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Bounding superposed on-off sources —
Variability ordering and majorization to the
rescue

Armand M. Makowski*

Abstract

We consider the problem of bounding the loss rate of the aggregation of
independent on-off sources in a bufferless model by the loss rate resulting
from the aggregation of i.i.d. on-off sources. This is done through a unified
framework based on the interplay of well-known results from the theory of
variability orderings with the concept of majorization ordering. In particular,
we use a basic comparison result to readily derive a bound of Rasmussen et
al. for heterogeneous sources and an upper bound of Mao and Habibi for
homogeneous sources, and to discuss a second upper bound proposed by
these authors. It is argued that this conjectured upperbound is too tight in
general, and should be replaced by new and provably correct upper bound.

1 Introduction

Traffic burstiness has long been considered a key factor for provisioning link and
buffer resources at ATM multiplexers. In a first step, these issues can be addressed
with the help of a simpléufferless model fed by fluid-like input traffic. An infor-
mation source is then characterized bylits-valued rate processR(t), ¢t > 0},

so that the source bursts at time: 0 with an instantaneous rate &ft) bps, say

for sake of definiteness. For obvious practical reasons, it is customary to require
the constraind < R(t) < P (t > 0) whereP is the peak rate of the source.
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1.1 Lossrates

In most situations of interest, the rate procésgt), ¢ > 0} can be assumed
ergodic (as we do from now on) in the sense that for:all 0,

1 T
7lim —/ 1[R(t) <z]dt =P[R <z| as. (1)
— 00 0
for someRR ;-valued rvR. If the rate process is stationary and ergodic, then (1)
holds with the steady-state rate variabledetermined through the weak conver-

genceR(t) =, R. Under (1) the source admits an average rate given by

m(R) := lim %/OTR(t)dt:E[R] @.s. )

If the traffic is offered for transmission over a a link operating’abps, only
min(R(t),C) bps can be accommodated, and in the absence of any buffer, the
remaining(R(t) — C)* ! bps represents the instantaneous loss rate over that link.
Under (1) the (average) loss rate of the sourBét), ¢ > 0} over theC bps link
is well defined and given by

L(R,C) = Tlijgo%/()T(R(t)—O)+dt
= E[(R-0O)'] as 3)

1.2 Multiplexing sources

While the definition (3) forL.(R; C') might appear too poor a marker of source
behavior to be of any use, its evaluation is nevertheless helpful either for di-
mensioning link capacity or as the basis for a Call Admission Control (CAC)
procedure [1, 2, 7]. In the latter instance, traffic carried on the link is typically
obtained by multiplexing several independent information sources. dburces
{R,(t), t >0} (n=1,..., N) are multiplexed on a link operating &tbps, the
total instantaneous rate is then given by

R(t) = Ry(t)+ ...+ Rn(t), t>0.
Under appropriate ergodic assumptions, it follows that

L(R;C) = L(Ri+...+ Rn;C)
= E[(Ri+...+ Ry —C)"] (4)

we writex™ = max(z, 0) for any scalar.




where the mutually independent i, . . ., Ry are the steady-state rate variables
for the component sources.

As indicated already in [2, 3], evaluating (4) can be computationally pro-
hibitive even in the simplest of cases due to the large number of sources that need
to be multiplexed at any given time. This difficulty is further exacerbated when
the component sources are statistically dissimilar (as is the case in practice) [2].
This state of affairs has prompted a searchugger bounds on loss rates which
are computationally efficient, and yet sufficienthtight to provide good approxi-
mations.

1.3 On-off sources

Most of these efforts have been carried out for the class of on-off sources (e.g., [1,
2,3, 7]). A source with rate proce$®(t), ¢t > 0} is said to be égeneralized) on-

off source ifR(t) alternates between two states, namely) = 0 (resp. R(t) =

P) when the source is silent (resp. active) at time= 0. Under the ergodic
assumption (1), such an on-off source admits a steady-statezratih finite
range{0, P}. In fact, it is easy to see that

P[R=P]=1-P[R=0] = f(R)
wheref(R) is theactivity factor of the source defined by
1 T
f(R) := lim —/ L[R(t) > 0]dt a.s. (5)
0

T—o0

For on-off sources, we have(R) = f(R)P, so that such sources are fully (and
equivalently) characterized by either of the p&iFs f(R)) or (P, m(R)). We find

it useful to represent the steady state rAtef the on-off sourcq R(t), ¢t > 0}
with peak rate” and activity factorf(R) as

R =4 PB(f(R))?

where forp in [0, 1], let B(p) denote asq0, 1}—valued (Bernoulli) random vari-
able (rv) withP [B(p) = 1] = p. We then refer to such an on-off source as the
on-off source P, B(f(R))).

1.4 Earlier bounds and new results

ConsiderN independent on-off sourcég,,, B( f,,)) with peak rateP,, and activity
factor f,, (n = 1,..., N); the resulting steady state rate for the aggregate traffic is

N
2_: FuBy(fn) (6)

2For twoR-valued rvsX andY with the same distribution, we writ¥§ =, Y.
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whereB;(f1), ..., By(fy) are independent Bernoulli rvs. The upper bounds de-
rived in the literature on loss rates (4) for the aggregate traffic (6) can be inter-
preted as loss rates for an aggregatiofeakr, say < N, i.i.d. on-off sources
with common peak raté’,.,, and activity factorf,.,,. The resulting steady state
rate for the aggregate traffic is now

L
Z PnewBZ(fnew) (7)

(=1

where B (fuew), - - -, Br(fnew) @re i.i.d. Bernoulli rvs. As will become apparent
in the forthcoming sections, the validity of the comparison

L(Z Pan(fn) : C) < L(Z pnewBZ(fnew); C)a C > 0 (8)

(=1

entails tradeoffs in that a smaller valuelofdesirable for obvious computational
reasons) corresponds to a larger valuefgy, (not desirable as it leads to looser
bounds).

Rasmussen et al. [7, p. 353] conjectured that when the sources in (6) have
identical peak rates, say, but possibly different activity parameters, the aggre-
gation (7) of N homogeneous on-off sources with identical peak ratg., = P
and activity parametef,., = N'(f1 + ... + fn), provides an upper bound.
This conjecture was recently established by Mao and Habibi [3, Thm. 1] from
basic principles. These authors also establish another upper bound [3, Thm. 3],
this time for V-homogeneous on-off sources, by replacing them withreduced
number of homogeneous on-off sources. Finally, they conjecture the validity of
an upper bound [3, Conjecture 1] which generalizes both the upper bound of Ras-
mussen et al. and their upper bound; a full discussion of this combined upper
bound can be found in [4, Thm. 3, p. 127].

Here, we revisit these upper bounds by establishing a general comparison re-
sult for weighted sums of independent Bernoulli rvs [Proposition 4]. We show
how this general result providesuaified vehicle for readily deriving the bound
of Rasmussen et al. for heterogeneous sources and the upper bound of Mao and
Habibi for homogeneous sources, and for discussing their second upper bound.
It is argued that this conjectured upperbound is too tight in general. We then use
Proposition 4 to generate a new upper bound which is provably correct.

The proper framework for addressing these issues (and similar comparisons
more generally) is one that combines stochastic orderings [9] with the notion of
majorization [6]: The variability orderings we use are tailor-made for comparing
loss rates as in (8), while majorization is useful for formally comparing degrees
of heterogeneity. The relevant definitions and facts are given in Section 2. This
is followed in Section 3 by a discussion of three simple operations that reduce
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variability; this material readily yields the general comparison result in Section 4.
Applications of the general result are presented in Section 5.

2 Stochastic orderings and majorization

The basic tools are introduced in this section.

2.1 Variability orderings

For R—valued rvsX andY’, we say thatX is smaller thart” in the convex (resp.
increasing convex) ordering if

E[p(X)] < E[p(Y)] (9)

for all mappingsy : R — IR which are convex (resp. increasing and convex)
provided the expectations in (9) exist; we write <., Y (resp. X <;.. Y). We
refer to these orderings as thariability orderings. Additional material on these
orderings can be found in the monographs [8] and [9].

2.2 Key facts

We now present well-known facts that help shape the approach taken here. First,
an equivalent definition of the convex increasing ordering [9, Thm. 1.3.1, p. 9].

Proposition 1 ForR-valued rvsX andY with finite expectations, we havé <.,
Y if and only if

E[(X-a)f| <E[(Y-a)], acR

Proposition 1 makes it clear why the variability orderings are likely vehicles for
carrying out the comparisons discussed earlier. Put simply, establishing the com-
parisonL(R; C) < L(R»;C) for all values ofC' between the loss rates of two
information sources with steady-state ratésand Rz, is equivalent to the com-
parisoni; <;.. Rs.

Next, we explore the impact of the constralhifX| = E [Y] [9, Thm. 1.3.1,
p. 9].

Proposition 2 ForRR-valued rvsX andY with finite expectations, we havé <.,
Y ifandonly if X <,., Y andE [X]| = E[Y].



Finally, the convex ordering is closed under independent addition [9, p. 9].

Proposition 3 Consider two sets of mutually independ®avalued rvsX, ..., Xy
andYy,...,Yy. If X, <. Y, foreachn =1,..., N, then

Xi4+... + Xy <Y1 +.. .+ YN

2.3 Majorization

Let K denote some given positive integer. For any veator (zi,...,7k)

in R™, letzq) < z < -+ < z(x) denote the components af arranged in
increasing order. For vectogsandy in RY, we say that: is majorized by y, and
write < y, whenever the conditions

k k
i=1 =1
hold with
K K
in = Zyi~ (11)
i=1 =1
Additional information regarding majorization can be found in the monograph [6].
Note that for anye in R*, we haver,,e < z withe = (1,...,1) in R*, and
Loy — ?((’Ifl + ... —|—.I'K)

3 Reducingvariability
Below we identify three operations that reduce variability, thus leading to com-

parisons in the ordering ..

3.1 Normalized Bernoulli rvs

We begin with a comparison result for renormalized Bernoulli rvs. Recall that for
pin [0, 1], let B(p) denote ar{0, 1}—valued rv withP [B(p) = 1] = p.

Lemmal The collection of rvsp~'B(p), p € (0,1]} is monotone decreasing
in the convex ordering, i.e.,

¢ 'B(q) <. p'B(p), p<gq.



In other words, increasingmakesp~' B(p) less variable.

Proof. We need to show that
E [p(¢7'B(9)] <E[e(r”'BW)], p<q (12)
for any convex mapping : R — IR, where
E [p(p ' B()| = (™) — ¢(0)) + 9(0), p € (0,1].

Hence, it suffices to establish (12) for convex mappipngslR — R such that
©(0) = 0. However, under this constraint, it is well known that- =~ y(z) is
non-decreasing of), oo) and the conclusion follows. u

3.2 Heterogeneity decreasesvariability

Forpin [0, 1]%, we define the N6 (p) as the sum

Sk(P) = Bi(pk)
k=1

where the Bernoulli rv3;(p1), . . ., Bk (px) are assumed mutually independent.

Lemma 2 For vectorgp andq in [0, 1)%, it holds thatSx(q) <.. Sk(p) when-
everp < q.

Proof. For any integer—convex mapping: IN — IR, we define the mapping
Dy [0, 1]K — Rby

Pk (p) = Elp(Sk(p)], pel0,1". (13)

Itis well known [6, F.1, p. 360] that the mappidg is Schur—concave in that the
conditionp < q implies®x(q) < ®x(p), and the conclusiofk(q) <.. Sk(p)
follows from the definition of the convex ordering,,. ]

The next result, originally due to Hoeffding [6, p. 359], is an immediate con-
sequence of Lemma 2.

Lemma 3 For any vectop in [0, 1], it holds thatS (p) <.. Sk(p..e) where
Pav = %(]h + ... +pK)



3.3 Linear combinations

Let{X,, n =1,2,...} denote a sequence of i.i.iR-valued rvs. The following
result is an easy consequence of Proposition B.2 in [6, p. 287]; see also B.2.b in
[6, p. 288].

Lemma4 For each positive integét, it holds that
K K
> @ Xp <ex Y pXi (14)
k=1 k=1

whenever < b in RX.

An immediate corollary to Lemma 4 is obtained by taking positive integers
L < K, and observing that < b in [0, 1]% with

a=K'1,...,1) and b=L"'(1,...,1,0,...,0).

Lemma5 For positive integeré < K, it holds that

1 K L

This last result was first derived by Marshall and Proschan [6, B.2.c, p. 288], and
formalizes the notion that averaging decreases variability.

4 Themain result

ConsiderN independent on-off sources as described in Section 1.3, where for
eachn = 1,..., N, then' source(P,, B,(f,)) has peak raté’, and activity
factor f,, so that its average rate,, is given by

my, = P, f.
As theseN sources are multiplexed, the resulting total average rate is simply
Miotal = M1 + ...+ Mmpy. (16)
Proposition 4 With P* selected so that

max P, := Po. < P*, a7
1,..,N



set

Myotal
= ) 18
= (18)
For any positive integelt < N, it holds that
N P* L
n=1
where the rvad3,(f*), ..., BL(f*) are i.i.d. Bernoulli rvs.

Thus, the aggregation of heterogeneous independent on-off sources can be
upper bounded in the sense of the convex ordering by an aggregation of fewer
related i.i.d on-off sources.

Proof. Foreachm =1,..., N, define

* Pn mTL
and note that
pnfn = P*f; = M,

so thatf* lies in (0, 1] since f* < f,. From this last equality we conclude by
Lemma 1 that

Fo'Bulfn) <eo 7' Bulf7)- (20)

where we take the Bernoulli 8, (f7), ..., By(f%) to be mutually independent
rvs.
With this in mind, we now get

i\f: Pan(fn) = i\f: Py fa (f;an(an
= ZP* Fi (£ Ba(f)
<er ZP* ( B (f2 ))

where the inequality follows from (20) via Lemma 3.
Next, we observe that



Invoking Lemma 3, with i.i.d. Bernoulli rv&:(f*), ..., By(f*), we find that

N N
P*> Bu(fy) <e P*) Bu(f")
n=1 n=1
1 N
= NP (N;Bn(f ))
1 L
< NP =Y Bif") (22)
L (=1
where the second comparison follows from Lemma 5. Combining (21) and (22)
readily leads to (19). [ |

5 Proposition 4in action

Proposition 4 will now be used to discuss the bounds of Rasmussen et al. [7] and
of Mao and Habibi [3, 4, 5]. GiveV independent on-off sourcé®’,, B, (f.))
(n=1,...,N), all these results express bounds of the form

N L
Z Pan(fn) Scac Pnew Z Bé(fnew) (23)
n=1 /=1
with i.i.d. on-off sources P,ey, Be(fnew)) (¢ = 1,..., L) for appropriate con-
StantsPew > Prax @nd freyw in (0, 1], and positive integel < N.
This upper bound (23) will flow from Proposition 4 #* and f* are selected
according to (17)-(18), so as to ensure the identification

NP~
Pnew = 24
; (24)
and Mot Mool
tota tota
new — * = - 25

oncel < N is chosen.

5.1 Thebound by Rasmussen et al. [7]

Rasmussen et al. assume = ... = Py =: P., and arbitrary activity factors
fi,- -, fv, sothatmga = P. X0, f.. Applying Proposition 4 withP* = P, =
P..« andL = N, we find that

* Miotal o i
e g
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and the bound of Rasmussen et al. is obtained in the form (23) with NV,

foew = f*and P, = P.. As should be clear from Lemma 3, this bound is
simply a well-known stochastic comparison result for sums of Bernoulli rvs due
to Hoeffding [6, p. 359].

5.2 Thefirst bound by Mao and Habibi [3, Thm. 3]
We are in the homogeneous case With= ... = Py =: P.andm; = ... =
my =: m.. Consequently, we hav, ., = P., miyta = Nm. and

my, Me
=— = — =1,...,N.

fn Pn PC Y n Y Y

WheneverP* andL are selected so th&t* > P, andL = [4] for some positive

integerU, itis plain that, < N while (18) yields

f* o Miotal o me

- NP* P*

Now, selectP* > P, so thatNTP* = UP,; this is always feasible by taking* =
% (%} P.. Applying Proposition 4 under these conditions, we get the upper bound
of Theorem 3 in [3] in the form (23) witlh, = (%L foew = fFand P, = UP..

5.3 The second bound by Mao and Habibi [4, Thm. 3]

In [3, Conjecture 1], Mao and Habibi propose an upper bound that combines their
earlier bound with that of Rasmussen et al.. This second bound is discussed as
Theorem 3 in both [4, p. 127] and [5], and deals wiXharbitrary independent
on-off sourceg P, B,,(f.)) (n=1,...,N).

Pick an arbitrary target valuB,.,, > P,.x. The conjectured bound is of the
form (23) with L = Lyz where

Poa
LMH:’V total

—‘ with ptotal:P1+"'+PN (26)

and

Myotal
new = 77— 27
f LMHP new ( )

At first, we try to check whether this second upper bound does indeed flow
from Proposition 4 by appropriately selectity and f* according to (17)-(18)
whenL = Lyy: ObviouslyLyy < N sinceP, a1 < N P and (27) is just (25).
Next, the value of”* which meets the requirement (24) obviously has to be given
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by P* = L]NVIH P,.w. Unfortunaly, the constrain®* > P, is usually not satisfied

as can be seen upon rewriting it in equivalent form as

N Prax
Phew

P, total
Prew

<[=—1I (28)

In fact, if (28) is to hold at all, it can only hold as an equality, in which case we
must haveP* = P,... Thus, in general, the conjectured bound of Mao and Habibi
is not a consequence of Proposition 4 unless

N P max
Phew

P total
Prew

=[5—1 (29)

5.4 A new provably correct upper bound

The state of affairs just uncovered leads us to suspect that the conjectured upper
bound might be in error, and indeed the end of Part 2b of the proof given in [4, p.
137] appears to be in error. As will become apparent shortly, the bound proposed
earlier is “too tight” with too few terms.
To see this, we recall that the comparison (19) will lead to (23) with a pre-

scribedtarget value P,.,, > Pnac UpON selecting”* and f* according to (17)-
(18), and a positive integdr < N, so that (24) and (25) hold. Thus, onEg.,, is
prescribed, the integdr < N and theauxiliary variable P* determine each other
via the relation

N P*

PHQW

under the constraintB,,.x < P* < Ppow.

Reductions in computations are achieved by selectingrtia est admissible
value of L, say L,;,, SO thatP* given via (24) satisfies (17). These constraints
yield

L=

(30)

L
Ly :=min{L=1,...,N: NPHQW > Prax ) (32)
whenceL,,;, and the corresponding* are now given by

Pmax
Prew

L min
N

Lpin = [N 1 and P*= Poew, (32)

so that

Myotal Myotal
f N P+ Lminpnew f ( )

The new upper bound is therefore of the form (23) with, terms. We note that
Ly < Liin.
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