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Abstract-QoS routing solutions can be classified into two cate-
gories, state -dependent and time -dependent, according to their 
awareness of the future traffic demand in the network. Com-
pared with representative state-dependent routing algorithms, a 
time-dependent variation of WSP – TDWSP – is proposed in 
this paper to study the role of traffic forecasting in QoS routing, 
by customizing itself for a range of traffic demands. Our 
simulation results confirm the feasibility of traffic forecasting in 
the context of QoS routing, which empowers TDWSP to achieve 
better routing performance and to overcome QoS routing 
difficulties, even though completely accurate traffic prediction is 
not required. The case study involving TDWSP further reveals 
that even a static forecast can remain effective over a large area 
in the solvable traffic demand space, if the network topology and 
the peak traffic value are given. Thus, the role of traffic 
forecasting in QoS routing becomes more prominent. 
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I. INTRODUCTION 

Over the past few decades, the topic of IP QoS routing has 
been discussed extensively, and related research has made a 
lot of progress. Nevertheless, in general, QoS routing still 
faces some primary challenges [1]: 

1) Stability and Scalability. When multiple resources are 
allocated and de-allocated, a high frequency of state updates 
is required to avoid instability and route flapping [2, 3], but it 
does not scale well due to its high communication overhead 
for large networks. Unlike the cost in OSPF, the database of 
which is quasi-static, the cost of maintaining a synchronized 
QoS-database in a dynamic environment is high. 

2) Robustness. Routers always get state updates with 
delays, and there is no guarantee that resource information is 
accurate and up-to-date. Route computation and routing 
decisions should be robust enough to be based on imprecise 
states [4]. 

3) Routing Cost. Processing state updates, implementing 
techniques related to the robustness issue, and conducting 
QoS routing all introduce considerable computational costs 
[5, 6]. In contrast, QoS requests expect highly responsive 
service from the QoS routing algorithms. 

A. Motivation 
The primary motivation for this paper comes from Fig. 1, 

adopted from reference [7], which shows three typical traces 
of link traffic in the Sprint Internet core in May 2002. 

Fig. 1 clearly shows that aggregated Internet traffic 
demonstrates strong predictability over a long period of time 
(i.e. hours, days and weeks). The two spikes between dotted 
lines represent Saturday and Sunday traffic, respectively, 

while the remaining periodic movement represents the week-
day load. The daily traffic pattern between peak hours and 
normal hours is easily observed. 

 
Fig. 1. Three traces of link traffic. 

It is reasonable to believe that utilizing the knowledge of 
periodic traffic change may improve routing performance and 
relief challenges mentioned above. However, there is a 
concern that traffic forecasting is not reliable and could 
introduce significant additional cost to routing algorithms. 

The goal of this paper is to answer the question whether 
the routing algorithm requires an accurate forecast. If the 
routing performance is sensitive to the forecast, then the 
traffic forecasting should be done carefully and frequently. 
Thus, the cost of forecasting could be high, and the benefit of 
traffic forecasting is fundamentally limited. On the other 
hand, if forecasting yields significantly better performance 
yet the routing algorithm does not need an accurate forecast, 
then we have the confirmation of the statement that traffic 
forecasting in QoS routing is beneficial and feasible. 

B. Scope 
Realizing that the QoS routing problem is intractable in 

many aspects, we limit the scope of this paper in order to 
provide us with some insights into the problem. The scope is 
three-fold: First, the paper assumes that aggregated Internet 
traffic has a periodic predictable pattern. The problem of 
traffic forecasting itself is not part of this paper. Second, link 
or node failure and traffic backup are not considered in this 
paper. Finally, it is assumed that the networks discussed in 
this paper fall under one single administration authority, or in 
one routing domain. 



 

C. Our Contributions 
The contributions of this paper include: 
1) Confirming that the combination of a priori knowledge 

of traffic demand and state-dependent routing algorithms 
would yield positive results, by proposing a time -dependent 
IP QoS Routing algorithm based on the Widest-Shortest Path 
(WSP) algorithm. 

2) Identifying the feasibility of QoS routing based on a 
fixed traffic forecast. This paper does not deal with an 
adaptive forecasting schema that runs dynamically at real-
time based on traffic conditions. Instead, the paper identifies 
that even a static piece of estimated information is valuable in 
QoS routing and can remain effective within a relatively wide 
range of traffic conditions. 

3) Advocating the extreme traffic value forecast. From the 
results of the simulation, this paper discloses the fact that in 
terms of IP routing performance, the sensitivity of the 
forecast is asymmetrical. In the context of IP routing, this fact 
has numerous implications, which could be utilized not only 
for simplifying QoS routing algorithms, but also for 
collecting, analyzing and predicting traffic statistics. 

The paper is structured as follows. Section II provides an 
overview of related research. Section III introduces 
methodologies of this work. Section IV proposes a time-
dependent routing algorithm. Section V presents simulation 
configurations. Section VI contains simulation results for the 
real traffic pattern, followed by section VII, which illustrates 
the results for artificial traffic patterns. The paper is 
concluded in section VIII with a summary of the results and 
highlights of the conclusions. 

II. RELATED WORK 

There is a large body of literature on QoS routing. One 
classification of QoS routing divides QoS routing algorithms 
into two categories: state-dependent and time-dependent. A 
routing algorithm that is able to find the optimal route for 
every QoS request, without knowing either the history or the 
future traffic demand, is called a state-dependent mechanism. 
Conversely, a routing algorithm that has knowledge of the 
history or future traffic demand is called a time-dependent 
mechanism [8]. 

Interestingly, most proposed QoS routing algorithms [9, 
10, 11] are state-dependent mechanisms. A minimal amount 
of research [12] has been done on the time -dependent 
category. 

Widest-Shortest Path (WSP) and Shortest-Widest Path 
(SWP) [13] are variations of the Shortest Path (SP) algorithm 
adopted in PNNI. Realizing that SP selects a path arbitrarily 
from multiple paths with the same shortest distance (sum of 
link costs) and that this procedure is not fair enough, Guérin 
et al. modified the SP slightly to improve QoS routing 
performance. In the case of WSP, it picks the link with the 
largest residual link capacity among multiple shortest paths, 
if available, while for SWP, it picks the link with the shortest 
distance among multiple widest paths, if available. WSP is 
usually preferred, because the smallest link residual capacity 

is maximized. 

The Minimum Interference Routing Algorithm (MIRA) 
proposed by Kodialam and Lakshman [14] addresses issues 
in more sophisticated scenarios when the selection of a path 
between a given source-destination pair can potentially 
influence many other pairs. They designed an algorithm to 
calculate the “interference” in order to avoid bottlenecks, and 
to select the best route for QoS requests. 

Another, more recent work related to MIRA is Profile-
Based Routing (PBR) [12], which applies traffic forecasting 
(i.e. a traffic profile) to improve QoS routing. When traffic 
profile changes at run time, PBR repeatedly generates pre-
allocation plans based on a residual network that excludes 
occupied link bandwidth. The authors of [12] used a linear 
optimization method, rather than a nonlinear optimization 
one, which will be further discussed further in section III. 

III. METHODOLOGIES 

A. Simplifications to QoS Constraints 
Typical QoS constraints include delay, packet loss, and 

bandwidth. The upper bounds of delay and loss for each link 
are adopted in this paper to simplify the delay and packet-loss 
constraints. The simplification is justified by the fact that the 
measured loss probabilities and delay for the same priority 
flow on different routers are of a similar order [17]. 
Meanwhile, bandwidth requirement can be simplified by 
using equivalent bandwidth technique [18, 19]. 

B. Routing Performance Evaluation 
An optimal routing solution can be well represented by two 

objectives – minimizing average hop count and minimizing 
maximum link utilization. As proposed by Bonaventure et al. 
[17], a nonlinear objective function forms a compromise 
between the two previous objectives. However, it remains up 
to the ISP to decide which objective is more important, 
according to network operation status and specific 
requirements. More specifically, the objective function is 
shown in (1): 
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E is the set of all edges, and K is the set of all traffic flows. 
ce is the link capacity on edge e, while xe,k is the bandwidth of 
the k th flow on edge e. The order n is a useful parameter for 
ISPs to adjust the balance between two objectives. 

In this paper, formula (1) is used in two ways: First, we use 
this formula as an objective function to calculate the optimal 
routing solution. Second, the value of (1) is regarded as being 
the level of network-wide performance when different QoS 
routing algorithms are compared. 

C. Traffic Demand Representation 
Let the traffic from node i to destination node j be tij. The 

traffic demand can then be represented in a vector form. An 
example of such a vector for a four-node network is: 
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IV.  TIME-DEPENDENT WSP (TDWSP) 

TDWSP is a variation of WSP, but it knows the future 
traffic demand d denoted as f. When f is given, an optimum 
routing solution is calculated. Part of an example of such 
optimum solution ingressed from node 1 is depicted in Fig 2. 
For instance, there is a route, 1-5-6, going to node 6, with a 
bandwidth of 24 Mbps. Subtract 3 Mbps (the bandwidth 
leaving node 6 is 3) from 24 Mbps. This leaves 21 Mbps, 
which means 21 Mbps of traffic from node 1 sinks into node 
6. 

Source Destination Demand (Mbps) 
1 2 43 
1 3 111 
1 4 11 
1 5 62 
1 6 21 
1 7 14 
1 8 7 
1 9 55 
1 10 8 
1 11 22 
1 12 122 
1 13 14 
1 14 10 
1 15 3 
1 16 86 
1 17 74 
1 18 26 
1 19 52 
1 20 107 
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Fig. 2. Part of the forecast f and calculated assigned bandwidth. 

After the offline traffic -planning has taken place, the link 
capacities are broken into two parts: assigned bandwidth (ab) 
and unassigned bandwidth (ub). Assigned bandwidth repre-
sents bandwidth reserved for exp ected traffic. Unassigned 
bandwidth refers to free bandwidth for unexpected traffic. 
From this perspective, the network partially shown in Fig. 2 
is called assigned network (assignNet), and the network that 
consists of unassigned bandwidth is called unassigned 
network (unassignNet). Note the information of assignNet is 
local. No information exchange with other routers is required 
to keep track of the resource consumption within  assignNet. 

TDWSP also divides incoming QoS requests into two 
types: expected and unexpected. Expected requests are those 
that do not exceed the forecasted traffic; otherwise, the 
requests are deemed unexpected. Accordingly, expected 
bandwidth (eb) is initialized to the forecast value, e.g., 
eb(1,6) = 21 Mbps. 

For a request of bandwidth bw from source node i to 
destination node j, with hop count constraint c, the pseudo 
code for the TDWSP is as follows: 
initialize eb, ab, ub 
if bw < eb(i,j) {      /* expected request */ 
  do WSP(i,j,c) on assignNet 
  if success { 
    eb(i,j) = eb(i,j) - bw 
    ab(i,j) = ab(i,j)- bw 
  } else { 
    do WSP(i,j,c) on unassignNet 
    if success { 
      ub(i,j) = ub(i,j)- bw 
    } 
  } 
} else {       /* unexpected request */ 
  do WSP(i,j,c) on unassignNet 
  if success { 
    ub(i,j) = ub(i,j)- bw 
  } 
} 

V. TESTBED 

Two network topologies, network #1 and #2, were selected 
for the simulations. They were real topologies obtained from 
an ISP in North America. Network #1 is a 10-node network 
with 16 bi-directional links that are either OC-12 or OC-48, 
while network #2 is a 20-node network with 37 bi-directional 
links, including OC-3, OC-12 and OC-48. The traffic 
demands used in the simulations were collected from the ISP 
as well. Using these two real-world networks gives us 
realistic insights into the routing issue. In addition, the study 
was conducted on networks of different sizes to help us better 
understand the simulation results. 

Since routing algorithms are usually sensitive to the sequ-
ence of QoS requests, 20 sets of randomly generated requests 
were tested in every single experiment setting. 

An open source implementation of the minimum cost 
multi-commodity flow algorithm is publicly available as a 
PPRN package [16]. It is used in this paper to calculate the 
optimized routing solution. Equation (1) is regarded as the 
objective function for the offline traffic-planning phase of 
TDWSP, where n equals 2. Various values of n were tested in 
different simulations, and we ascertained that a setting of 2 or 
3 is sufficiently good in routing. 

VI. THE REAL TRAFFIC PATTERN CASE 

The traffic pattern – the ratio of traffic among the different 
source-destination pairs – was fixed in the simulations 
according to the actual measurement from the ISP, while the 
traffic volume might have been scaled up or down. To make 
our diagrams more readable, the traffic demand is normalized 
to the maximum possible value – i.e., da,1 for network #1 and 
da,2 for network #2 – that the network can handle. The first 
subscript of d denotes the specific traffic demand, and the 
second subscript denotes the network topology number. 

The forecast f is set at db,1 = 53.9% da,1 and db,2 = 50.4% 
da,2 for networks #1 and #2, respectively. This means that the 
forecast is assumed to be at the middle level of network 
capacity, and can be justified by the fact that current 
operational networks are normally not running at a high 
utilization on average [15]. 
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Fig. 3. Network performance as traffic changes from the origin to da. 

In Fig. 3, TDWSP, an example of a time-dependent QoS 
routing algorithm, outperforms SP, WSP and SWP, examples 
of state-dependent QoS routing algorithms, at almost all load 
levels. When the traffic load is below the forecast f, the line 



 

of TDWSP almost sits right on the optimal line. While the 
actual traffic is higher than f, the line of TDWSP leaves the 
optimal line gradually. 

In the 10-node network #1, TDWSP cannot improve WSP 
much because it is bounded by the optimal line. However, in 
the 20-node network #2, which is a more sophisticated 
network topology for routing, it is clearer that TDWSP has a 
strong ability to stay close to the optimal line. 

VII. THE ARTIFICIAL TRAFFIC PATTERN CASE 

The simulations presented above were carried out under a 
real traffic pattern but at different scales. In this section, 
structurally different traffic demands are considered. 
A. The Solvable Traffic Demand Space 

From the routing point of view, this paper defines a 
solvable traffic demand space as a set of traffic demands with 
at least one feasible routing solution, no matter whether the 
feasible routing solution is optimized or not. Because the 
solvable traffic demand space requires points inside the space 
to be solvable, the solvable traffic demand space is a 
determined finite space when the network topology and link 
capacities are given. Furthermore, it is straightforward to 
prove that the solvable traffic demand space is convex. In 
other words, every point on the straight line segment 
connecting two solvable points x and y is also in the solvable 
traffic demand space. If the given traffic demand is outside 
the solvable space, the rejection of part of QoS requests or 
packet loss is theoretically inevitable. 
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 (a) Network #1, f = db,1 (b) Network #2, f = db,2  
Fig. 4. Positions of three lines of traffic demand in the solvable space. 

In the rest of section VII, we will extend our simulation by 
testing TDWSP under different traffic demands within the 
solvable space. Three lines of traffic demand are constructed 
in the solvable space: The first line runs from the origin to 
demand da; the second line is from the forecast demand db to 
dc; and the third line is from the origin to demand dd. Their 
relative positions are illustrated in Fig. 4. Because da, dc and 
dd are all set on the boundary of the solvable space, by 
changing the traffic demand along these three lines, we intend 
to investigate the performance of TDWSP in the solvable 
space more completely. 

B. The Line of Traffic Demand from db to dc 
Keeping the total traffic demand level as high as db,1 and 

db,2, two structurally different demands, dc,1 and dc,2 , are 
invented for networks #1 and #2, respectively. 

Fig. 5 illustrates the performance results for networks #1 
and #2. The forecast point at db is configured for TDWSP. 
The performance of TDWSP is very close to the optimal line. 
There are two reasons why TDWSP does not degrade much: 
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Fig. 5. Network performance as traffic changes from db to dc. 

1) The network-wide traffic load is at about the middle of 
the network throughput, which is indicated by the mean link 
utilization of around 35% and 30% in networks #1 and #2, 
respectively, based on calculations. When the traffic load is 
not high, the performance of TDWSP is  not sensitive to the 
configured forecast. 

2) The distance from db to dc is short. For example, in 
network #2, the link utilization of all 74 unidirectional links 
in the optimal solution when the traffic demand is dc,2 is very 
unevenly distributed. Most links are under-utilized, while a 
few other links are highly over-utilized. Because of this 
unbalanced traffic distribution, the distance between db,2 and 
dc,2 is short. Any points beyond dc,2 are unsolvable. Because 
of this short distance, TDWSP does not degrade much before 
the line goes beyond the solvable space. 

C. The Line of Traffic Demand from dd to the Origin 
A third line from dd to the origin can then be constructed, 

while the forecast of TDWSP at db is unchanged. 
Because the solvable space is convex, there must be two 

intersection points or less when one line (from the origin to 
dc) penetrates the space. For network #1, one intersection 
point is the origin itself, and the other intersection point is at 
dd,1 = 101% dc,1. Coincidently, for network #2, one inter-
section point is the origin itself, and the other intersection 
point is at dd,2  = 101% dc,2. 

An important observation here is that in network #1, the 
distance from the origin to da,1 (Euclidean distance |da,1 | ≈ 
3184 Mbps) is much longer than the dis tance from the origin 
to dd,1  (|dd,1 | ≈ 1612 Mbps), and in network #2 the distance 
from the origin to da,2 is much longer than the distance from 
the origin to dd,2 (refer to Fig. 4). The key is that both 
networks #1 and #2 are real parts of an ISP’s core networks 
on the Internet, and the demands da,1  and da,2  are based on 
real measurements. It is reasonable to believe that these 
networks are designed and modified according to real traffic 
patterns, and therefore they are more suitable for the real 
traffic pattern than for other artificial traffic patterns, such as 
dc,1 and dc,2 . Usually the mapping of artificial traffic patterns 
to a real network topology is unbalanced. Therefore, artificial 
traffic patterns cannot scale well to a large traffic load within 



 

the solvable traffic demand space. 

The simulation results of the third line in networks #1 and 
#2 are satisfactory (Fig. 6). As the demand changes from the 
origin to dd, the curve of TDWSP is extremely close to the 
optimal curve, although the forecast configuration is based on 
demands db,1  and db,2, respectively. 
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Fig. 6. Network performance as traffic changes from the origin to dd. 

VIII. CONCLUSIONS 

The benefits of traffic forecasting in the time-dependent 
mechanism are explained in light of its positive impact on 
routing performance. In addition, time -dependent mechanism 
has a few more advantages. Take TDWSP as an example, 
fewer state updates are required when network resources are 
allocated and de-allocated, as state updates are triggered only 
when the real demand exceeds the forecast. Therefore, the 
stability and scalability problems are relieved. A lower 
frequency of state updates also decreases the chance that 
TDWSP will be in an inaccurate state. Thus, TDWSP is more 
robust than WSP. The routing cost of TDWSP associated 
with processing state updates and implementing techniques 
related to the robustness issue is also decreased, so it can 
respond to a large amount of QoS requests promptly. 

Because the performance of TDWSP degrades faster when 
the actual traffic demand exceeds the forecast, it would be a 
nice idea to set the forecast at a high level. Nevertheless, if 
the setting is too high, the time-dependent routing algorithm 
could lose some of its adaptability to other traffic patterns. 
The asymmetrical insensitivity does suggest that the extreme 
value of the daily traffic orbit might be the focus of the traffic 
forecast. If the routing performance under peak traffic is 
good, then the routing performance during the rest of the day 
should be fine. 

Our experiments based on real well designed ISP network 
topologies suggest that a static forecast in TDWSP can 
accomplish the routing job satisfactorily in a certain range of 
traffic demands, if traffic demands outside of the solvable 
space are ignored. Other types of network need to be used for 
further evaluation in the future. 

The results in our paper show that the cost of traffic 
forecasting in time-dependent QoS routing mechanism could 
be low. More study on time-dependent routing is advocated. 
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