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Bounding superposed on-off sources –
Variability ordering and majorization to the

rescue

Armand M. Makowski∗

Abstract

We consider the problem of bounding the loss rate of the aggregation of
independent on-off sources in a bufferless model by the loss rate resulting
from the aggregation of i.i.d. on-off sources. This is done through a unified
framework based on the interplay of well-known results from the theory of
variability orderings with the concept of majorization ordering. In particular,
we use a basic comparison result to readily derive a bound of Rasmussen et
al. for heterogeneous sources and an upper bound of Mao and Habibi for
homogeneous sources, and to discuss a second upper bound proposed by
these authors. It is argued that this conjectured upperbound is too tight in
general, and should be replaced by new and provably correct upper bound.

1 Introduction

Traffic burstiness has long been considered a key factor for provisioning link and
buffer resources at ATM multiplexers. In a first step, these issues can be addressed
with the help of a simplebufferless model fed by fluid-like input traffic. An infor-
mation source is then characterized by itsIR+-valued rate process{R(t), t ≥ 0},
so that the source bursts at timet ≥ 0 with an instantaneous rate ofR(t) bps, say
for sake of definiteness. For obvious practical reasons, it is customary to require
the constraint0 ≤ R(t) ≤ P (t ≥ 0) whereP is the peak rate of the source.
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1.1 Loss rates

In most situations of interest, the rate process{R(t), t ≥ 0} can be assumed
ergodic (as we do from now on) in the sense that for allx ≥ 0,

lim
T→∞

1

T

∫ T

0
1 [R(t) ≤ x] dt = P [R ≤ x] a.s. (1)

for someIR+-valued rvR. If the rate process is stationary and ergodic, then (1)
holds with the steady-state rate variableR determined through the weak conver-
genceR(t) =⇒t R. Under (1) the source admits an average rate given by

m(R) := lim
T→∞

1

T

∫ T

0
R(t)dt = E [R] a.s. (2)

If the traffic is offered for transmission over a a link operating atC bps, only
min(R(t), C) bps can be accommodated, and in the absence of any buffer, the
remaining(R(t)−C)+ 1 bps represents the instantaneous loss rate over that link.
Under (1) the (average) loss rate of the source{R(t), t ≥ 0} over theC bps link
is well defined and given by

L(R; C) := lim
T→∞

1

T

∫ T

0
(R(t) − C)+dt

= E
[
(R − C)+

]
a.s. (3)

1.2 Multiplexing sources

While the definition (3) forL(R; C) might appear too poor a marker of source
behavior to be of any use, its evaluation is nevertheless helpful either for di-
mensioning link capacity or as the basis for a Call Admission Control (CAC)
procedure [1, 2, 7]. In the latter instance, traffic carried on the link is typically
obtained by multiplexing several independent information sources. IfN sources
{Rn(t), t ≥ 0} (n = 1, . . . , N) are multiplexed on a link operating atC bps, the
total instantaneous rate is then given by

R(t) = R1(t) + . . . + RN (t), t ≥ 0.

Under appropriate ergodic assumptions, it follows that

L(R; C) = L(R1 + . . . + RN ; C)

= E
[
(R1 + . . . + RN − C)+

]
(4)

1We writex+ = max(x, 0) for any scalarx.
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where the mutually independent rvsR1, . . . , RN are the steady-state rate variables
for the component sources.

As indicated already in [2, 3], evaluating (4) can be computationally pro-
hibitive even in the simplest of cases due to the large number of sources that need
to be multiplexed at any given time. This difficulty is further exacerbated when
the component sources are statistically dissimilar (as is the case in practice) [2].
This state of affairs has prompted a search forupper bounds on loss rates which
arecomputationally efficient, and yet sufficientlytight to provide good approxi-
mations.

1.3 On-off sources

Most of these efforts have been carried out for the class of on-off sources (e.g., [1,
2, 3, 7]). A source with rate process{R(t), t ≥ 0} is said to be a(generalized) on-
off source ifR(t) alternates between two states, namelyR(t) = 0 (resp.R(t) =
P ) when the source is silent (resp. active) at timet ≥ 0. Under the ergodic
assumption (1), such an on-off source admits a steady-state rateR with finite
range{0, P}. In fact, it is easy to see that

P [R = P ] = 1 − P [R = 0] = f(R)

wheref(R) is theactivity factor of the source defined by

f(R) := lim
T→∞

1

T

∫ T

0
1 [R(t) > 0] dt a.s. (5)

For on-off sources, we havem(R) = f(R)P , so that such sources are fully (and
equivalently) characterized by either of the pairs(P, f(R)) or (P, m(R)). We find
it useful to represent the steady state rateR of the on-off source{R(t), t ≥ 0}
with peak rateP and activity factorf(R) as

R =st PB(f(R))2

where forp in [0, 1], let B(p) denote asn{0, 1}–valued (Bernoulli) random vari-
able (rv) withP [B(p) = 1] = p. We then refer to such an on-off source as the
on-off source(P, B(f(R))).

1.4 Earlier bounds and new results

ConsiderN independent on-off sources(Pn, B(fn)) with peak ratePn and activity
factorfn (n = 1, . . . , N); the resulting steady state rate for the aggregate traffic is

N∑
n=1

PnBn(fn) (6)

2For twoIR-valued rvsX andY with the same distribution, we writeX = st Y .
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whereB1(f1), . . . , BN(fN) are independent Bernoulli rvs. The upper bounds de-
rived in the literature on loss rates (4) for the aggregate traffic (6) can be inter-
preted as loss rates for an aggregation offewer, sayL ≤ N , i.i.d. on-off sources
with common peak ratePnew and activity factorfnew. The resulting steady state
rate for the aggregate traffic is now

L∑
�=1

PnewB�(fnew) (7)

whereB1(fnew), . . . , BL(fnew) are i.i.d. Bernoulli rvs. As will become apparent
in the forthcoming sections, the validity of the comparison

L(
N∑

n=1

PnBn(fn) : C) ≤ L(
L∑

�=1

PnewB�(fnew); C), C ≥ 0 (8)

entails tradeoffs in that a smaller value ofL (desirable for obvious computational
reasons) corresponds to a larger value forPnew (not desirable as it leads to looser
bounds).

Rasmussen et al. [7, p. 353] conjectured that when the sources in (6) have
identical peak rates, sayP , but possibly different activity parameters, the aggre-
gation (7) ofN homogeneous on-off sources with identical peak ratePnew = P
and activity parameterfnew = N−1(f1 + . . . + fN ), provides an upper bound.
This conjecture was recently established by Mao and Habibi [3, Thm. 1] from
basic principles. These authors also establish another upper bound [3, Thm. 3],
this time forN homogeneous on-off sources, by replacing them with areduced
number of homogeneous on-off sources. Finally, they conjecture the validity of
an upper bound [3, Conjecture 1] which generalizes both the upper bound of Ras-
mussen et al. and their upper bound; a full discussion of this combined upper
bound can be found in [4, Thm. 3, p. 127].

Here, we revisit these upper bounds by establishing a general comparison re-
sult for weighted sums of independent Bernoulli rvs [Proposition 4]. We show
how this general result provides aunified vehicle for readily deriving the bound
of Rasmussen et al. for heterogeneous sources and the upper bound of Mao and
Habibi for homogeneous sources, and for discussing their second upper bound.
It is argued that this conjectured upperbound is too tight in general. We then use
Proposition 4 to generate a new upper bound which is provably correct.

The proper framework for addressing these issues (and similar comparisons
more generally) is one that combines stochastic orderings [9] with the notion of
majorization [6]: The variability orderings we use are tailor-made for comparing
loss rates as in (8), while majorization is useful for formally comparing degrees
of heterogeneity. The relevant definitions and facts are given in Section 2. This
is followed in Section 3 by a discussion of three simple operations that reduce
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variability; this material readily yields the general comparison result in Section 4.
Applications of the general result are presented in Section 5.

2 Stochastic orderings and majorization

The basic tools are introduced in this section.

2.1 Variability orderings

For IR–valued rvsX andY , we say thatX is smaller thanY in the convex (resp.
increasing convex) ordering if

E [ϕ(X)] ≤ E [ϕ(Y )] (9)

for all mappingsϕ : IR → IR which are convex (resp. increasing and convex)
provided the expectations in (9) exist; we writeX ≤cx Y (resp.X ≤icx Y ). We
refer to these orderings as thevariability orderings. Additional material on these
orderings can be found in the monographs [8] and [9].

2.2 Key facts

We now present well-known facts that help shape the approach taken here. First,
an equivalent definition of the convex increasing ordering [9, Thm. 1.3.1, p. 9].

Proposition 1 ForIR-valued rvsX andY with finite expectations, we haveX ≤icx

Y if and only if

E
[
(X − a)+

]
≤ E

[
(Y − a)+

]
, a ∈ IR.

Proposition 1 makes it clear why the variability orderings are likely vehicles for
carrying out the comparisons discussed earlier. Put simply, establishing the com-
parisonL(R1; C) ≤ L(R2; C) for all values ofC between the loss rates of two
information sources with steady-state ratesR1 andR2 is equivalent to the com-
parisonR1 ≤icx R2.

Next, we explore the impact of the constraintE [X] = E [Y ] [9, Thm. 1.3.1,
p. 9].

Proposition 2 ForIR-valued rvsX andY with finite expectations, we haveX ≤cx

Y if and only if X ≤icx Y andE [X] = E [Y ].
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Finally, the convex ordering is closed under independent addition [9, p. 9].

Proposition 3 Consider two sets of mutually independentIR-valued rvsX1, . . . , XN

andY1, . . . , YN . If Xn ≤cx Yn for eachn = 1, . . . , N , then

X1 + . . . + XN ≤cx Y1 + . . . + YN .

2.3 Majorization

Let K denote some given positive integer. For any vectorx = (x1, . . . , xK)
in IRK , let x(1) ≤ x(2) ≤ · · · ≤ x(K) denote the components ofx arranged in
increasing order. For vectorsx andy in IRK , we say thatx is majorized by y, and
write x ≺ y, whenever the conditions

k∑
i=1

x(i) ≥
k∑

i=1

y(i), k = 1, 2, . . . , K (10)

hold with
K∑

i=1

xi =
K∑

i=1

yi. (11)

Additional information regarding majorization can be found in the monograph [6].
Note that for anyx in IRK , we havexave ≺ x with e = (1, . . . , 1) in IRK , and

xav =
1

K
(x1 + . . . + xK).

3 Reducing variability

Below we identify three operations that reduce variability, thus leading to com-
parisons in the ordering≤cx.

3.1 Normalized Bernoulli rvs

We begin with a comparison result for renormalized Bernoulli rvs. Recall that for
p in [0, 1], let B(p) denote an{0, 1}–valued rv withP [B(p) = 1] = p.

Lemma 1 The collection of rvs{p−1B(p), p ∈ (0, 1]} is monotone decreasing
in the convex ordering, i.e.,

q−1B(q) ≤cx p−1B(p), p < q.
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In other words, increasingp makesp−1B(p) less variable.

Proof. We need to show that

E
[
ϕ(q−1B(q))

]
≤ E

[
ϕ(p−1B(p))

]
, p < q (12)

for any convex mappingϕ : IR → IR, where

E
[
ϕ(p−1B(p))

]
= p(ϕ(p−1) − ϕ(0)) + ϕ(0), p ∈ (0, 1].

Hence, it suffices to establish (12) for convex mappingsϕ : IR → IR such that
ϕ(0) = 0. However, under this constraint, it is well known thatx → x−1ϕ(x) is
non-decreasing on(0,∞) and the conclusion follows.

3.2 Heterogeneity decreases variability

Forp in [0, 1]K , we define the rvSK(p) as the sum

SK(p) ≡
K∑

k=1

Bk(pk)

where the Bernoulli rvsB1(p1), . . . , BK(pK) are assumed mutually independent.

Lemma 2 For vectorsp andq in [0, 1]K , it holds thatSK(q) ≤cx SK(p) when-
everp ≺ q.

Proof. For any integer–convex mappingϕ : IN → IR, we define the mapping
ΦK : [0, 1]K → IR by

ΦK(p) ≡ E [ϕ(SK(p))] , p ∈ [0, 1]K . (13)

It is well known [6, F.1, p. 360] that the mappingΦK is Schur–concave in that the
conditionp ≺ q impliesΦK(q) ≤ ΦK(p), and the conclusionSK(q) ≤cx SK(p)
follows from the definition of the convex ordering≤cx.

The next result, originally due to Hoeffding [6, p. 359], is an immediate con-
sequence of Lemma 2.

Lemma 3 For any vectorp in [0, 1]K , it holds thatSK(p) ≤cx SK(pave) where
pav = 1

K
(p1 + . . . + pK).
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3.3 Linear combinations

Let {Xn, n = 1, 2, . . .} denote a sequence of i.i.d.IR-valued rvs. The following
result is an easy consequence of Proposition B.2 in [6, p. 287]; see also B.2.b in
[6, p. 288].

Lemma 4 For each positive integerK, it holds that

K∑
k=1

akXk ≤cx

K∑
k=1

bkXk (14)

whenevera ≺ b in IRK .

An immediate corollary to Lemma 4 is obtained by taking positive integers
L < K, and observing thata ≺ b in [0, 1]K with

a = K−1(1, . . . , 1) and b = L−1(1, . . . , 1, 0, . . . , 0).

Lemma 5 For positive integersL < K, it holds that

1

K

K∑
k=1

Xk ≤cx
1

L

L∑
�=1

X�. (15)

This last result was first derived by Marshall and Proschan [6, B.2.c, p. 288], and
formalizes the notion that averaging decreases variability.

4 The main result

ConsiderN independent on-off sources as described in Section 1.3, where for
eachn = 1, . . . , N , the nth source(Pn, Bn(fn)) has peak ratePn and activity
factorfn so that its average ratemn is given by

mn = Pnfn.

As theseN sources are multiplexed, the resulting total average rate is simply

mtotal = m1 + . . . + mN . (16)

Proposition 4 With P � selected so that

max
n=1,...,N

Pn := Pmax ≤ P �, (17)

8



set
f � :=

mtotal

NP �
. (18)

For any positive integerL ≤ N , it holds that

N∑
n=1

PnBn(fn) ≤cx
NP �

L

L∑
�=1

B�(f
�) (19)

where the rvsB1(f
�), . . . , BL(f �) are i.i.d. Bernoulli rvs.

Thus, the aggregation of heterogeneous independent on-off sources can be
upper bounded in the sense of the convex ordering by an aggregation of fewer
related i.i.d on-off sources.

Proof. For eachn = 1, . . . , N , define

f �
n :=

Pn

P �
fn =

mn

P �

and note that
Pnfn = P �f �

n = mn,

so thatf �
n lies in (0, 1] sincef �

n ≤ fn. From this last equality we conclude by
Lemma 1 that

f−1
n Bn(fn) ≤cx f �−1

n Bn(f �
n). (20)

where we take the Bernoulli rvsB1(f
�
1 ), . . . , BN(f �

N) to be mutually independent
rvs.

With this in mind, we now get

N∑
n=1

PnBn(fn) =
N∑

n=1

Pnfn

(
f−1

n Bn(fn)
)

=
N∑

n=1

P �f �
n

(
f−1

n Bn(fn)
)

≤cx

N∑
n=1

P �f �
n

(
f �−1

n Bn(f �
n)
)

= P �
N∑

n=1

Bn(f �
n) (21)

where the inequality follows from (20) via Lemma 3.
Next, we observe that

1

N

N∑
n=1

f �
n =

1

N

N∑
n=1

mn

P �
= f �.
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Invoking Lemma 3, with i.i.d. Bernoulli rvsB1(f
�), . . . , BN(f �), we find that

P �
N∑

n=1

Bn(f �
n) ≤cx P �

N∑
n=1

Bn(f �)

= NP �

(
1

N

N∑
n=1

Bn(f �)

)

≤cx NP �

(
1

L

L∑
�=1

B�(f
�)

)
(22)

where the second comparison follows from Lemma 5. Combining (21) and (22)
readily leads to (19).

5 Proposition 4 in action

Proposition 4 will now be used to discuss the bounds of Rasmussen et al. [7] and
of Mao and Habibi [3, 4, 5]. GivenN independent on-off sources(Pn, Bn(fn))
(n = 1, . . . , N), all these results express bounds of the form

N∑
n=1

PnBn(fn) ≤cx Pnew

L∑
�=1

B�(fnew) (23)

with i.i.d. on-off sources(Pnew, B�(fnew)) (� = 1, . . . , L) for appropriate con-
stantsPnew ≥ Pmax andfnew in (0, 1], and positive integerL ≤ N .

This upper bound (23) will flow from Proposition 4 ifP � andf � are selected
according to (17)-(18), so as to ensure the identification

Pnew =
NP �

L
(24)

and
fnew = f � =

mtotal

NP �
=

mtotal

LPnew
(25)

onceL ≤ N is chosen.

5.1 The bound by Rasmussen et al. [7]

Rasmussen et al. assumeP1 = . . . = PN =: Pc, and arbitrary activity factors
f1, . . . , fN , so thatmtotal = Pc

∑N
n=1 fn. Applying Proposition 4 withP � = Pc =

Pmax andL = N , we find that

f � =
mtotal

NP �
=

1

N

∑
n=1

fn

10



and the bound of Rasmussen et al. is obtained in the form (23) withL = N ,
fnew = f � andPnew = Pc. As should be clear from Lemma 3, this bound is
simply a well-known stochastic comparison result for sums of Bernoulli rvs due
to Hoeffding [6, p. 359].

5.2 The first bound by Mao and Habibi [3, Thm. 3]

We are in the homogeneous case withP1 = . . . = PN =: Pc andm1 = . . . =
mN =: mc. Consequently, we havePmax = Pc, mtotal = Nmc and

fn =
mn

Pn
=

mc

Pc
, n = 1, . . . , N.

WheneverP � andL are selected so thatP � ≥ Pc andL = 
N
U
� for some positive

integerU , it is plain thatL ≤ N while (18) yields

f � =
mtotal

NP �
=

mc

P �
.

Now, selectP � ≥ Pc so thatNP �

L
= UPc; this is always feasible by takingP � =

U
N

N

U
�Pc. Applying Proposition 4 under these conditions, we get the upper bound

of Theorem 3 in [3] in the form (23) withL = 
N
U
�, fnew = f � andPnew = UPc.

5.3 The second bound by Mao and Habibi [4, Thm. 3]

In [3, Conjecture 1], Mao and Habibi propose an upper bound that combines their
earlier bound with that of Rasmussen et al.. This second bound is discussed as
Theorem 3 in both [4, p. 127] and [5], and deals withN arbitrary independent
on-off sources(Pn, Bn(fn)) (n = 1, . . . , N).

Pick an arbitrary target valuePnew ≥ Pmax. The conjectured bound is of the
form (23) withL = LMH where

LMH = 
Ptotal

Pnew
� with Ptotal = P1 + . . . + PN (26)

and
fnew =

mtotal

LMHPnew
. (27)

At first, we try to check whether this second upper bound does indeed flow
from Proposition 4 by appropriately selectingP � andf � according to (17)-(18)
whenL = LMH: ObviouslyLMH ≤ N sincePtotal ≤ NPmax and (27) is just (25).
Next, the value ofP � which meets the requirement (24) obviously has to be given
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by P � = LMH

N
Pnew. Unfortunaly, the constraintP � ≥ Pmax is usually not satisfied

as can be seen upon rewriting it in equivalent form as

NPmax

Pnew

≤ 
Ptotal

Pnew

�. (28)

In fact, if (28) is to hold at all, it can only hold as an equality, in which case we
must haveP � = Pmax. Thus, in general, the conjectured bound of Mao and Habibi
is not a consequence of Proposition 4 unless

NPmax

Pnew
= 
Ptotal

Pnew
�. (29)

5.4 A new provably correct upper bound

The state of affairs just uncovered leads us to suspect that the conjectured upper
bound might be in error, and indeed the end of Part 2b of the proof given in [4, p.
137] appears to be in error. As will become apparent shortly, the bound proposed
earlier is “too tight” with too few terms.

To see this, we recall that the comparison (19) will lead to (23) with a pre-
scribedtarget valuePnew ≥ Pmax upon selectingP � andf � according to (17)-
(18), and a positive integerL ≤ N , so that (24) and (25) hold. Thus, oncePnew is
prescribed, the integerL ≤ N and theauxiliary variableP � determine each other
via the relation

L =
NP �

Pnew
(30)

under the constraintsPmax ≤ P � ≤ Pnew.
Reductions in computations are achieved by selecting thesmallest admissible

value ofL, sayLmin, so thatP � given via (24) satisfies (17). These constraints
yield

Lmin := min{L = 1, . . . , N :
L

N
Pnew ≥ Pmax} (31)

whenceLmin and the correspondingP � are now given by

Lmin = 
N Pmax

Pnew

� and P � =
Lmin

N
Pnew, (32)

so that
f � =

mtotal

NP �
=

mtotal

LminPnew
= fnew (33)

The new upper bound is therefore of the form (23) withLmin terms. We note that
LMH ≤ Lmin.
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