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Abstract— A linear rank-distance code is a set of matrices over
a finite field Fq , with the rank over Fq as a distance metric. A
Space-Time Block Code (STBC) is a finite set of complex matrices
with the rank over the complex field as a metric. Rank-distance
codes over prime fields Fp have found applications as space-time
codes. In this paper, we extend this result to arbitrary finite fields
by providing an isomorphism from Fq (q = pm) to a subset of the
ring of integers of an appropriate number field. Using this map
and a maximal rank-distance code over Fq , we construct STBCs
that achieve optimal rate-diversity tradeoff for any given diversity
order. Simulation results confirm the diversity gain obtained using
these codes.

I. INTRODUCTION

A quasi-static Rayleigh fading multiple input multiple out-
put (MIMO) channel with nt transmit and nr receive antennas
is modeled as Ynr×l = Hnr×nt

Xnt×l + Wnr×l, where
Ynr×l is the received matrix over l channel uses, Xnt×l is the
transmitted matrix, Hnr×nt

is the channel matrix and Wnr×l

is the additive noise matrix, with the subscripts denoting the
dimension of the matrices. The matrices Hnr×nt

and Wnr×l

have entries which are i.i.d complex circularly symmetric
Gaussian random variables with zero mean and unit variance.
The collection of all possible transmit codewords Xnt×l forms
a space-time block code (STBC) CST . From the pair-wise
error probability point of view, it is well-known that the
performance of a space-time code at high SNR is dependent
on two parameters: diversity gain and coding gain. Diversity
gain is the minimum of the ranks of the difference matrices(
Xnt×l − X′

nt×l

)
, for any Xnt×l �= X′

nt×l ∈ CST ; also called
the transmit diversity or the rank of CST . An nt × l STBC is
said to be of full-rank if it achieves the maximum transmit
diversity nt (assuming nt ≤ l).

Let S denote a complex signal set (constellation) and CST ⊂
Snt×l be an STBC completely over S [1]. Following the
convention in [2], [3], we define the rate of an nt × l STBC
completely over S as

R =
log|S| |CST |

l
, (1)

where |CST | is the cardinality of CST . If the code CST achieves
transmit diversity equal to dC, there exists a rate-diversity
tradeoff for space-time codes completely over S, which is
given by the relation

R ≤ nt − dC + 1. (2)

A space-time code which achieves equality in the above
tradeoff is said to be optimal.

A particularly interesting class of STBCs completely over a
signal set is the ones obtained from rank-distance codes over
finite fields: A rank-distance (RD) code over a fiite field Fq is
a linear code CFF , where each codeword is an nt × l matrix
over Fq. For any pair of codewords C1 �= C2, the rank-distance
rq(C1−C2) is the rank over Fq of the difference matrix C1−
C2 [4] and the rank of CFF (denoted by dq) is the minimum
of rq(C1−C2) over all possible pairs of distinct codewords. If
k = logq |CFF |, then the normalized rate k/l needs to satisfy a
bound similar to (2), where we need to replace R with k/l and
dC with dq. A rank dq code achieving this bound with equality
is said to be a rank-dq maximal rank-distance (MRD) code. If
dq = nt, then CFF is just a full-rank RD code if k < l, or a
full-rank MRD code if k = l.

Application of RD codes to space-time code construction
was first proposed by Hammons and El Gamal in [5], where
full-rank space-time codes over a BPSK/QPSK constellation
were obtained starting from binary full-rank codes. In a related
work [6], a general framework for using full-rank MRD
codes as space-time codes is given by Gabidulin et.al., which
employs an nt × nt full-rank MRD code over Fq, and a
one-one map φ : Fq → S, to obtain an STBC, CST =
{(φ(Cij)) : C = (Cij) ∈ CFF }. The properties of the chosen
signal constellation S and the map φ determine the rank of the
STBC CST . We emphasize the fact that the authors in [6] give
only the framework, but fail to give a method for finding a map
φ and S that would yield full-rank space-time codes starting
from RD codes over arbitrary Fq. This has been partially
solved in a subsequent work by the same authors [7], where,
for any prime p of the form 4k + 1, a map φ from Fp to the
Gaussian integer ring is given that can be used to get full-rank
STBCs from full-rank RD codes over Fp. Only full-rank MRD
codes over Fp are considered and it is shown that φ preserves
full-rank, i.e., it is rank preserving if the RD code is full-
rank. In a series of papers, Lu and Kumar have generalized the
construction given in [5]. The most generalized version, which
is the so called Generalized Unified (GU) construction [10],
yields optimum STBCs over a variety of signal sets including
the pK-PAM, pK-PSK as well as 2K-QAM.

In summary, all prior works have only managed to construct
STBCs from RD codes over a prime field Fp. In view of
these results, a natural extension would be to look for STBC
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construction from RD codes over arbitrary field Fq, via a rank
preserving map from the matrix ring Fnt×l

q to Snt×l ⊂ Cnt×l.
In this paper, we give a solution to this problem by generalizing
the technique used in [7]. Algebraic number theoretic results
are used to obtain rank preserving map for arbitrary values of
q, which maps an element of Fq to an element of some suitable
algebraic integer ring in a number field. We then show that the
map in [7] is obtained as a special case when we specialize
our technique to a prime of the form 4k +1, thus proving that
the map used in [7] is not only full-rank preserving but also
preserves any arbitrary rank.

The code constructions in this paper assume knowledge of
number fields and ideal factorization in their algebraic integer
rings. We refer the readers to [11] for an overview on this
topic. Let K be a number field and ZK denote the ring of
algebraic integers in K. If P is a prime ideal in ZK, then
there is a unique rational prime p satisfying P∩Z = pZ. Our
main principle for establishing a rank preserving map relies
on the fact that ZK/P is isomorphic to the finite field Fpf ,
where f = f(P|p) called the inertial degree of P over p is
an integer that divides the degree of K over Q.

II. MAIN PRINCIPLE FOR STBC CONSTRUCTION

Suppose CFF is an nt × l RD code over FpK and we want
to construct an nt × l STBC using CFF . The first step is to
find a signal set S along with a one-one map φ from FpK to
S as follows.

• Find a number field K such that the prime ideal pZ =
P∩Z for some prime ideal P ⊂ ZK, with f(P|p) = K.

• Let φ denote the isomorphism ZK/P → FpK , and let S
be equal to a complete representative set of the quotient
ring ZK/P. This means, S =

{
r1, r2, . . . , rpk

}
such that

no two elements in S belong to the same coset in ZK/P,
and

(rj + P) + (rk + P) = (rl + P),
(rj + P)(rk + P) = (rm + P),

for some rl, rm ∈ S that are unique for the pair ri, rj . For
the sake of convenience, we call the above two operations
as “modulo P” addition and subtraction on S. Thus, the
set S is a field with respect to “modulo P” addition and
subtraction.

• We use the set S as a signal set. The isomorphism φ when
restricted to the set S, is a one-one map from S to FpK .
The STBC CST over S is then obtained as:

CST =
{
φ−1(C) =

(
φ−1(Ci,j)

) | C ∈ CFF

}
Although the main principle is applicable for constructing
STBCs from MRD codes over arbitrary finite fields, because
of space constraints, in this paper we apply this principle to
construct STBCs from MRD codes over Fp and Fp2 only.
This principle has been used in a more general setting by
considering codes over Galois rings as well [12], [13].

Theorem 1 (rate-diversity optimality): Let CFF be an nt×l
rank-d MRD code over Fq and CST be the STBC obtained

using the above principle. Then the code CST is optimal, with
the diversity gain equal to d.

According to Theorem 1, we can always construct optimal
STBCs with arbitrary transmit diversity, provided there exists
MRD code construction technique for any arbitrary rank and
over any finite field Fq. Following theorem is a generalization
of the binary MRD code construction [3] to arbitrary field.

Theorem 2 (MRD code construction): Let q be a power of
a prime p and R = nt − d + 1, for 1 ≤ nt ≤ l < ∞;
1 ≤ d ≤ nt. Let Fql be an extension of the finite field Fq,
with ζ as a primitive element. Consider the set of q-linearized
polynomials

F =


f(x) | f(x) =

R−1∑
j=0

fjx
qj

, fj ∈ Fql


 ,

and associate with every linearized polynomial f(x) ∈ F , an

nt × l matrix Cf =
[
f(1) f(ζ) f(ζ2) · · · f(ζnt−1)

]T

, where

f(ζj) denotes the representation of f(ζj) as an l × 1 vector
over Fq, using the ordered basis {1, ζ, . . . , ζl−1}. Then the
collection of qlR codeword matrices CFF = {Cf | f(x) ∈ F},
is a rank-d MRD code over Fq.

Example 1: Let q = 32, nt = l = 2 and d = 2. The
maximal rate is then equal to R = nt −d+1 = 1. We use the
primitive polynomial Φ(x) = x4 + x + 2 for constructing the
field F34 with ζ denoting a root of Φ(x). Then the subfield
F9 = {0, 1, ζ10, ζ20, . . . , ζ70}, and {1, ζ} is a basis for F81

over F9.
When R = 1, the MRD code of Theorem 2 is same as

the matrix representation of the extension field Fql = Fq(ζ)
over Fq, using the companion matrix of ζ over Fq. In this
example, the minimal polynomial of ζ over F9 is Φ1(x) =
x2−ζ60x+ζ10 (divides Φ(x)) and hence the companion matrix
of ζ over F9 is

Mζ =
[

0 1
−ζ10 ζ60

]
.

Since every element of F81 is of the form s0+s1ζ with s0, s1 ∈
F9, the corresponding matrix representation is

s0

[
1 0
0 1

]
+ s1Mζ =

[
s0 s1

−s1ζ
10 s0 + s1ζ

60

]
.

Clearly, all these matrices have rank equal to nt = l = 2.
In the next section, we construct signal sets along with a

one-one map from Fq to the signal set, using quadratic number
fields.

III. SIGNAL CONSTELLATIONS FROM QUADRATIC FIELDS

A number field K = Q(
√

d) is said to be quadratic if
[K : Q] = 2 and d is some non-square integer. We will only
consider the case d < 0, in which case the corresponding
fields are called imaginary quadratic fields. A quadratic field
is a Galois extension with the Galois group {1, σ}, where
σ(
√

d) = −√
d. The ring of algebraic integers in Q(

√
d) is

equal to Z[
√

d] if d ≡ 2, 3 mod 4 and Z[1+
√

d
2 ] if d ≡ 1
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mod 4. In the special case when d = −1 and d = −3,
the integer ring is the Gaussian ring (square lattice) and the
hexagonal lattice (equilateral triangular lattice) respectively.

If p is a rational prime number, then the ideal pZ
Q(

√
d) can

factorize in three different ways. If it factorizes as P1P2 such
that P1 and P2 are co-prime, then p is said to split in Q(

√
d),

else if pZ
Q(

√
d) = P2, then p is ramified and finally, if pZ

Q(
√

d)

remains prime, then p is a prime in Q(
√

d). Accordingly, in
the first two cases, the inertial degree is f = 1 and when p
remains prime f = 2, and so the ring of integers Z

Q(
√

d) is
suitable for constructing signal sets isomorphic to Fp or Fp2 .
We will illustrate this by considering some specific imaginary
quadratic fields.

A. Space-time codes from Gaussian integer ring

Let d = −1 and i =
√−1. The ring of integers of the

quadratic field Q(i) is the Gaussian integer ring Z[i]. The non-
trivial automorphism of Q(i) is nothing but the usual complex
conjugation, and the norm map is given by n(x + iy) = (x +
iy)(x − iy) = x2 + y2. Gaussian integer ring is a Euclidean
domain with respect to the norm map (norm-Euclidean) and
therefore, it is a principal ideal domain (PID).

1) S isomorphic to Fp (Lusina, Gabidulin and Bossert
Construction [7]): Let p be a rational prime number of the
form 4k + 1. The ideal pZ[i] splits into a product of two
distinct prime ideals. Since Z[i] is a PID, the factorization
is of the form pZ[i] = (πZ[i]) (π∗Z[i]) such that (πZ[i]) ∩
Z = (π∗Z[i]) ∩ Z = pZ. The quotient ring Z[i]/πZ[i] is
isomorphic to Fp and it is straight-forward to verify that the set
{0, 1, . . . , p−1} is a complete coset representative set. The ring
Z[i] is norm-Euclidean and so, for any j ∈ {0, 1, . . . , p − 1},
there exist qj , rj ∈ Z[i] satisfying

j = qjπ + rj with 0 ≤ n(rj) < n(π). (3)

The element rj belongs to the same coset as j because j−rj =
qjπ ∈ πZ[i] and so the set S = {r0, r1, . . . , rp−1} is also a
complete representative set. According to Theorem 1, the set
S along with the one-one map φ : j 
−→ rj , can be used to
get STBCs over S from RD codes over Fp. The element qj

that appears in (3) is chosen such that, if j
π ∈ Q(i) is equal

to xj + iyj for some xj , yj ∈ Q, and qj = mj + inj for some
mj , nj ∈ Z[i], then mj and nj are the integers satisfying
|xj − mj | ≤ 1/2 and |yj − nj | ≤ 1/2. This is exactly the
“rounding operation (to the closest algebraic integer)”,

[
j
π

]
=[

jπ∗

ππ∗

]
that was used to denote qj in [7]. From this it is easy

to see that the constellation S consisting of
{

rj = j − qjπ = j −
[

jπ∗

ππ∗

]
π

}p−1

j=0

, (4)

is the same constellation that is used in [7]. Since Z[i] is a
PID and P = πZ[i], the “modulo P” operations on S are
equivalent to the “modulo π” operations considered in [7].

While this map was used only for full-rank STBC con-
struction in [7], Theorem 1 says that this map preserves

arbitrary rank and so optimal STBCs with arbitrary rank can
be obtained.

Example 2 (Full-rank STBC for nt = l = 2): Let q = p =
5 and nt = l = d = 2. We use Φ(x) = x2 + x + 2 as the
primitive polynomial for extending F5 to F52 . The MRD code
with rank 2, obtained following the construction in Theorem 2
is

CFF =
{[

s0 s1

3s1 s0 + 4s1

]
: s0, s1 ∈ F5

}
.

We find that p = 5 = (2 + i)(2 − i) in Z[i]. If we choose
π = 2 + i, then the signal set obtained is (see Fig. 1(a)) S =
{r0 = 0, r1 = 1, r2 = −i, r3 = i, r4 = −1} and the map φ
maps j ∈ F5 to rj ∈ S. With this MRD code, using our main
principle we get the STBC

CST =
{[

φ(s0) φ(s1)
φ(3s1) φ(s0 + 4s1)

]
: s0, s1 ∈ F5

}
.

Using the same MRD code, the GU construction yields an
STBC

C(GU)
ST =

{[
ωs0

5 ωs1
5

ω3s1
5 ωs0

5 ω4s1
5

]
: s0, s1 ∈ F5

}
,

which is a code over the 5-PSK constellation
{1, ω5, ω

2
5 , . . . , ω4

5} (ωm denotes primitive m-th root of
unity).

Both these codes are full-rank codes, with rate R = 1.
Our simulations of the codeword error probability performance
using Maximum-Likelihood (ML) decoding show that both
codes have same performance (Fig. 2). If p is chosen to be
a very large prime (of the form 4k + 1), then our construction
continues to use signal sets that are subsets of Z[i], while the
GU construction uses p-PSK constellation. As p grows bigger,
the distance profile of our signal sets is better than the distance
profile of the p-PSK constellation and hence we expect our
codes to perform better than the GU constructed codes. This
is evident for p = 17 = (4 + i)(4 − i). Using π = 4 + i,
we get the signal set as shown in Fig. 1(b). For rank-2 MRD
code construction over F17, we use Φ(x) = x2 + x + 3 as the
irreducible polynomial for constructing F172 over F172 and the
space-time codewords are of the form[

φ(s0) φ(s1)
φ(14s1) φ(s0 + 16s1)

]
: s0, s1 ∈ F17,

while the GU constructed STBC consists of codewords of the
form [

ωs0
17 ωs1

17

ω14s1
17 ωs0

17ω
16s1
17

]
: s0, s1 ∈ F17.

Fig. 2 shows that our code performs better than the GU
constructed code for p = 17.

2) S isomorphic to Fp2: If p is a rational prime number
of the form 4k + 3, then the ideal P = pZ[i] is prime in
Z[i]. The inertial degree f(P | pZ) = 2 and hence Z[i]/P
is isomorphic to the field Fp2 . The ring Z[i] is a free Z-
module with basis {1, i}, and the ideal P is an additive Z-
submodule of Z[i], with a free basis {p, ip}. Therefore, the
set S =

{
m + in : −p−1

2 ≤ m, n ≤ p−1
2

}
is a complete coset
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Fig. 1. Signal sets isomorphic to Fp from Z[i].
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Fig. 2. Codeword error rate for nt = l = 2 and nr = 1 STBCs

representative set of Z[i]/P, which can be used as the complex
signal set. Since Z[i] is a PID, the “modulo P” operation is
equivalent to the “component-wise modulo p” operation:

(m1 + in1) + (m2 + in2) mod p =
(m1 + m2)mod p + i(n1 + n2)mod p, (5a)

(m1 + in1)(m2 + in2) mod p =
(m1m2 − n1n2)mod p + i(m1n2 + m2n1)mod p.(5b)

The set S is a field containing p2 elements with respect to
modulo p operations defined above. An element ζ = m+ in ∈
S is a primitive element of Fp2 if the multiplicative order of
m2 + n2 in Z/pZ is equal to p − 1.

Example 3: Let p = 3, which remains a prime in Z[i].
The quotient ring Z[i]/3Z[i] is isomorphic to F32 and the
corresponding signal set S = {m + in : −1 ≤ m, n ≤ 1} is
shown in Fig. 3. We have labeled the points using exponential
form (of a finite field) with γ = 1+ i as the primitive element
(Notice that (1+ i)(1− i) = 2 has order equal to 2 = 3−1 in
Z/3Z). We get an optimal full-rank STBC for nt = l = 2, by
using this signal set and the 2×2 full-rank MRD code over F9

that we have constructed in Example 1. The codewords of this

STBC are of the form

[
φ(s0) φ(s1)

φ(−s1ζ
10) φ(s0 + s1ζ

60)

]
, where

s0, s1 ∈ {0, 1, ζ10, ζ20, . . . , ζ70} (notation used in Example 1)
and φ maps 0 to 0 and the element ζ10k to the complex point
labeled with γk in Fig. 3.

0

γ7 γ6 γ

γ4

γ5 γ2 γ3

1 = γ8

Fig. 3. Signal set isomorphic to F9.
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Fig. 4. Codeword error rate for nt = l = 2 and nr = 1 STBCs

In Fig. 4, we compare the performance of this code with the
full-rank optimal STBCs obtained by the GU construction for
nt = l = 2 and nr = 1. We consider two different codes that
are constructible using GU construction: one corresponding
to the parameters p = 3,K = 2, U = 1 uses the 9-PSK
constellation and the other corresponding to the parameters
p = 3,K = 1, U = 2, η = 3 and κ = 1. All these three
codes consist of 92 = 81 codewords. While the slope of
the codeword error probability is the same for all codes, our
code has better coding gain. In Fig. 4, we also compare the
performance of our codes constructed using rate 1 MRD codes
over F72 and F112 against the GU constructed optimal codes
with parameters p = 7,K = 1, U = 2, η = 7, κ = 1 and
p = 11,K = 1, U = 2, η = 11, κ = 1 respectively. Our codes
outperform the corresponding GU constructed codes and the
coding gain difference increases with the value of p. We also
observe that our code over F112 which has 114 codewords,
outperforms the GU code with p = 7 which consists of only
74 codewords.

As long as an algebraic integer ring Z
Q(

√
d) is norm-

Euclidean, signal sets isomorphic to Fp or Fp2 can be con-
structed using the modulo π or modulo p operation depending
on whether p splits or remains prime in Z

Q(
√

d). We will
next construct signal sets using another well-known ring which
belongs to this category, and in the subsequent subsection we
will consider the ring corresponding to d = −5 which is not
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Fig. 5. Signal set isomorphic to F7.

γ11 γ19 γ10 γ21 γ14

γ3 γ17 γ16 γ20 γ

γ18γ240

γ2 γ9 γ22 γ7 γ23

γ15γ5γ4γ8γ13

γ12γ6

Fig. 6. Signal set isomorphic to F52 .

a Euclidean domain.

B. Space-time codes from Eisenstein ring

Let K = Q(
√−3). The ring of algebraic integers of this

field (called the Eisenstein ring) is ZK = Z[ω3], where ω3 =
(−1+

√−3)/2 is a primitive 3rd root of unity. The non-trivial
automorphism of K given by σ(

√−3) = −√−3, maps ω3 to
ω2

3 and the norm map is given by n(a+ bω3) = (a+ bω3)(a+
bω3

2) = a2 −ab+ b2. For a rational prime p, the factorization
of ideal pZ[ω3] depends on the type of prime p. The ideal
pZ[ω3] splits as (πZ[ω3]) (π̄Z[ω3]) if p ≡ 1 mod 3 and it
remains prime in Z[ω3] if p ≡ 2 mod 3.

Example 4: Let p = 7. In ZQ(
√−3), the ideal 7ZQ(

√−3) =
〈π〉 〈π̄〉 where π = 3 + ω3 and π̄ = σ(π) = 2 − ω3. Since
7ZQ(

√−3) is a maximal ideal, ZQ(
√−3)/ 〈π〉 is isomorphic

to F7. We could use any complete representative set as a
constellation (for. eg., {−3,−2, . . . , 2, 3}), but since Z[ω3]
is norm-Euclidean, we can use the modulo π operation to
design a constellation whose average energy is smaller. We
use {ζ0, ζ1, . . . , ζ6} as the signal set, where ζj is the element
that appears in the expression j = qjπ + ζj with 0 ≤ n(ζj) <
n(π). The element qj = mj + njω3 ∈ ZQ(

√−3) is the
closest algebraic integer to j

π ∈ Q(
√−3) in the sense that,

if j
π = xj + yjω3 where xj , yj ∈ Q, then mj and nj are the

integers satisfying |xj − mj | ≤ 1/2 and |yj − nj | ≤ 1/2. As
in [7], we use the notation

[
j
π

]
=

[
jπ̄
ππ̄

]
for qj and therefore

the constellation is obtained via the map: ζj =
(
j − [

jπ̄
ππ̄

]
π
)

mod π. The complete signal set is shown in Fig. 5.
Example 5: If p = 5, which is a prime in Z[ω3] then

Z[ω3]/pZ[ω3] is isomorphic to the field F52 . The set S =
{m + ω3n : −2 ≤ m, n ≤ 2} can be used as the complex
signal set, which is a field with the modulo p operations
obtained by replacing i with ω3 in (5). This signal set is labeled
using γ = 2 + ω3 as a primitive element in Fig. 6, where the
complex point corresponding to ω3 is labeled by γ16.

C. Space-time codes from ZQ(
√−5)

The ring of integers ZQ(
√−5) is not a norm-Euclidean

domain and it is not even a PID. Therefore, the constellations
constructed using this ring will not have nice maps as in (4)
or (5). Nevertheless, following our main principle, signal sets
isomorphic to Fp or Fp2 can be constructed based on the
conditions between rational prime p and d = −5.

Example 6: The algebraic integer ring ZQ(
√−5) = Z[

√−5]
and hence this is a rectangular lattice in the complex field.

1) The ideal 7Z[
√−5)] =

〈
7, 3 +

√−5
〉 〈

7, 3 −√−5
〉
. If

p =
〈
7, 3 +

√−5
〉
, then 7Z[

√−5)]/p is isomorphic
to F7. The set {0, 1,−1 − √−5,−√−5,

√−5, 1 +√−5,−1} is a compete representative set that can be
used as a signal set for constructing optimal STBCs over
F7.

2) The ideal 13ZQ(
√−5) remains prime in Z[

√−5)] and so
Z[
√−5)]/ 〈13〉 is isomorphic to the finite field F132 . The

set S = {m +
√−5n : −6 ≤ m, n ≤ 6} is a complete

representative set for Z[
√−5)]/ 〈13〉 that can be used

for constructing optimal STBCs from MRD codes over
F132 .
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