
AwareWare: An Adaptation Middleware for
Heterogeneous Environments

Qiang Wang, Liang Cheng

Laboratory Of Networking Group (LONGLAB, http://long.cse.lehigh.edu)
Department of Computer Science and Engineering, Lehigh University

Bethlehem, PA, USA, 18015
qiw3@lehigh.edu, cheng@cse.lehigh.edu

Abstract-A heterogeneous environment consists of a number
of dissimilar networks, computing devices, end users,
applications, and environmental conditions. Traditional
distributed applications are generally not aware of the
heterogeneities of the environment. In this paper we present
“AwareWare”, which is a middleware that facilitates applications
to be more adaptive in such a heterogeneous environment.
AwareWare addresses five types of heterogeneities and advocates
dynamic component reconfiguration as a unified approach for
both architectural and application level adaptation. AwareWare
includes environment measurement tools, an adaptation decision
module that is separated from other constructions of the
application, and reconfiguration mechanisms for component
based distributed applications. Prototype examples are presented
that demonstrate the potential use of the middleware.

I. INTRODUCTION

The terminology “heterogeneous” in Merriam-Webster
dictionary is defined as “consisting of dissimilar or diverse
ingredients or constituents”. A heterogeneous environment is a
distributed computing environment which consists of a number
of dissimilar computing elements, e.g. networks, devices, and
etc. Heterogeneity is an important characteristic of the today’s
computing environment: heterogeneous communication paths
across both wired and wireless domains in data networks [8];
various applications have been developed on portable devices
to communicate with PCs [7]; Web content delivery starts to
take into account of different display sizes of clients’ devices
[9]… With the advances in data communication and hardware
development, the computing environment will be more
heterogeneous. However, most traditional distributed systems
(e.g. groupware) assume that the environment is homogeneous,
i.e. computers with similar capacity are interconnected through
same type of network, and applications communicate with each
other without the awareness of the conditions of their peers.
With the presence of many different types of networks,
devices, and applications in use, a more sophisticated
distributed system must be able to handle heterogeneous
environments as well.

Challenging problems [10] arise when system developers
address the heterogeneity. The effort to develop a sophisticated
distributed system in a heterogeneous environment is
considerably extensive, which motivates us to develop a
middleware called AwareWare as a general framework to
facilitate adaptive application construction.

The rest of the paper is organized as follows. Section II
discusses five types of heterogeneities AwareWare addresses.
The analysis of the characteristics of heterogeneous
environments is the foundation to identify the most commonly
used functions as middleware APIs for application developers.
Section III summaries the related work. Section IV introduces
the middleware framework and advocates dynamic component
reconfiguration. The middleware consists of awareness
management tools, an adaptation decision module, and
reconfiguration mechanisms as a general approach for
adaptation to component based distributed applications.
Section V presents a traditional groupware system and an
adaptive sensor network as example applications that use the
middleware. Section IV discusses and concludes the paper.

II. AWARENESS FOR ADAPTATION

In this section, we discuss five major sources of
heterogeneities considered in our middleware, as shown in
Figure 1, i.e., the network, device, end user, application, and
environment. Based on awareness of these heterogeneities,
applications may adapt their behaviors accordingly.

Figure 1: A Heterogeneous Environment
Network-awareness: In heterogeneous environments,

multiple devices may connect to each other via different
network links, varying from high-speed LAN, dial-up, to
wireless connection, where the characteristics of the network
are different from each other. Even with a known network
connection, dramatic network performance changes are often
experienced during a particular communication session,
especially in wireless networks. An individual wireless channel
is also subject to path loss, fading, and environmental
interference, which presents the need for special treatment for

User-Aware Device-Aware Network-Aware

Wired
network

Wireless
network

Network type
Bandwidth
Latency
Jitter
…

CPU usage
Screen size
Fresh rate
Color depth
…

User preference:
Fast access
Image quality
…

Application

Application

App-Aware

Environment

Env.-Aware

Environment

IEEE Communications Society 0-7803-8533-0/04/$20.00 (c) 2004 IEEE1406

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on March 24, 2009 at 22:18 from IEEE Xplore. Restrictions apply.

wireless communication in many applications. The capability
to detect the existence and characteristics of wireless links is
included in our middleware. In addition to the application’s
own awareness, the application may also need to know the
information known to its peers (the peer’s awareness).
Bandwidth, latency, jitter, and etc. are commonly used to
specify the network characteristics.

Device-awareness: The need for device-awareness lies in the
fact that computing devices (e.g. PC, Palm) that host
applications in heterogeneous environments may vary
significantly in their device capacity parameters, namely CPU
power, display size, memory size, display refresh rate, and etc.
Moore’s law leads the computing performances to grow
exponentially, making the mixed use of powerful computers
and older computers a common place in the real world.
Devices are more diversified in pervasive computing, where
different types of devices are interconnected. The inequity of
the devices in a communication session can makes the devices
with lesser capacity vulnerable to large amounts of information
generated by high end devices, therefore results in degraded
user experience (and even worse, the machine may stop
responding to the local user’s input). It is necessary to protect
the less capable machines from being overwhelmed. Further,
different devices may require different presentation of the data.
For example, Internet Content Providers may need to change
their content presentations in order to fit different display size
of many hand held devices, e.g. Palm, cell phone, and etc.

User-awareness: End user is one of the most dynamic factors
in a computing environment, since they may have very
different preferences for a single application. For example,
some Web users may favor a faster download over the quality
of the content, while others vice versa. Users’ preferences may
also change dynamically. User awareness can be collected in
an explicit or implicit way. In an explicit approach, users can
specify their preferences through Human Computer Interfaces,
i.e., by selecting menus and dialog boxes. In an implicit
approach, software can identify the users’ preferences
intelligently by using an intelligent agent and/or machine
learning algorithms.

Application-awareness: Internal states of local and remote
applications can also be useful for adaptation. For example, in
a distributed Virtual Reality (VR) game, each application
broadcasts current avatar position/states to their peers. The
time for a graphic engine to render a scene varies significantly
with different scene complexities [11]. Knowing the rendering
time of a receiver may let an application adapt its data sending
rate. Therefore, adaptation middleware needs to exchange the
shared internal states across the network.

Environment-awareness: Physical environment can be
measured by sensor networks. A sensor network consists of
many sensor devices that measure the environment, and
communicate with each other through wireless link. Adaptation
can be triggered by external environmental events. One
example application is discussed in Section V.B.

After identifying five most significant parts of
heterogeneities, the goal of the AwareWare middleware is to
address them in a generic way to facilitate adaptation.

III. RELATED WORK

Heterogeneous environments attract more and more attention
in research community. Fig. 2 shows the related work in an
organized way. Most existing adaptation solutions either focus
only on network awareness (fixed networks, or wireless
networks) or device awareness (end hosts).

Heterogeneous
Environments

achieve a better
or consistent
Quality of
Service

Reservation

Adaptation

Device
aware

Network
aware

User
aware

different
display size of
devices

Content
Transformation

Content Filtering

(e.g. GUI)

(e.g. user agent)

specify users’
preferences

adaptation decision marking

Manual

Automatic

architecture

Centralized Distributed

model

Heuristic Rule-based

adaptation behavior

per-application
implementation

generic architecture
(e.g. middleware) Challenges Approaches

Figure 2: Classification of Related Work

The research in network aware generally aims to achieve a
better or consistent QoS (Quality of Service) over
heterogeneous network connections. Reservation and
adaptation are two basic approaches to achieve a better or
consistent QoS in heterogeneous networks. In a reservation-
based system, the system will dedicate the resources necessary
to an application to provide a certain level of quality. There
exists a significant amount of research in this area. AwareWare
is an adaptation approach. The advantage of implementing
adaptation based systems in middleware level is that it does not
require tight integration or modification of the best-effort
services in Operating System and network protocol stack.

In adaptation based systems, two approaches exist, and each
with distinct focuses. One approach is to dynamically
reconfigure the middleware itself, thus legacy applications do
not require any modifications. The other approach is that
reconfiguration occurs in the application level, which offers
more appropriate application specific adaptation choices.
AwareWare uses a hybrid approach, where message filtering
and transformation for heterogeneous devices are handled by
middleware reconfiguration, and application behavior
adaptations are realized through application reconfiguration.

Examples of adaptation based systems include Conductor
[6], Agile [4], and etc. Darwin project at UC-Berkeley [1]
provides a scalable and highly available proxy to assist
mobility and dynamic adaptation. Odyssey [5] is a platform for
adaptive mobile data access. Odyssey’s approach is to adjust
the quality of the data which the mobile user tries to access to

IEEE Communications Society 0-7803-8533-0/04/$20.00 (c) 2004 IEEE1407

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on March 24, 2009 at 22:18 from IEEE Xplore. Restrictions apply.

match available resources when there is less bandwidth.
Bolliger and Gross [12] presents a framework-based approach
to construct network aware applications. The framework
provides solutions to two fundamental challenges in network-
aware applications: how to find out the dynamic changes in
network service quality; and how to map high level application
centric quality measures to low level network-centric quality
measures.

Device aware research usually focuses on the services that
could support the difference type of devices, through content
transformation and filtering. By tuning the content for
particular devices, Darwin supports dynamic adaptation of
content for thin clients [1]. Correa and Marsic [13] describes
the content transformation for heterogeneous devices to
collaborate in Virtual Reality. The mappings (i.e. the semantic
transformation) transform an object’s 3D coordinates generated
from a 3D VR computer to 2D coordinates to be used in a 2D
hand held device. Furthermore, by specifying the different
levels of data consistency policy (varies from continuous
update, threshold update, action change update, to none
update) to different types of devices, network traffic can be
reduced for devices with poor network connections. However,
the central server approach they used in the research limits the
scalability of the system.

For adaptation decision making, from architecture point of
view, systems are either centralized or distributed, where a
centralized architecture uses a central server to manage
awareness information and each application can get an
indication of the resources available to it. A distributed
architecture needs to exchange the awareness among
distributed applications and the decision making probably
depends on partial information available. Trefftz, Marsic, and
Zyda [14] demonstrate a switchboard architecture as the
decision making algorithm to handle the heterogeneity in
virtual environments, where computing power, network speed,
and users’ preferences are different for different participant. By
solving the linear equations that defines policies and users’
preferences, the solutions are mapped back to control each
applications’ modality, e.g. to control the frequency of frame
updating. The main objective of their scheme is to allow
slower nodes to participate in the session by preventing fast
nodes from flooding slow nodes with too many messages.
Their approach also uses a central server as the resource
manager, therefore the adaptation decision making is
centralized. Our system differs from this architecture by
providing a distributed adaptation decision making as another
choice, therefore would be better suited for many other
situations, where the scalability is major consideration, or the
centralized server architecture is not available.

IV. MIDDLEWARE ARCHITECTURE

Adaptation middleware is a software system situated
between the operating system and applications with flexible
adaptation support. The AwareWare middleware consists of
five parts, as shown in Fig. 3: Awareness measurement tools

for network, device, end-user, application, and environment;
adaptation decision running time system; adaptation policy
language; message filtering and transformation; and dynamic
reconfiguration interface to applications.

application

modality 1

… …

modality n

Adaptation
Decision

Message
Filtering

Message
Transformation

Awareness
Manager

Message
Queues

component

component

component

Dynamic
Reconfiguration
Commands

Feedback
loop
control

Consistency
Manager

Multi-modal
communication

Device
Awareness

User Preference
Specification

Network
Awareness

Adaptation
Policy

Language

Application
Awareness

Environment
Awareness

O
perating System

Network

connection

AwareWare

Reconfigurable
components

Figure 3. AwareWare Middleware Architecture

A. Awareness Measurement Tools
There are many existing network awareness measurement

tools that collect network performance [2] (e.g. bandwidth,
latency, jitter, and etc.). Device characteristics (e.g. CPU
usage, memory, display size, frame refresh rate, battery
consumption, and etc.) are usually obtained through system
APIs. The user preference, in terms of high level expectation of
the service, is generally specified by graphic user interfaces.
Intelligent agents and advanced interaction interfaces are
interesting approach to identify users’ preference automatically
or semi-automatically.

B. Awareness Organization and Synchronization
Awareness is organized in a tree structure and can be easily

added, retrieved, and modified according to the name
convention. This approach provides a flexible way to integrate
more measurement tools, if needed in the future.

In distributed architecture, a number of synchronization
mechanisms can be used to maintain different levels of
consistency for awareness across the network. The consistency
management in middleware can be categorized into centralized
architecture and distributed architecture. We plan to support
both architectures. In the central architecture, there is a central
server to manage all awareness information from clients.
Therefore decision making is a centralized algorithm, based on
all information available at the server. In the distributed
architecture, each client maintains replicas of awareness from
other clients, and a consistency policy is assigned to each
individual replica in the time when the replica is initially
cloned. Since different applications may require different
levels of consistency, several consistency policies are included
in the middleware:
1. Automatic synchronization: An awareness producer
synchronizes its shared object whenever any changes occur.
2. Lazy synchronization: Synchronize the shared object only
when a receiver needs its value.

IEEE Communications Society 0-7803-8533-0/04/$20.00 (c) 2004 IEEE1408

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on March 24, 2009 at 22:18 from IEEE Xplore. Restrictions apply.

3. Conditioned synchronization: Only need to synchronize the
shared object when application-defined conditions are met.

C. Dynamic Reconfiguration
Adaptation tactics are specified in an adaptation policy

language. The language is interpreted and executed by run-
time support system.

From an architectural point of view, adaptation can be seen
as the reconfiguration of the system architecture with respect to
environment changes. Dynamic reconfiguration [3] is used in
AwareWare as the basis of the adaptation. AwareWare controls
applications which are configurations of components where the
configuration adapts at runtime. Therefore an application
consists of multiple reconfigurable components interacting
with each other through connections. A connection is a link
between one interface of a component and one interface of
another.

Adaptation functions usually are mixed with other codes,
making checking and verification a difficult job. However our
approach treats adaptation and configuration behaviors
explicitly and consistently, and separates the adaptation tactic
from the application. We implement a CORBA packaging
template for each dynamic reconfigurable component with
several standard reconfiguration primitives, (e.g.
blocking/unblocking a connection, serializing/restoring internal
states of a component, binding/unbinding a connection etc.).
Packaging codes for each component also handles connections
between components, tracks the component’s state, and
responds appropriately to reconfiguration primitives. Thus
complex reconfiguration mechanisms are handled transparently
to developers.

AwareWare uses an adaptation policy language to describe
adaptation tactics. The adaptation tactics are specific to the
application. Thus the developer decides what awareness should
be used, when reconfiguration should be invoked, and how an
adaptation tactic should be expressed in terms of
reconfiguration primitives. The language also contains the
specification of required and provided interfaces for each
component, and the interaction protocol between components.
Several tools are also proposed to analyze the specification for
correctness and automatically generate the configuration
infrastructure. The configuration infrastructure manages
instantiation and connection of components and enforces the
specified configuration behavior at runtime.

The decision module is a virtual machine that interprets the
adaptation tactic at run-time. The reconfiguration primitives
are used by the decision module to interact with components
when making a configuration change; and these are standard
primitives, not defined by system developers.

V. EXAMPLE APPLICATIONS

A. Adaptive Remote Application Sharing
Remote application sharing (i.e. remote screen sharing) is a

groupware system that captures the screen image and sends it
to the remote computers frame by frame frequently. Traditional
application sharing systems (e.g. Microsoft NetMeeting) send

the whole screen to a remote user, generally without awareness
of networks, devices and different user preferences. We
propose an adaptive application sharing system using
AwareWare.

AwareWare supports multi-modal communication. A
program has been implemented to identify all windows
components on the screen. In this way, each window can be
viewed as a modality (different communication channels) such
that each can have different adaptation behaviors. A user
interface can relate each window to different user preferences.
For example, the top-most window can be specified as “the
most important” one and the related user’s preference is “good
response time”. Other windows are “less important”. When the
network connection is poor (slow), the frame update rate of the
“less important” windows could be less frequent and the image
quality (in term of color depth of the screen capture image) of
these “less important” windows can be sacrificed. In this way,
the quality of “the most important” window is well preserved.

In each frame, each captured screen image is relatively large.
For example, a true color (4 bytes per pixel) image of a 1024 *
768 pixel screen is of approximately 3.14 M bytes. An
interactive application needs to send 10 update frames per
second to the remote computer, making compression
compelling in order to communicate to the remote computer
through low bandwidth connection, for example, dial-up
connection. However, compression demands CPU power and
increases overall delay. When CPU is busy and available
network bandwidth is sufficient, it is more interactive for the
application to send the data without compression. The decision
of whether the data needs to be compressed and which
compression algorithm to use is the key decision making.

User preferences

Bandwidth

CPU usage

Memory

Frame rate

Color depth

Compression

e.g. more interactive
high image quality

Decision Model

GetData

Send

component
reconfiguration

GetData

Compression
&Color Filter

Send

Architecture
Configuration 1

Architecture
Configuration 2

Source data:
Captured screen images

Constrained
Resources

Adaptation Goals

Adjustable
Parameters

Reconfigurable
Component

End User

Figure 4. Adaptive Remote Screen Sharing

The concept of dynamic reconfiguration is further illustrated

in this application, as shown in Fig. 4. It shows that the
decision making is a process of satisfying the adaptation goals
under the constraint of some resources, and use dynamic

IEEE Communications Society 0-7803-8533-0/04/$20.00 (c) 2004 IEEE1409

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on March 24, 2009 at 22:18 from IEEE Xplore. Restrictions apply.

reconfiguration as the basic mechanism to adjust application
behaviors. The application has two different configurations.
One configuration consists of the interconnection of three
components, as shown in the left part of Fig. 4, to get the
screen capture data, compress the data, and then send the data.
Another configuration is the interconnection of two
components, as shown in the right box of Fig. 4, to get the
screen capture data, and then send out without compression.
AwareWare monitors bandwidth, CPU and memory usage, and
decides which configuration to use, in order to fulfill user
perceived quality of service. By dynamic reconfiguration,
AwareWare changes application’s component configuration
and behavior dynamically.

B. Adaptive Sensor Networks
Using AwareWare, a sensor network can also work

adaptively. The sensor network is integrated with the Internet.
It consists of many distributed sensor nodes which are
deployed to monitor the environment such as temperature,
light, object movement, and etc.

Adaptation middleware serves not only as a gateway for the
sensor network to communicate with applications across the
Internet, but also contains the adaptation policies which control
the adaptation behavior of both the applications and the sensor
network. Thus the AwareWare provides a feedback loop
between applications and awareness modules. Consider a
sensor network deployed in a forest for wild fire monitoring. In
normal situations, sensors send environment data periodically.
When the monitored temperature becomes higher than a
threshold, which means that the forest might be on a “red
alert”, sensor nodes will be triggered to collect the temperature
data more frequently and other new information, e.g. humidity.
In one word, the awareness module (e.g. data collection
frequency, source, and fidelity) by the sensor network can be
adaptive through the feed-back loop.

VI. DISCUSSION AND CONCLUSION

In this paper, a novel architecture for adaptive middleware is
presented, and examples are illustrated to substantiate its
applications. The framework provides a promising general
solution of adaptation for heterogonous environments. Our
system differs from previous research in four major ways.

First, our system targets five sources of heterogeneity, as
discussed in Section II. Heterogeneous environment is an
active research area; however, there are few researches that
consider five sources of heterogeneity in an integrated
platform. Existing adaptation solutions either focus only on
network awareness (fixed networks, or wireless networks) or
device awareness. The lack of the systematic approach to all
heterogeneities motivates us to develop AwareWare.

Secondly, component reconfiguration is used as a unified
approach to handle architecture level and application level
adaptation. Component reconfiguration mechanism not only
can handle planned changes, e.g. the change of application
architectures corresponding to different adaptation tactics, but
also can handle unplanned changes. With the emergence of

different awareness measurement tools, different devices, and
different decision modules, the ability to handle unplanned
changes makes the system architecture for functionality
addition and changes. Furthermore, adaptation tactics usually
are mixed with other function codes, making checking and
verification a difficult job. In our approach, the adaptation
tactics are separated from other constructs of the application.

Thirdly, AwareWare provides a feedback loop for awareness
modules inside the middleware, as described in Section V.B. In
other words, the behavior of the awareness modules will also
be adaptive to the environment, in addition to the applications’
adaptive behavior. Current research in awareness measurement
simply treats measurement tools as an input module. The
feedback loop and interaction of different awareness
information further control the behavior of awareness
measurement tools. We believe that it needs to be addressed in
the middleware level since the measurement is an inherent part
of the middleware and the adaptation of measurement tools
itself is required by many applications.

ACKNOWLEDGMENTS

We thank Dr. Christine Hofmeister, Li Yu for discussions on
dynamic reconfiguration. Valuable comments from Scott
Frees, and members at LONGLAB are greatly appreciated.

REFERENCES
[1] Brewer, E.A., Katz, R.H., Chawathe, Y., Gribble, S.D, and et al., A

network architecture for heterogeneous mobile computing. IEEE
Personal Communications, 5(5), Oct. 1998.

[2] Cheng, L. and Marsic. I., Accurate bandwidth measurement in xDSL
networks, Computer Communications, Vol. 25(18), pp. 1899-1710. Nov.
2002.

[3] Agnew, B., Hofmeister, C., and Purtilo, J., Planning for change: a
reconfiguration language for distributed systems, IEE Distributed
Systems Engineering, 1(5): 313-322, Sept. 1994.

[4] Li, B., Agilos: A Middleware Control Architecture for Application-Aware
Quality of Service Adaptations, Ph.D. dissertation, UIUC, 2000.

[5] Noble, B., System support for mobile, adaptive applications, IEEE
Personal Communication, Feb. 2000.

[6] Yarvis, M.D., Reiher, P., Gerald, J.P., Conductor: Distributed Adaptation
for Heterogeneous Networks, Kluwer Academic, 2002.

[7] Isaacs, E., Walendowski, A, Ranganathan, D., Mobile instant messaging
through Hubbub, Communications of the ACM, 45(9), Sept. 2002.

[8] S. Biaz, Heterogeneous Data Networks: Congestion or Corruption?,
Ph.D. dissertation, Texas A&M University, Aug. 1999.

[9] Mérida, D., Fabregat, R., Urra, A., and Bueno, A., Analysis and
regeneration of hypermedia contents through Java and XML tools.
Proceedings of the International Conference on Information Technology:
Computers and Communications, April 2003.

[10] Daoud, F. and Mohan S., Challenges of personal environments mobility
in heterogeneous networks, Mobile Networks and Applications, Vol.
8, Issue 1, Feb. 2003.

[11] Funkhouser, T., and C. Sequin. Adaptive display algorithm for interactive
frame rates during visualization of complex virtual environments,
Computer Graphics, Vol. 27, pp. 247-254, 1993.

[12] Bolliger, J. and Gross, T., A framework-based approach to the
development of network-aware applications, IEEE Transaction on
software Engineering, Vol. 24, No. 5, pp. 376-390, 1998.

[13] Correa, C.D. and Marsic. I., A flexible architecture to support awareness
in heterogeneous collaborative environments, in Proceedings of the
Fourth International Symposium on Collaborative Technologies and
Systems, pp. 69-77, Orlando, FL, Jan. 2003.

[14] Trefftz. H., Marsic. I., and Zyda. M., Handling heterogeneity in
networked virtual environments, Presence: Teleoperators and Virtual
Environments, Vol. 12, No. 1, pp.37-51, Feb. 2003.

IEEE Communications Society 0-7803-8533-0/04/$20.00 (c) 2004 IEEE1410

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on March 24, 2009 at 22:18 from IEEE Xplore. Restrictions apply.

