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Abstract— We derive a new decision rule for multiple-symbol
detection (MSD) of differential unitary space-time modulation
(DUSTM). It is valid for both diagonal and non-diagonal con-
stellations, and for quasi-static fading channels. We then present
a fast algorithm based on the Extended Euclidean algorithm
and bound principles for single symbol detection (SSD) with
diagonal constellations. We call it bound-intersection detection
(BID) and it is exact maximum likelihood (ML). In high SNR,
the complexity of our algorithm is much less than that of the
brute-force ML search. We also develop two BID variants for
MSD. They are ML but with significantly reduced complexity
using branch-and-bound (BnB).

I. INTRODUCTION

The capacity of wireless communication systems can be
substantially enhanced by employing multiple transmit and
receive antennas. Space-Time Coding (STC) is designed to
realize the benefits of multiple antennas [1]. However, this
needs coherent detection using perfect channel state informa-
tion (CSI), which is difficult to obtain in a fast varying mobile
environment and/or in a multiple antenna system. This moti-
vates the research on non-coherent STC detection. Recently,
differential space-time modulation (DSTM) has thus received
considerable interest [2]–[4]. Hochwald and Sweldens [3]
and Hughes [4] have developed a general framework using
finite group theory, which is called differential unitary space-
time modulation (DUSTM) in [3]. The finite-group properties
simplify the transmitter modulation and constellation design
[3]. The diagonal signals, which form an Abelian group and
only one transmit antenna is active at any time, are also
introduced in [3].

Similar to DPSK in single antenna systems, DSTM suffers
a 3-dB performance loss compared with its coherent coun-
terpart. Multiple-symbol detection (MSD) has been proposed
for detecting M -ary phase-shift keying (M -PSK) signals
transmitted over an additive white Gaussian channel [5]. For
a moderate number of symbols, MSD bridges the perfor-
mance gap between M -PSK and M -DPSK. In [6], MSD
and decision-feedback differential detection (DF-DD) [7] are
applied to DSTM to overcome the performance loss in fast
fading channels and the decision rules are derived. However,
the rules can only be applied to diagonal constellations and
when the constellation size L is very large, even DF-DD is
intractable. For diagonal signals and conventional differential

detection, a low-complexity approximate ML detector based
on the LLL lattice reduction algorithm [8] has been proposed
in [9]. The cosine approximation and the use of LLL make it
suboptimal. Moreover, it can not be directly applied for MSD.

In this paper, we derive a new general decision metric for
MSD of DUSTM over a quasi-static (QS) fading channel,
generalized for both diagonal and non-diagonal differential
codes. An ML fast detector for SSD of DUSTM with diagonal
signals is derived by using a new bounding approach. Since
the decision metric is a sum of non-negative terms, if the
sum is less than a bound, the summands generate different
candidate sets of the transmit signal. The final candidate
set is the intersection of all the sets obtained using the
bound. Elements of the candidate set are exhaustively searched
until the optimal signal is found. The Extended Euclidean
algorithm [10] is used to find the candidate set of integers
satisfying the bounds based on the noise variance. We call this
algorithm Bound-Intersection Detection (BID) and generalize
it for MSD. Further details of this work can be found in our
journal paper [11].

II. SYSTEM MODEL

A. Channel Model

We consider a MIMO system with Nt transmit and Nr

receive antennas. Each block of the transmitted symbols has
T time slots and block interval TB . The transmitted symbols
during the n-th block is denoted by the T ×Nt matrix S[n] =
[st,i[n]], t = 1, 2, . . . , T and i = 1, 2, . . . , Nt, where st,i[n]
is transmitted by the i-th antenna in the t + (n− 1)T -th time
slot.

We consider a frequency-flat Rayleigh fading MIMO chan-
nel and assume a rich scattering environment. The complex
base-band received signal at the j-th receive antenna at time
slot t in the n-th block can be written as

rt,j [n] =
Nt∑
i=1

hi,j [n]st,i[n] + wt,j [n] (1)

where hi,j [n] denotes the zero mean Gaussian path gain from
the i-th transmit antenna to the j-th receive antenna and
wt,j [n] is the complex additive white Gaussian noise at the
j-th receive antenna. It is assumed that all path gains are
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statistically independent (E{hi,j [n]h∗
i′,j′ [n]} = 0) and have

the same time correlation function Rh(τ). The fading channel
is QS, i.e., channel variations within each block are negligible,
whereas the channel changes from block to block. Therefore
hi,j [n] has correlation Rh[m] = Rh(mTB). Typically, when
Clarke’s model is used, Rh[m] is given by

Rh[m] = E{hi,j [n]h∗
i,j [n + m]} = σ2

nJ0(2πmfdTB) (2)

where σ2
h denotes the power of the path gain, J0(·) is the

zeroth order Bessel function of the first kind, and fd is
the Doppler frequency due to users’ mobility. Note that
the QS condition is met when fdTB < 0.03. The additive
Gaussian noise processes at different receive antennas are
also independent and have equal variance σ2

n. Eq. (1) can
be written in matrix form as

R[n] = S[n]H[n] + W[n] (3)

where R[n] = [rt,j [n]] is the T ×Nr receive matrix, H[n] =
[hi,j [n]] is the Nt×Nr channel matrix, and W[n] = [wt,j [n]]
is the T × Nr noise matrix.

B. Differential Unitary Space-Time Modulation

In [3], the signals are modulated by choosing a matrix from
a finite group V = {Vl, l = 0, 1, . . . , L − 1}, where Vl is
a T × Nt unitary matrix (VlVH

l = IT ) and L = 2NtR,
R denotes the data rate. For DSTM, we assume T = Nt

and V0 = INt
. The NtR binary information bits are first

converted to an integer l within [0, L − 1]. V[n] = Vl is
chosen from V . The transmitted symbol at the n-th block is
encoded as

S[n] = V[n]S[n − 1]. (4)

In the first block, S[0] = V0 is sent. The internal composition
property of group ensures that S[n] ∈ V and unitary for any
positive n. Specifically for diagonal constellations, the unitary
matrices Vl are chosen as

Vl = diag{e2πu1l/L, e2πu2l/L, . . . , e2πuNt l/L} (5)

where ui for i = 1, 2, . . . , Nt are optimized to achieve the
maximum diversity product [3].

III. MULTIPLE-SYMBOL DIFFERENTIAL SPACE-TIME

DEMODULATION

This section derives the ML MSD metric for DUSTM. The
MSD detects the transmitted symbols in N consecutive blocks
given N + 1 received symbols. We consider the sequence
from n = k to n = N + k. Let R̄[k] = [RH [k],RH [k +
1], . . . ,RH [k + N ]] and V̄[k] = [VH [k + 1],VH [k +
2], . . . ,VH [k + N ]]. The ML decision rule for the sequence
V̄[k] can be expressed as

V̄[k] = arg max
V̄[k]

f(R̄[k]|V̄[k]) (6)

where f(a|b) is the probability density function (pdf) of a
conditioned on b. The conditional pdf (6) can be calculated
by averaging the zero-mean Gaussian pdf

f(R̄[k]|V̄[k],S[k])

=
1

(πNNt det(CR[k]))Nr
exp

(−tr
(
R̄[k]C−1

R [k]R̄H [k]
))

(7)

with respect to the symbol matrix S[k]. The conditional
covariance matrix CR[k] is given by

CR[k] =E{R̄[k]R̄H [k]|S[k]}
=S̄D[k]CH S̄H

D [k] + Nrσ
2
nINt(N+1)

(8)

where S̄D[k] is a block diagonal matrix

S̄D[k] =




S[k]
S[k + 1]

. . .
S[k + N ]


 (9)

and CH is the covariance matrix of the vector H̄ =
[HT [k],HT [k + 1], . . . ,HT [k + N ]]T can be represented as

CH = Nr(Ch ⊗ INt
) (10)

where ⊗ denotes the Kronecker product and Ch is given by

Ch =




Rh[0] Rh[1] · · · Rh[N ]

Rh[−1] Rh[0]
...

...
...

...
. . .

...
Rh[−N ] . . . . . . Rh[0]


 . (11)

Since S[k′]’s (k′ = k, k + 1, . . . , k + N ) are unitary matrix,
S̄D[k′]S̄H

D [k′] = INt(N+1). Using the distributivity property
of Kronecker product, we have

CR[k] =NrS̄D[k] (C ⊗ INt
) S̄H

D [k] (12)

where C = Ch + σ2
nIN+1. It can be readily verified that

det(CR[k]) does not depend on the transmitted symbol se-
quence. Let A = C−1 = [ai,j ]. It can be readily verified
that ak1,k1+l = ak2,k2+l for 1 ≤ k1, k2 < N + 1 − l. We
normalized ai,j with −a1,2 and denote ãi,j = −ai,j/a1,2.
Therefore maximizing (7) is equivalent to minimizing

V̄[k] =

arg min
V̄[k]

k+N−1∑
i=k

k+N∑
j=i+1

∥∥∥∥∥R[j] − ãi,j

(
j∏

m=i+1

V[m]

)
R[i]

∥∥∥∥∥
2

F

.

(13)

Note that (13) does not depend on S[k]. The average over
S[k] in (7) does not need to be computed.

When the channel is static over the N + 1 blocks, it
can be readily obtained ãi,j = 1 (i = 1, 2, . . . , N + 1,
j = 1, 2, . . . , N + 1 and i �= j). Eq. (13) becomes

V̄[k] = arg min
V̄[k]

k+N−1∑
i=k

k+N∑
j=i+1

∥∥∥∥∥R[j] −
(

j∏
m=i+1

V[m]

)
R[i]

∥∥∥∥∥
2

F

.

(14)
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When N = 1, (14) reduces to

V̄[k] = arg min
V̄[k]

‖R[k + 1] − V[k + 1]R[k]‖2
F . (15)

When the channel changes in each time slot, the MSDD
metric is derived in [6] for diagonal constellations. It can be
readily verified that CR[k] in (12) is the same as (19) in
[6]. Therefore, (13) is equivalent to the detection rule (26) in
[6] for diagonal constellations though we assume a QS fading
channel in the derivation. Hence, the fast detection algorithms
in Section IV can also be applied to the noncoherent receivers
in [6].

IV. REDUCED COMPLEXITY DIFFERENTIAL UNITARY

SPACE-TIME DEMODULATION

The fast algorithms in this section are all for diagonal con-
stellations. If the non-diagonal constellation Ṽl = UHVlU
is transmitted [3], where U is a unitary matrix and Vl is
the diagonal constellation, the following reduced-complexity
algorithms can be readily modified to this case.

A. Reduced Complexity Single-Symbol Detection

In [9], the decoding of diagonal differential modulations is
converted to the closest vector problem (CVP) in a modular
lattice by using the cosine approximation. It is much faster
than the ML exhaustive search but the cosine approximation
and the LLL algorithm incur performance loss. In the follow-
ing, we derive a fast and optimal SSD algorithm by using a
bounding approach and the Extended Euclidean algorithm.

The ML SSD (15) for diagonal signals can be written as

l̂ = arg min
l

∥∥R[k + 1] − Vl
1R[k]

∥∥2

F (16)

where

V1 = diag{e2πu1/L, e2πu2/L, . . . , e2πuNr /L}. (17)

For simplicity, we drop the time index k + 1 of l. Eq. (16) is
then equal to

l̂ = arg min
l

Nt∑
i=1

Nr∑
j=1

|ri,j [k + 1] − e2πuil/Lri,j [k]|2

= arg min
l

ϕ(l)
(18)

where ϕ(l) =
∑Nt

i=1 Ai − Bi cos [(uil − φi)2π/L],

Ai =
Nr∑
j=1

|ri,j [k + 1]|2 + |ri,j [k]|2

Bi =2

∣∣∣∣∣∣
Nr∑
j=1

r∗i,j [k + 1]ri,j [k]

∣∣∣∣∣∣
φi = arg


 Nr∑

j=1

ri,j [k + 1]r∗i,j [k]


L/2π.

(19)

The arg operation takes value in [0, 2π) so that φi ∈ [0, L).
If l is the true solution, (16) becomes

e =
Nt∑
i=1

Nr∑
j=1

|wi,j [k + 1] − e2πuil/Lwi,j [k]|2 (20)

where wi,j is the additive Gaussian noise in (1). Note that
e/(2σ2

n) is a chi-square random variable with 2NtNr degrees
of freedom. Therefore, we can choose a bound C to be a
scaled variance of the noise C = 2ασ2

n so that the probability
that at least one l̂ can make (16) less than C is high:∫ α

0

xNtNr−1e−x/2

Γ (NtNr) 2NtNr
dx = 1 − ε (21)

where ε is set to a value close to 0 (e.g., ε = 0.1). Instead of
searching all 0 ≤ l < L, we only search the l’s that can make
(16) less than C. To find all the l’s that meet this condition,
we note that (18) is the summation of Nt non-negative terms.
Thus a necessary condition for l to have cost less than C is
that each term of (18) is less than C, or

Ai − Bi cos [(uil − φi)2π/L] < C, i = 1, 2, . . . , Nt. (22)

Eq. (22) is equivalent to

|mod(uil, L) − φi| <
L

2π
cos−1

(
Ai − C

Bi

)
, i = 1, 2, . . . , Nt.

(23)

The mod(·, L) takes value from [0, L). Eq. (23) can be reduced
to find all the l’s that meet

LBi ≤ mod(uil, L) ≤ UBi, i = 1, 2, . . . , Nt (24)

where

UBi =
⌊
φi +

L

2π
cos−1

(
Ai − C

Bi

)⌋

LBi =
⌈
φi − L

2π
cos−1

(
Ai − C

Bi

)⌉
.

(25)

�·� denotes the smallest integer greater than or equal to its
argument. �·	 denotes the largest integer less than or equal to
its argument. The problem is to find all the integers within
a region in a integer modular ring. The brute-force approach
of checking (24) for all 0 ≤ l < L is not efficient. We thus
develop an efficient algorithm to get the values of l satisfying
(24).

To develop our solution, we first show how to find l such
that mod(uil, L) = 1. Since ui is relatively prime to L, the
gcd of integers ui and L is 1. The well-known Extended
Euclidean Algorithm [10] computes gcd of ui and L, and
additional numbers di and k such that

uidi + kL = 1 (26)

where 1 is the gcd of ui and L. To find mod(uil, L) = n, we
multiply both sides of (26) by n, which yields

ui(ndi) + knL = n. (27)

764

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on December 21, 2009 at 19:57 from IEEE Xplore.  Restrictions apply. 



Therefore l = mod(ndi, L) satisfies mod(uil, L) = n. Let
bi = [LBi, LBi +1, . . . , UBi]. The candidate set of l for the
i-th term of (18) is given by

Li = mod(di · bi, L), i = 1, 2, . . . , Nt (28)

where · denotes element-wise multiplication. Although the
Extended Euclidean Algorithm is NP-complete, di can be
computed before detection. For B = [0, 1, . . . , L − 1], we
can store M = mod(di · B, L) in memory and (28) can be
obtained by Li = [M(LBi),M(LBi + 1), . . . ,M(UBi)].

The candidates that meet all the Nt equations in (22) are
chosen, i.e., the candidate set is the intersection of all the Nt

sets Li as

L =
Nt⋂
i=1

Li. (29)

Intuitively, the term in (22) with the largest ui, say uNt
, varies

most with the same change of l. Thus, the element in L that
is closest to φNt

is searched first. If no l can make ϕ(l) (18)
less than the bound C, we increase the probability 1− ε (e.g.,
ε = 0.12, 0.13, . . .), adjust the bound C and perform the same
process again. If l∗ is chosen, C is replaced by the new cost
ϕ(l∗). The same process is performed again using the new
bound C. l∗ ∈ L is selected, Eq. (18) is computed, if it is
less than C, C is replaced by the new cost. l∗ is deleted
from the set L (L = L− {l∗}). In the later iterations, (29) is
replaced by

L = L ∩
(

Nt⋂
i=1

Li

)
. (30)

The process continues until L becomes the null set. The l with
the minimum cost is selected as the optimal solution. We call
this optimal detection algorithm Bound-Intersection Detection
(BID).

To further improve the performance of BID, we note that
each term of (18) has a lower bound as

lbi = Ai − Bi cos [∆φi2π/L] , i = 1, 2, . . . , Nt (31)

where ∆φi = φi − �φi	, �·	 denotes the nearest integer to
its argument. Hence, the lower and upper bounds (25) are
updated to

UBi =

⌊
φi +

L

2π
cos−1

(
Ai − C +

∑Nt

j=1,j �=i lbj

Bi

)⌋

LBi =

⌈
φi − L

2π
cos−1

(
Ai − C +

∑Nt

j=1,j �=i lbj

Bi

)⌉
.

(32)

In high SNR, C is small. The L in (30) usually contains only
one element. On the contrary, C becomes large in low SNR.
The size of L approaches L. Therefore the complexity of BID
decreases with the increase of SNR.

B. Reduced Complexity Multiple-Symbol Detection

For the MSD of the diagonal signals, the search space
increases to LN and (14) can be reduced to

l̂ =[l̂k+1, . . . , l̂k+N ]

= arg min
lk+1,...,lk+N

k+N−1∑
i=k

k+N∑
j=i+1

∥∥∥∥R[j] − V
( j

m=i+1 lm)

1 R[i]
∥∥∥∥

2

F

.

(33)

where V1 is given in (17). We next give two MSD algorithms
which generalize the BID.

1) MSD1: We first use the BID to detect the N block sym-
bols and the result is denoted by l̂, which is then substituted
back to (33) and the cost is denoted by C. Note that (33) is
the summation of non-negative terms. An exhaustive search is
performed. After each term in (33) is computed, the current
cost is compared with C. If it is larger than C, the search stops
and another candidate is tested. When all the (N + 1)N/2
terms have been finished, the total cost is compared with C.
If the cost is less than C, C is replaced by this value, the
current l is saved and the search continues until all the LN

possible candidates have been finished. The best one is output
as the optimal solution. This MSD is similar to the Branch-
and-Bound (BnB) algorithm. The efficiency of this algorithm
is low when L is very large and/or in the low SNR region,
which makes the initial bound C very loose.

2) MSD2: Our proposed BID is efficient, because it does
not need to search all the 0 ≤ l < L. To apply the same
idea to MSD, we also begin by using the BID for N blocks
SSD. The resulting l̂ is then substituted back into (33) and the
initial bound is obtained as C. Since (33) is the summation
of (N +1)N/2 non-negative terms, a necessary condition for
(33) to have cost less than C is that each term of (18) is less
than C, in particular∥∥∥R[k + N ] − Vlk+N

1 R[k + N − 1]
∥∥∥2

F
< C. (34)

which is the SSD problem. The candidate set Lk+1 for lk+N

can be found by using BID. For every lk+1 in Lk+N , the
bound for lk+N−1 can be improved to C − Bk+N , where

Bk+N =
∥∥∥R[k + N ] − Vlk+N

1 R[k + N − 1]
∥∥∥2

F
. The candi-

date set Lk+N−1 for lk+N−1 can also be found by using BID.
The similar process continues for lk+N−2 and so on. When it
comes to lm, the bound is updated as C−∑k+N

i=m+1 Bi, where
Bi is given by

Bi =
k+N∑

j=i+1

∥∥∥∥R[j] − V
( j

m=i+1 lm)

1 R[i]
∥∥∥∥

2

F

. (35)

When a set of l has been chosen, (33) is computed and
compared with C. If it is less than C, C is updated and the
candidate set for each lm is also updated by using the new
bound. The process continues until all the elements in the
candidate set have been searched.
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Fig. 1. Performance comparison for Nt = 3, 4, 5 transmitter antennas,
Nr = 1 receiver antenna.

TABLE I

COMPLEXITY COMPARISON FOR ML, LLL AND BID IN FLOPS.

ML LLL BID (25 dB)
Nt=3, Nr=1, R=2 2469 668 214
Nt=4, Nr=1, R=2 13312 2469 572
Nt=5, Nr=1, R=2 66560 8102 2341

To further reduce complexity, the similar idea in BID can
be used to find the lower bound of each term in (33), which
can be obtained the same as (31). The bound for each l can
be further reduced by these lower bounds.

V. SIMULATION RESULTS

We assume that the channel matrix remains approximately
constant for N blocks and the fading is independent between
antennas. But the channel changes from N blocks to another
N blocks. Binary data are transmitted and mapped to the
diagonal modulation. The um’s for the diagonal constellations
are selected from Table I in [9].

Fig. 1 compares the performance of BID for SSD with
those of ML and lattice decoding algorithm in [9] when Nt =
3, 4, 5, Nr = 1 and R = 2. Our proposed BID is exactly ML,
while the gap between ML and the lattice decoder is relatively
large. The LLL has a 2-dB gap from ML at BER=0.002. The
Fig. 5 in [9] shows the block error probability and may use
the exact algorithm after performing LLL, which increases the
complexity by 2(Nt+1)Nt/4+Nt . Therefore, we do not use the
exact algorithm.

Fig. 2 shows the complexity of the BID in flops when Nt =
2, 3, 4, 5, Nr = 1 and R = 2. Since the decoding time depends
on the method of programming, the speed of computer etc.,
we use the flop as the criterion to evaluate the complexity
of different algorithms. The flops of different algorithms are
obtained by using the MATLAB function “flops”. With the
increase of SNR, the flops of BID can be reduced (Fig.
2). The complexities of ML and LLL algorithm are almost
constant, which are given in Table I for comparison. In high
SNR, BID is much faster than both ML and LLL and offers
ML performance. Note that the DUST signals are especially
effective in high SNR [3], where BID is the most efficient.

10 15 20 25
10

2

10
3

10
4

10
5

SNR(dB)

A
ve

ra
ge

 n
um

be
r 

of
 fl

op
s

N
t
=3

N
t
=4

N
t
=5

Fig. 2. Complexity of BID for Nt = 3, 4, 5 transmitter antennas, Nr = 1
receiver antenna.

VI. CONCLUSION

In this paper, a new decision metric for multiple symbol
DUSTM decoding is derived, which is the sum of ML metric
for each of the received signals. The new metric can be
applied for both diagonal constellations and non-diagonal
constellations, and for quasi-static fading channels. A reduced-
complexity detector called BID for single symbol detection
with diagonal constellations is developed, which is ML and
has low complexity in high SNR. For MSD, two detectors are
developed, both of which start from the BID solution. The
metric derived in this paper can also be extended to Ricean
channels.
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