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Abstract

To achieve near-capacity in systems employing multiple antennas, an iterative detection scheme must be used. A

full A Posteriori Probability (APP) MIMO detector is associated with a convolutional code or a turbo code. However,

the APP inner detector presents quickly a prohibitive complexity and schemes known as list sphere decoders have

been developed to reduce this complexity. In this paper, we provide a new reduced-complexity MIMO list detector

based on the Particle Filtering (PF) methods. This detector can be seen as a tree-search detector, which uses the a

priori information to explore the paths of the tree. We show that the average number of paths analyzed by the PF

detector decreases at each iteration. Moreover, it is adapted according to the signal-to-noise ratio. We compare the

performance and the complexity of the PF detector and the list sphere decoder.

I. INTRODUCTION

In a Multiple-Input-Multiple-Output (MIMO) system, the optimal detector that minimizes the average

error probability is the Maximum Likelihood (ML) detector, if the channel matrix is perfectly known at

the receiver. However, this detector cannot be often realized, because its exponential complexity becomes

quickly prohibitive [1]-[2].

The ML detection can be interpreted as a search problem of the closest point in a lattice [1] and different

algorithms, generally known as sphere decoders [3]-[4]-[5] -[6], have been developed to achieve this search

with a polynomial complexity. For a very complete survey, see [7]. In [8], a list version of sphere decoder

is considered to iteratively detect and decode the data stream in a Vertical-Bell LAbs layered Space-Time

(V-BLAST) scheme [9], combined with an outer channel code. This method approximates the optimal joint

detector-decoder to achieve near-capacity with low complexity. In [2], the detection problem analyzed by



[8] is seen as a search of the most likely path in a tree. Hence, a list sequential decoding technique based on

the stack algorithm is developed and compared with the list sphere decoder of [8].

In this paper, we propose to solve the detection problem of [8] through the tree described in [2], by using

the Particle Filtering (PF) methods [10]-[11]. In fact, the PF methods applied to a discrete state space can

be interpreted as a reduced-complexity tree-search algorithm, as shown in [12]-[13]. Furthermore, the PF

methods present the advantage to exploit the a priori information and to provide the extrinsic information

in a natural way [14]. In [15], the PF methods have been already applied to a V-BLAST structure in a non-

iterative manner. Moreover, the absence of the tree-search interpretation prevents the comparison with the

existing algorithms.

This paper is organized as follows. In Section II the system model is presented. The structure of the PF

detector is derived in Section III. Finally, the performance and the computational complexity of the proposed

algorithm are given and compared in Section IV.

II. SYSTEM MODEL

Fig. 1 shows the considered iterative V-BLAST scheme with NT transmit and NR receive antennas. We

consider NR ≥ NT . The data stream u is encoded with an error correcting code and interleaved to obtain

the vector c = [c1, · · · , cNT
]T of coded bits. Each element of c is ci = [ci1, · · · , ciM ] for i = 1, · · · , NT .

We assume that the binary digits cij take independent values from {+1,−1}, where +1 is the null element

in GF(2). The sequence c is mapped into the complex vector s = [s1, · · · , sNT
]T of symbols. Each element

si = map(ci) is a symbol of a complex modulation (such as BPSK, QPSK, 16-QAM, ...) and M is the

number of bits per symbol. For each transmit antenna, the transmitted energy is Es/NT , where Es is the

energy per symbol, such that the total transmitted energy through the NT transmit antennas is independent

from NT .

The received vector is described by the complex MIMO matrix model:

y = Hs + n, (1)

where y = [y1, · · · , yNR
]T is the vector of received complex symbols, H is the channel matrix of dimension

NR × NT with each element being an independent realization of a zero-mean complex Gaussian random

variable of variance 1/2 per real dimension and n = [n1, · · · , nNR
]T is a vector of independent zero-mean

complex Gaussian noise with variance σ2 per real dimension. We assume that H is perfectly known at the

receiver. The model (1) is equivalent to the following real-valued equation:

r = Bx + v, (2)



where r is a 2NR × 1 vector obtained by substituting each element of y with [Re(yi) Im(yi)]
T , x and v are

built in a similar way from s and n respectively and B is a 2NR ×2NT matrix obtained from H by replacing

each element hij by the matrix: 


Re(hij) −Im(hij)

Im(hij) Re(hij)


 . (3)

In the search of the closest lattice point, the expression (2) is typically rewritten in a different manner. By

performing the Gram-Schmidt orthonormalization of the columns of B or, equivalently, by applying the QR

decomposition on B, B assumes the form:

B = [QQ̃]




R

0


 , (4)

where Q and Q̃ are unitary matrices of dimensions 2NR × 2NT and 2NR × (2NR − 2NT ) respectively, R is

a 2NT × 2NT upper triangular matrix with positive diagonal element and 0 is a (2NR − 2NT ) × 2NT zero

matrix. By applying (4) in (2) and by multiplying by QT , the model (2) becomes:

r̃ = Rx + ṽ, (5)

where r̃ = QT r and ṽ = QTv. Thanks to this decomposition, we can first detect Im(sNT
), then Re(sNT

)

given Im(sNT
), Im(sNT−1) given Im(sNT

) and Re(sNT
) and so on, up to Re(s1). Hence, the ML detection

of the symbols si can be performed on a tree with 2NT levels [2].

III. THE MIMO PARTICLE DETECTOR

The PF methods, even known as sequential Monte Carlo methods, represent the most powerful approach

for the sequential estimation of the hidden state of a nonlinear dynamic model [10]-[11]. The solution

to this problem depends on the knowledge of the Posterior Probability Density (PPD) of the hidden state

given the observations. Except in a few special cases, it is impossible to analytically calculate a sequential

expression of this PPD. It is necessary to adopt numerical approximations. The PF methods provide an

iterative approximation of the PPD by weighted points or particles that evolve in the state space. Therefore,

these methods give a discrete approximation of the continuous space of the hidden state.

According to (5), the aim of the PF methods is to perform the Maximum A Posteriori (MAP) criterion on

the sequence x1:2NT
= {x1, · · · , x2NT

}:

x̂1:2NT
= arg max

x1:2NT

p(x1:2NT
|r̃1:2NR

), (6)



where x1 = Im(sNT
), x2 = Re(sNT

), · · · , x2NT
= Re(s1) and r̃1:2NR

= {r̃1, · · · , r̃2NR
} is the sequence

of the element of r̃ taken in an inverse order. We assume that NR = NT = N/2 and we use the QPSK

modulation. Then, each symbol xn of the sequence x1:2NT
takes its value in the finite set {+1/

√
2,−1/

√
2}.

The extensions to the case NR > NT and to more complex modulations are straightforward. The PF methods

approximate sequentially the PPD in (6) with weighted particles:

p(x1:N |r̃1:N) ≈
Np∑
i=1

w̃
(i)
N δ(xN − x

(i)
N ) · · · δ(x1 − x

(i)
1 ), (7)

where Np is the number of particles, w̃
(i)
N is the normalized importance weight at the level N associated

with the particle i, δ(xn − x(i)
n ) denotes the Dirac delta centered in xn = x(i)

n and x(i)
n is the value of xn

associated with the particle i. This approximation is achieved by using the Sequential Importance Sampling

and Resampling (SISR) technique [10].

We observe that the PF methods are applied to the discrete state space of the data. In this case, the PF

methods can be seen as a tree-search algorithm [12]-[13], where the particles explore the state space in

groups. An example of particle tree is represented in Fig. 2.

Each group of particles at a level n in the tree is characterized by:

• the sequence x
(i)
1:n = x

(i)
1 , · · · , x(i)

n , where the index i refers to all the particles contained in the considered

group;

• the non-normalized importance weight w(i)
n ;

• the normalized importance weight w̃(i)
n ;

• the number of the particles in the group.

The root of the tree is a group containing all the particles Np. The non-normalized importance weights w
(i)
0

are initialized to 1 and the normalized importance weights w̃
(i)
0 to 1/Np. The state space is discrete. Then,

the particles can only be moved towards the possible states of the system. In fact, for each group at a level

n − 1 two values are possible for the current symbol xn: +1/
√

2 and −1/
√

2. Hence, the particles will be

divided in two groups. In the conventional SISR algorithm, the evolution of the particles is achieved with

an importance sampling distribution. For the transition from level n − 1 to level n , the particles are drawn

according to the importance function π(x(i)
n |x(i)

1:n−1, r̃1:n). We choose the optimal importance function, which

minimizes the variance of the importance weights of the particles [10]:

π(x(i)
n |x(i)

1:n−1, r̃1:n) = p(x(i)
n |x(i)

1:n−1, r̃n). (8)

In this case, the particles cannot be drawn because the states are discrete. However, the particles of a group

at level n − 1 are divided proportionally to the importance function in two groups at level n. Owing to the



indivisibility of the particles, it can occur that some groups are empty. The path associated with an empty

group is eliminated.

We calculate (8) for xn = +1/
√

2. The calculation for xn = −1/
√

2 is similar. By applying the Bayes

theorem, the importance function assumes the form:

p(x(i)
n = +1/

√
2|x(i)

1:n−1, r̃n)

=
p(r̃n|x(i)

n,+)p(x(i)
n = +1/

√
2|x(i)

1:n−1)∫
p(r̃n|x(i)

n , x
(i)
1:n−1)p(x

(i)
n |x(i)

1:n−1)dx
(i)
n

, (9)

where x
(i)
n,+ = (x(i)

n = +1/
√

2), x
(i)
1:n−1. Since we can consider that the symbols transmitted by the different

antennas are independent, we can write:

Pn,+ = p(x(i)
n = +1/

√
2) = p(x(i)

n = +1/
√

2|x(i)
1:n−1). (10)

Therefore, (9) becomes:

p(x(i)
n = +1/

√
2|x(i)

1:n−1, r̃n)

=
p(r̃n|x(i)

n,+)Pn,+

p(r̃n|x(i)
n,+)Pn,+ + p(r̃n|x(i)

n,−)Pn,−
. (11)

From (5), we observe that the probability density p(r̃n|x(i)
n,+) is Gaussian with mean x

(i)
n,+ and variance σ2.

The same observation is valid for p(r̃n|x(i)
n,−). Moreover, the probabilities Pn,+ and Pn,− are calculated from

the a priori information about the bits clm, where l = 1, · · · , N/2 and m = 1, 2 for the QPSK modulation

and Gray mapping between the bits and the symbols. Then, the exploration of the paths in the tree depends

on the a priori information.

Since we use the optimal importance function, the non-normalized importance weights are given by [10]:

w(i)
n = w

(i)
n−1p(r̃n|x(i)

1:n−1), (12)

where:

p(r̃n|x(i)
1:n−1) = p(r̃n|x(i)

n,+)Pn,+ + p(r̃n|x(i)
n,−)Pn,−. (13)

The normalized importance weights are calculated by:

w̃(i)
n =

w(i)
n∑Np

j=1 w
(j)
n

. (14)

This algorithm presents a degeneracy phenomenon. After a few iterations of the algorithm, only one

particle has a normalized weight almost equal to 1 and the other weights are very close to zero. Therefore, a



large computational effort is devoted to updating paths without almost no contribution to the final estimate.

In order to avoid this behavior, different strategies of resampling of the particles have been developed [11].

For this application, we choose the following procedure: if the number of group with one particle is greater

than 35% of the particles, if the number of groups is greater than 50% of the particles and we are not at

the final level N , the particles are uniformly redistributed according to their normalized weights. After a

resampling phase, the non-normalized weights are reinitialized to 1 and the normalized weights to 1/Np.

For a justification of this choice, see [13].

The PF algorithm can be summarized in the scheme shown in Fig. 3. In this scheme, Gn denotes the

number of groups at level n, gn is the generic index associated with a group at level n and N gn
p the number

of particles in the group gn.

At the final level N , the PF detector provide the extrinsic information about the bits clm from their A

Posteriori Probabilities (APP). The APP of the bit clm is expressed in the form of a log-likelihood ratio

(L-value):

L(clm|r̃1:N) = ln
p(clm = 1|r̃1:N)

p(clm = 0|r̃1:N)
. (15)

The probabilities in (15) are approximated by the particles as follows:

p(clm = 1|r̃1:N) ≈ ∑
i∈S−

w̃
(i)
N δ(xN−2l−m+3 − x

(i)
N−2l−m+3) (16)

and

p(clm = 0|r̃1:N) ≈ ∑
i∈S+

w̃
(i)
N δ(xN−2l−m+3 − x

(i)
N−2l−m+3), (17)

where S− and S+ represent the sets of particles with xN−2l−m+3 = −1/
√

2 and xN−2l−m+3 = +1/
√

2

respectively and we have taken into account that the PF detector detects first the imaginary part of the

symbol transmitted through the antenna N/2, then its real part, the imaginary part of the symbol transmitted

through the antenna N/2− 1, its real part and so on. The well known relation that permits the calculation of

the extrinsic information LE(clm|r̃1:N) from the APP and the a priori information LA(clm) is:

LE(clm|r̃1:N) = L(clm|r̃1:N) − LA(clm). (18)

IV. SIMULATION RESULTS

In this section, we give simulation results representing the performance of the proposed PF detector. The

adopted performance measure is the Bit Error Rate (BER) versus the Signal-to-Noise Ratio (SNR) Eb/N0,



where Eb denotes the signal energy per transmitted information bit and N0/2 = σ2 the double-sided noise

power spectral density. The relation between Eb and Es is the following [8]:

Eb

N0

∣∣∣∣dB
=

Es

N0

∣∣∣∣dB
+ 10 log10

NR

RNT M
, (19)

where R is the rate of the outer code. We assume an ergodic channel with 8 transmit and 8 receive antennas.

The channel matrix H, perfectly known at the receiver, changes independently at each channel use. In

order to compare our performance with the results of [8], the transmission is organized in blocks of 9216

information bits. The outer code is a Parallel Concatenated Convolutional (PCC) code composed of two

(7,5) convolutional codes. The code rate R = 1/2 is obtained by puncturing. Then, considering QPSK

modulation (M = 2), (19) becomes:
Eb

N0

∣∣∣∣dB
=

Es

N0

∣∣∣∣dB
. (20)

For each block of information bits, we perform 4 global iteration for the MIMO detection and 8 iteration

for the iterative decoding of the PCC code. The full tree of the MIMO detector has 216 possible paths and

we apply the PF methods in order to analyze only a subset of these paths. Fig. 4 shows the performance

of the PF detector with 1000 particles for the 4 global iterations. We can observe the improvement of the

performance due to the turbo scheme. For this detector, in Fig. 5 we give the average number of the paths

at the end of the tree considered for the calculation of the extrinsic information. Since the exploration of

the tree in the PF detector depends on the a priori information, at each iteration the average number of paths

decreases significantly. Moreover, this average number is adapted according to Eb/N0.

In Fig. 6 we compare the performance of the PF detector with the one of the list sphere decoder presented

in [8], both obtained at the fourth iteration. The performance of the list sphere decoder with a number of an-

alyzed paths of 256,128,64,32,16 and the one of the PF detector with 1000 and 500 particles are considered.

The respective average numbers of paths analyzed by the PF detector are shown in Fig. 7.

Thanks to the decreasing of the average number of path at each iteration, the PF detector with 1000

particles reaches the BER = 3.3 · 10−5 at 2.8 dB by analyzing only 1.0019 paths during the fourth iteration.

Instead, the list sphere decoder considers always 128 paths at each iteration for the same BER. If we reduce

the number of particles to 500, we can observe at BER = 10−4 a performance degradation of 0.46 dB with

respect to the one of the PF detector with 1000 particles. This loss of performance is due to the decrease

of the number of paths analyzed by the PF detector during the first iteration, even if the average number of

paths at the fourth iteration is always equal to about 1.

Although the PF detector represents a suboptimal solution, it achieves near-ML performance with a lower

complexity with respect to the list sphere decoder.



V. CONCLUSION

In this paper, we have proposed to use the PF methods as reduced-complexity MIMO detector in an

iterative turbo scheme. We have developed a soft-input soft-output PF MIMO detector and we have shown

how this algorithm can be seen as a reduced-complexity tree-search algorithm. We have compared the

performance and the complexity of the proposed detector with the ones of the list sphere decoder presented

in [8]. We have observed that the computational complexity of the PF detector is adapted according to the

signal-to-noise ratio. Furthermore, since the exploration of the paths in the tree depends on the a priori

information, we have noted that the average number of analyzed paths decreases at each iteration of the

turbo detection structure. Then, we have shown that we can reach the same performance of the list sphere

decoder with lower complexity.
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The PF algorithm

• Initialize:

G0 = 1;

w
(i)
0 = 1, ∀i ∈ 10;

w̃
(i)
0 = 1/Np, ∀i ∈ 10;

N10
p = Np.

For n = 1, · · · , N :

• For gn−1 = 1, · · · , Gn−1:

- Calculate p(x(i)
n = +1/

√
2|x(i)

1:n−1, r̃n) and

p(x(i)
n = −1/

√
2|x(i)

1:n−1, r̃n) using (11);

- Divide the particles of gn−1 in the two groups

(2g − 1)n and (2g)n proportionally to

p(x(i)
n = +1/

√
2|x(i)

1:n−1, r̃n) and

p(x(i)
n = −1/

√
2|x(i)

1:n−1, r̃n);

- Update N (2g−1)n
p and N (2g)n

p ;

- Update x
(i)
1:n = {x(i)

1:n−1, +1/
√

2}, ∀i ∈
(2g − 1)n and x

(j)
1:n = {x(j)

1:n−1,−1/
√

2},
∀j ∈ (2g)n;

- Calculate w(i)
n , ∀i ∈ (2g − 1)n and w(j)

n ,

∀j ∈ (2g)n using (12);

• Eliminate the empty groups and update Gn;

• Calculate w̃(i)
n , ∀i ∈ gn = 1, · · · , Gn using

(14);

• If (number of groups with 1 particle > 0.35Np

and Gn > 0.5Np and n �= N ), resample the

particles according to their normalized wheights

and reinitialize w(i)
n = 1 and w̃(i)

n = 1/Np,

∀i = 1, · · · , Np.

Fig. 3. The steps of the PF algorithm.
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Fig. 4. BER versus Eb/No: PF detector with 1000 particles.
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Fig. 5. Complexity versus Eb/No: PF detector with 1000 particles.
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