run with
n = 5 resulting in Ns = 3334 allowed states. The CON-
DENSATION algorithm was used for both the proposed and
benchmark algorithms, using Nc = 200 samples for each.
The parameters for both algorithms were tuned to obtain the
best results for each independently, with Ptrans = 0.5 for the
proposed algorithm.

Our experiments not only quantify the location accuracy
of the two algorithms, but also classify logical errors reported
according to the individual area. The system reports a location
correctly if both the query and output points are:

• Rooms 441: on the same side of the partition (shaded in
black).

• Room 444: on the same side of the bookcase (shaded in
black).

• Conference Room: on the same half of the table (shaded
in black).

• Hallway: in the same of the three segments.

We carried out 100 trials for each experiment and compiled
statistics for both algorithms. Each trial consisted of the
following steps:

1) Move to an anchor point in the confined area and
initialize both algorithms with probability 1.0 at that
point.

2) Start both algorithms.
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Fig. 1. Section of the fourth floor of the NIST North building in Gaithersburg, Maryland.

3) Move to a query location1 within 1.5m of any anchor
point in the same confined area. While covering most of
the confined area, this also ensures that perfect localiza-
tion guarantees accuracy within 1.5m for all trials.

4) Let the algorithms stabilize and record for each:

• IF the algorithm commits a logical error, record X.
• ELSE, record the error distance between the query

location and the output point rounded to 0.25m.

5) Goto step 1.

B. Results

The results in [5] are also compiled from four experiments,
however just in separate hallways; the best of the four2 locates
77% of the trials within 1.5m before post-processing. In
our experiments with the benchmark algorithm, a significant
fraction of the trials which indeed localize within 1.5m are now
categorized as logical errors, causing this value to drop to 46%
(38% X) for Room 441, 60% (27% X) for Room 444, 37%
(48% X) for Conference Room, and 51% (42% X) for Hallway.
The respective values for the proposed algorithm follow: 74%
(20% X), 76% (15% X), 75% (10% X), and 77% (9% X). The
cumulative distribution function for the four experiments we
conducted appear in Fig. 2 for the proposed algorithm (solid
line) and the benchmark algorithm (dashed line).

The experiments conducted in Conference Room reveal the
greatest disparity in performance between the benchmark and
proposed algorithms. Here only free space lies between points
on opposite sides of the table, and as a result they bear
histograms too similar for robust discrimination between them.
This experiment underscores the strength of the proposed

1The trajectory between the initial anchor point and the query location was
often complicated, i.e. moving up to two times from one side of the bookcase
to another in Room 444 or around the table, switch direction, and back again
in Conference Room.

2Attributed to a relatively favorable placement of the base station in the
middle of this hallway.

algorithm, where information about the final point does not
suffice to isolate it; rather information about the trajectory
from the initial point must also be taken into consideration.
The proposed algorithm converged quickly and stably to a
point, while the benchmark algorithm often fluctuated between
two points (in which the average error was reported in com-
piling the statistics), necessitating post-processing.

Despite the temporal fluctuations in the point histograms,
the system performs reliably after one month elapsed upon
training, even after returning the base stations to their cabinets
numerous times for recharging and again redeploying them
each time to their marked positions. While the actual motion
of the mobile may not conform to any state of the model, the
algorithm estimates the best one according to the observations,
and proves robust to deviations. While augmenting the number
of states in the model by training the system with locations
less than a meter apart (or more orientations than two)
may enhance the recognition capabilities of the system, the
corresponding histograms may not differ sufficiently between
them, or even may be more similar to a point at a different
location. This makes the system more susceptible to to noise
and false alarm, fluctuating between a number of points.

VI. CONCLUSIONS AND FURTHER WORK

The application of our system easily extends to multiple
floors. Indeed the proposed algorithm proves more robust for
example by forcing the mobile user to descend a flight of stairs
to reach a lower floor through the allowed states, rather than
oscillate between two points a few meters apart with similar
histograms on different floors.

Research on our location system falls in the context of a
First-Responders Testbed, stressing the need for the ad-hoc
network to organize independently of any human interaction.
We are currently investigating approaches to merge the training
and localization stages, hence have the system learn the
point histograms as the mobile moves about with no a priori
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Fig. 2. Comparison of the proposed algorithm (solid line) to the benchmark algorithm (dashed line).

knowledge besides a blueprint of the survey area downloaded
from a public server and the positions of the base stations
deployed on site.
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