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Abstract— We investigate the transmit precoder design prob-
lem for a multiple input multiple output (MIMO) link with
correlated receive antennas, considering the effect of channel
estimation. We propose transceiver structures that are optimum
in the sense of minimizing the total MSE and distributing the
total MSE equally among the parallel data streams. We also
investigate the problem of how the correlated MIMO link should
distribute its total available power between power expended for
channel estimation versus data transmission. The optimum power
allocation problem between the training sequences for channel
estimation and data transmission for the correlated MIMO link
is shown to have a unique solution, that is different than the
uncorrelated case. The performance of the system is observed
to be more sensitive to transceiver design rather than the power
allocation. The results demonstrate that the correlation structure
of the MIMO link has a profound effect on the performance, and
that the transceiver optimization should be done by taking both
the correlation and the channel estimation process into account.

I. INTRODUCTION

Recent studies indicate that using multiple antennas at
the transmitter and receiver can dramatically improve the
performance of wireless communication systems [1]. There
has been considerable research in exploiting the space dimen-
sion through transmit diversity, space-time coding and spatial
multiplexing for MIMO systems [2], [3].

Performance of a MIMO system is highly dependent on the
channel state information (CSI) available at both the trans-
mitter and the receiver side. Hence, estimation of the channel
at the receiver side, and feedback of this information to the
transmitter side have significant impact on the performance. In
the absence of CSI at the transmitter side, multiple antennas
can be used for spatial multiplexing [3], or for space-time
coding [2]. The effect of receiver side channel estimation on
such schemes is analyzed in [2], [4]. Spatial multiplexing
can significantly benefit from transmit precoding when CSI
is available at both transmitter and receiver side [5].

In order to design the ”right” transmission strategy, the
MIMO channel has to be estimated at the receiver, and in
turn should be fedback to the transmit side. To that end, the
design of optimum training sequences for estimation of uncor-
related and correlated MIMO channels are studied in [4], [6].
Also considered in detail, in references [7]–[9], are optimal
transmission strategies with imperfect CSI at the transmitter
side. We must note that all of these approaches optimize the

transmission strategy for a given channel estimation process,
and assume perfect CSI at the receiver side.

In practice, it is likely that the total transmission power
budget would be limited for the MIMO system. Hence, it is
meaningful to ask what fraction of the resources should be
devoted to estimation versus actual data transmission. Towards
that end, optimum training sequences and power allocation
among the training sequences and data transmission are found
for BLAST transmission in [4]. Reference [4] considered a
lower bound of the sum capacity as the performance metric,
and assumed uncorrelated MIMO links. Reference [10], on
the other hand, considered the total MSE as the performance
metric for uncorrelated MIMO systems, and found that the
optimal power allocation to be identical to the one found in [4].

In this paper, we consider the uplink of a MIMO system,
and extend the work in [10] for the case of correlated receive
antennas. The existence of correlation between the receive
antennas is a likely scenario due to the fact that fewer local
scatterers exist near the base station antennas. We address
the case where the receiver estimates the channel, and that
both the transmitter and the receiver have access to the
same imperfect CSI. Throughout the paper, we use the total
mean squared error (MSE) as our performance metric. We
investigate the joint effect of channel estimation process and
the correlation among the receiver antennas on the design of
the precoder and the decoder for the MIMO system, with the
objective of minimizing the MSE, such that each symbol is
transmitted with an equal MSE performance. We derive the
optimal precoder and decoder structures, and show that both
the correlation, and the channel estimation process should
be taken into account for transceiver optimization. Next, we
consider the problem optimum sharing of resources between
the process of channel estimation and data transmission. We
consider the total power as the limited resource, [4], [10],
but consider the more general problem of power allocation
between the channel estimation and data transmission for the
correlated MIMO link. We show that, given the coherence
time of the channel, there is a unique solution to the optimum
power allocation problem. More importantly, we show that this
solution is different than the uncorrelated case. The results also
demonstrate that the system performance is more sensitive to
the transceiver design rather than the power allocation.
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II. SYSTEM MODEL AND PERFORMANCE METRIC

We consider a communication link consisting of NT trans-
mitter antennas and NR receive antennas. The transmitter
multiplexes M data streams through NT transmit antennas
employing an NT × M linear transmitter F in one symbol
period. Similar to the notation in [5], the received vector is

r = HFs + n (1)

where, s is the M × 1 symbol vector, H is a realization of
the NR × NT random matrix of complex channel gains with
correlated receive antennas, H, with E{HH†} = NT CRX ,
and uncorrelated transmit antennas, E{H†H} = γI, where
(·)† denotes the hermitian of a vector or matrix. n is the zero
mean complex Gaussian noise vector with E

[
nn†] = σ2I.

We assume that the channel is flat fading with coherence
time of (Ltr + Ld) symbols where Ltr symbol intervals are
dedicated to training sequences, and the remaining Ld to data
transmission. Reference [6] showed that orthogonal training
sequences are optimum for estimating MIMO channels with
correlated receive antennas. Hence, throughout this paper,
we assume that orthogonal training sequences are used for
channel estimation. The power available to the system for the
entire interval is Ptotal where Ptr portion of it is used for
the transmission of the training sequences and the remaining
portion is distributed equally among the Ld symbols. Thus,
the precoder should be designed with the power constraint
tr{FF†} ≤ Ps = (Ptotal − Ptr)/Ld. First, we analyze the
effect of channel estimation on the design of linear transmitter
(precoder) and receiver (decoder) for a given power allocation.
Later in the paper, we investigate the power allocation problem
among the training sequences for the channel estimation and
the actual data transmission.

Throughout the paper, it is assumed that the receiver obtains
the ML estimate of the MIMO channel Ĥ = H + X that is
fedback to the transmitter via an error-free feedback channel.
Following the ML estimate model of the MIMO channel in
[4], [6], when optimal training sequences of length Ltr ≥ NR

are used, X is a random matrix with i.i.d. complex Gaussian
entries having CN(0, σ2

e = (σ2NT )
Ptr

) and is independent of the
MIMO channel H. Recall that H is a complex Gaussian ran-
dom matrix with E{HH†} = NT CRX = NT URXΛU†

RX .
Hence, the ML channel estimate can be represented as Ĥ =
URXΛ1/2HW + X where the elements of HW are i.i.d.
with CN(0, 1). It can be easily seen that the distribution of
the ith column of H, Hi, for a given estimate Ĥ = Ĥ is
CN((Hµ)i,CH|Ĥ) with

E{Hi|Ĥ = Ĥ} = (Hµ)i = URXΛ(Λ + σ2
eI)

−1U†
RXĤi (2)

E{HiH†
i |Ĥ = Ĥ} = CH|Ĥ = σ2

eURXΛ(Λ + σ2
eI)

−1U†
RX (3)

where Ĥi is the ith column of Ĥ. Observe that from the
receiver’s perspective, the actual channel is a random MIMO
channel with mean Hµ = [(Hµ)1, (Hµ)2...(Hµ)NT

] and;
E{HH†|Ĥ = Ĥ} = NT CH|Ĥ and E{H†H|Ĥ = Ĥ} = υI.

Let us denote the M×NR linear receiver by G; the decision

statistic y, for a channel realization H, is then given by

y = GHFs + Gn (4)

For a given Ĥ, the total MSE can be expressed as

MSEĤ = E[tr{F†H†G†GHF−F†H†G†−GHF+I+σ2GG†}]
(5)

where tr{A} denotes the trace of matrix A.
Total MSE minimization by choosing the transmitters and

receivers has been studied for uncorrelated MIMO links with
exact channel state information in [5]. In practice, the CSI
available to the transmitter and receiver would not be perfect.
In addition, it is meaningful to consider a system where
fairness is facilitated by ensuring that each symbol experiences
equal MSE. In Section III, we pose the problem of minimizing
the total MSE for a given ML estimate of the correlated MIMO
channel, MSEĤ, considering fairness among the parallel data
streams, and construct the optimum transceiver structure.

Note that when the optimum linear transmitter and receiver
are used at each realization, the total MSE over all channel
realizations and estimates, MSE, can be expressed as

MSE = E[ min
{F,G}

MSEĤ] (6)

We will use (6) as the performance metric in Section IV.

III. OPTIMUM TRANSCEIVER STRUCTURE

Our aim in this section is to find the optimum transceiver
structure in the sense of minimizing the total MSE and
distributing the total MSE equally among the parallel data
streams, while taking into account the effect of ML channel
estimation. Formally, the optimization problem is

min
{F,G}

MSEĤ = tr{B} (7)

s.t. tr{FF†} ≤ Ps; MSE1 = MSE2 = ... = MSEM

B = E F†H†G†GHF − F†H†G† − GHF + I + σ2GG† (8)

and MSEi is the individual MSE of data stream i, and is the
(i, i)th entry of B.

Recall that from the receiver’s perspective the MIMO
channel can be modelled as H = Hµ + C1/2

H|ĤZ where Z
is a random matrix with i.i.d. complex Gaussian entries of
CN(0, 1). Inserting the expression above for H in (5) and
taking the expectation with respect to Z , MSEĤ is

tr{F†H†
µG†GHµF − F†Hµ

†G† − GHµF + I + GCcnG†} (9)

where Ccn = σ2I + tr{FF†}CH|Ĥ. Observe that the total
MSE in (9) has the same form of the total MSE expression
of a MIMO system with a channel matrix Hµ and a colored
noise factor with covariance Ccn.

Let us now consider the minimization of the total MSE in
terms of the precoder and decoder. The first order condition
with respect to the linear receiver (decoder) results in the well-
known MMSE receiver G = F†H†

µ(Ccn + HµFF†Hµ
†)−1.

Using MMSE receivers, the total MSE can be reformulated as

MSEĤ = M − NR + tr{T−1} (10)
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where T = I+HeFF†He
† with He = C−1/2

cn Hµ. Notice that
the optimum linear transmitter and receiver set that minimizes
the total MSE is not unique, and any linear transmitter that
achieves the same covariance FF† = F̃F̃† achieves the same
total MSE. Specifically, all optimum linear transmitters are in
the form of {F�

opt} = FoptU† where U is an arbitrary M×M
matrix satisfying U†U = I.

It is evident that the minimum total MSE without any
constraints lower bounds the minimum total MSE with fair-
ness constraints. However, as is noted below, the optimum
transceiver structure with fairness constraints lies in the set of
transmitters that yield the unconstrained minimum total MSE
for a special structure of U.

For M ≤ rank(He), reference [5] suggests that one possible
optimum linear transmitter without fairness constraints, is in
the form of Fopt = VeQf where Ve is an NT ×M orthogonal
matrix that has columns as the eigenvectors of the largest M

eigenvalues of H†
eHe =

[
Ve Ṽe

] [
Λe 0
0 Λ̃e

] [
V†

e

Ṽ†
e

]
where

Λe is a diagonal matrix containing the largest M eigenvalues
arranged in a decreasing order from top-left to bottom-right,
and Qf = (µ−1/2Λ−1/2

e − Λ−1
e )1/2

+ is a diagonal matrix
with µ factor satisfying the power constraint, and (.)+ =
max(0, .). If Ĥ were the perfect CSI, then the optimum
linear transmitter would be in the form of F̂opt = V̂eQ̂f

with Q̂f = (µ̂−1/2Λ̂−1/2
e − Λ̂−1

e )1/2
+ . V̂e, Λ̂e, and Q̂f

are the corresponding eigenvectors, eigenvalues and power
allocation for 1/σ2Ĥ†Ĥ, respectively. Observe that, in this
case, the optimum linear transmitter results in transmitting in
both different eigenmodes and power allocation. It can also
be shown that the optimum transmit covariance matrix, i.e.,
FoptF

†
opt for M = rank(He) is also the optimum covariance

matrix for M > rank(He) [10]. Specifically, all optimum
linear transmitters are in the form of Fopt = VeQfU† where
U†U = I. Thus, the total MSE of each data stream can be
expressed by the diagonal entries of

B = I − Fopt
†Hµ

†(Ccn + HµFoptFopt
†H†

µ)−1HµFopt = UDU†

(11)

where D is a diagonal matrix.
Now, consider a MIMO system where equal MSE values

for each symbol is required. Since the diagonal entries of B,
the achieved MSE of each data stream, are desired to be equal,
a U that results in a B matrix with equal diagonal entries is
needed. Reference [9], [11] suggest that the discrete Fourier
transform matrix or the Hadamard matrix (when M is a power
of 2) provides a simple construction of this special matrix.

IV. POWER ALLOCATION TRADE-OFFS

A. Optimum Power Allocation

It is evident from the preceding discussion in this paper,
as well as several other references, e.g., [4], [12], that the
availability of an accurate channel estimate has a substantial
impact on the performance of a MIMO link. Therefore, it
makes sense to devote some part of system resources to the
channel estimation process if in turn the gain in performance is

worth the effort. In practice, it is likely that, in a given interval,
where the channel is likely to be static, the link would operate
with a limited total budget. It is then meaningful to ask what
fraction of this total power budget should be expended on the
transmission of training sequences that are used in estimating
the channel, versus the transmission of actual data.

In this section, we investigate the optimum power allocation
problem between training and data transmission using total
MSE as the performance metric. Recall that for a given chan-
nel estimate, minimizing the total MSE, MSEĤ, is minimizing
M − NR + tr{(I + C−1/2

cn HµFF†Hµ
†C−1/2

cn )−1} where Hµ

is a realization of the random matrix H̃ = URXΛ(Λ +
σ2

eI)
−1U†

RXĤ with Ĥ = URXΛ1/2HW +X . Thus, minimiz-
ing the total MSE, given that we use the optimum precoder,
over all channel realizations and estimates is equivalent to

min E[min
F

tr{(I + C−1/2
cn H̃FF†H̃†C−1/2

cn )−1}] (12)

Observe that we can express Ĥ = URX(Λ + σ2
eI)

1/2Υ
where Υ is a random matrix with complex Gaussian entries
with CN(0, 1) and tr{FF†} = Ps. Inserting Ccn = σ2I +
tr{FF†}CH|Ĥ, and the expressions for H̃ and Ĥ given above,
in (12) we can show that

min MSE ≡ min E[min
F

tr{(I + ∆1/2Υ(
1

Ps
FF†)Υ†∆1/2)−1}] (13)

where ∆ = PsΛ2(σ2(Λ + σ2
eI) + Psσ

2
eΛ)−1. ∆ is a diagonal

matrix with ∆ii = Λ2
i Ps

σ2(Λi+σ2
e)+σ2

eΛiPs
as the ith diagonal entry.

Thus, the expressions {∆ii} act like the effective SNRs of each
virtual receive antenna.

We have the following relationship between data transmis-
sion power and power dedicated to the training sequences

PsLd + Ptr = Ptotal (14)

Defining α to be the fraction of the total power devoted to
data transmission, i.e., α = PsLd

Ptotal
0 ≤ α ≤ 1, and

ci =
(NT − Ld)PtotalΛi

Ld(NT σ2 + PtotalΛi)
; di =

P 2
totalΛi

2

σ2Ld(ΛiPtotal + NT σ2)
(15)

the effective SNR of each virtual receive antenna can be
expressed as

∆ii(α) =
diα(1 − α)

ciα + 1
(16)

and we have the following Lemma for {∆ii}.
Lemma 1: ∆ii(α) is concave over the interval [0, 1], and

the optimum α maximizing ∆ii(α) is given by

α�
i =

−1+
√

1+ci
ci

, for NT > Ld;
1
2
, for NT = Ld;

−1+
√

1+ci
ci

, for NT < Ld;
(17)

where ci is given in (15).
Defining the set of diagonal SNR matrices, Ψ, with Ω ∈ Ψ

if ∆(α)−Ω ≥ 0 for ∃α ∈ [0, 1], the optimum power allocation
problem, min

0<α<1
MSE, is equivalent to

min
Ω∈Ψ

E[min
F

tr{(I + Ω1/2Υ(
1

Ps
FF†)Υ†Ω1/2)−1}] (18)
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Fig. 1. MSE vs σ2
e performance for 8 × 8 MIMO system

It can be easily seen that the total MSE function is strictly
convex over the SNR matrix, Ω. In addition, the SNR matrix
set, Ψ is a convex set. Thus, there exists a unique optimum
power allocation scheme minimizing the total MSE, and we
have the following theorem that guarantees the existence of the
global minimizer for the optimum power allocation problem.

Theorem 1: The global minimizer αopt of (18) is unique
and αopt ∈ [αmin = min

i
α�

i , αmax = max
i

α�
i ].

The proofs are omitted here due to space limitations and
can be found in [13]. Lastly, we note that αopt can be found
by a variety of iterative algorithms [14].

B. Observations

The value of αopt depends on the number of transmit
antennas, and the length of the time interval used for symbol
transmission. We observe that when NT > Ld, then all ci’s
are positive resulting in all α�

i to be less than 1/2. Thus,
αopt lies in the range of [0, 1

2 ). This result suggests allocating
more power to training for such systems with large number of
transmit antennas.

When NT < Ld, then the range of α�
i is ( 1

2 , 1] resulting αopt

to be in ( 1
2 , 1]. This implies that when the data transmission

interval is much larger than the number of transmit antennas,
a significant portion of the system power should be allocated
to symbol transmission rather than the estimation process.

For the case where NT = Ld, all αi’s are 1/2 resulting
αopt = 1/2. That is, the available power should be allocated
equally between training and data transmission.

When, we consider the optimum power allocation for high
and low SNR cases, the following power distribution schemes
and effective SNRs are observed:

For high SNR, i.e., Ptotal → ∞, we have ci =
NT −Ld

Ld
∀i = 1, 2, ..., NR resulting αopt =

√
Ld√

NT +
√

Ld
.

For low SNR, i.e., Ptotal → 0, we have ci = 0 ∀i =
1, 2, ..., NR resulting αopt = 1

2
Observe that the optimum power allocation for both high

and low SNR regimes does not depend on the correlation of
the receive antennas, resulting in the same asymptotic optimal
power allocation as the uncorrelated case. However, outside of
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Fig. 2. BER vs σ2
e performance for 8 × 8 MIMO system

these asymptotic regions, the resulting power allocation differs
from the uncorrelated case as evidenced next.

V. NUMERICAL RESULTS

In this section, we present numerical results related to
the performance of the proposed transceiver structures and
optimum power allocation for channel estimation and data
transmission. For numerical results we consider an 8 × 8
MIMO system transmitting M = 8 data streams. The channel
values are generated as realizations of a random matrix with
complex Gaussian entries of CN(0, 1) with an exponential
correlation matrix {(R)ik = (0.9)|i−k|ej2π(i−k)/12} [15]. The
AWGN variance used in the simulations is 0.1.

First, we consider a system with a power constraint Ps ≤ 8.
For the system considered, we have compared the performance
of the linear transceiver structure we proposed (TX-RX1),
the linear transceiver structure using the ML estimate of the
channel without considering the channel estimation error (TX-
RX2), and their VBLAST versions [16]: VBLAST transmis-
sion with MMSE receivers considering the channel estimation
error (TX-RX3), and VBLAST transmission with MMSE
receiver using the ML estimate of the channel (TX-RX4).
For the sake of a fair comparison, linear MMSE receivers
are used for VBLAST detection. We plot, in Fig. 1 and 2,
the total MSE and the BER performances achieved by each
linear transceiver structure versus the channel estimation error
variance, σ2

e . The results are evaluated over 10000 realizations
of the MIMO channel with the same channel estimate. The
linear transceiver structure we proposed, TX-RX1 performs
the best in terms of both MSE and BER, and precoding and
considering the channel estimation error provide robustness
against the channel uncertainty. When the channel estimation
error is low, the total MSE and BER performances of TX-
RX1 and TX-RX2 pairs and TX-RX3 and TX-RX4 are very
close as expected. However, as the accuracy of the channel
estimate gets worse, the performances of the linear transceivers
using the ML channel estimate, TX-RX2 and TX-RX4 suffer
dramatically, whereas the receiver structures considering the
channel estimation errors, TX-RX1 and TX-RX3 provide
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robustness against the channel estimation errors.
To investigate the effect of the power allocation among the

channel estimation process and data transmission, we consider
a system with two different values of Ld. We consider a
system with Ld = 2, 40 and Ptotal = 50, 150. We evaluate
the total MSE over 10000 realizations of the MIMO channel
for different power allocation schemes. Fig. 3 and 4 show
the effect of power allocation on the total MSE as α changes
for both the optimal linear transceiver we propose and the
linear transceiver structure using ML channel estimate for
Ld = 2 and Ld = 40 cases respectively. It is observed that
the minimum total MSE is achieved at the optimal power
allocation. For Ld = 2 αopt = 0.35, and it is in the interval
[αmin, αmax]=[0.334,0.354]. The optimum power allocation
for uncorrelated case, α̃ is 0.335. For the second case, NT <
Ld = 40 and Ptotal = 150, αopt = 0.67 ∈ [αmin, αmax] =
[0.658, 0.691] with α̃ = 0.689. Observe that the effect of
power allocation on the total MSE is not much sensitive when
the optimal linear transceiver structure is used. However, the
best performance is achieved when the system is optimized
in terms of both the power allocation and linear transceiver
structure. For both cases, optimum power allocation with the
optimal linear transceiver achieves the minimum total MSE.

VI. CONCLUSIONS

In this paper, we have developed the optimum linear
transceiver structure for a MIMO link with arbitrary correla-
tion among the receive antennas, that minimizes the total MSE
in the presence of channel estimation errors, and distributes the
total MSE equally among the parallel data streams. Motivated
by the profound effect of the quality of channel estimation on
the performance of the MIMO link, we have considered the
problem optimum sharing of resources between the process
of channel estimation and data transmission. Considering the
total power as the limited resource, we have showed that,
given the coherence time of the channel, there is a unique
solution to the optimum allocation problem between the train-
ing based ML channel estimation and data transmission, and
that the solution differs from the previous results reported for
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Fig. 4. MSE vs α for 8×8 MIMO system with Ld = 40 and Ptotal = 150

uncorrelated MIMO channels. We observe that the optimum
power allocation depends on the system parameters, and the
correlation structure of the receiver antennas.
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