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Abstract— This paper investigates the problem of transmit
beamforming in MIMO spatial multiplexing (SM) systems with
finite-rate feedback channel. Assuming a fixed number of spatial
channels and equal power allocation, we propose a new design
criterion for designing the codebook of beamforming matrices
that is based on minimizing the capacity loss resulting from
the limited rate in the feedback channel. Using the criterion,
we develop an iterative design algorithm that converges to an
optimum codebook. Under the i.i.d. channel and high SNR
assumption, the effect on channel capacity of the finite-bit
representation of beamforming matrix is analyzed. Central to
this analysis is the complex multivariate beta distribution and
tractable approximations to the Voronoi regions associated with
the code points. Furthermore, to compensate for the degradation
due to the equal power allocation assumption, we propose a multi-
mode SM transmission strategy wherein the number of data
streams is determined based on the average SNR. This approach
is shown to allow for effective utilization of the feedback bits.

I. I NTRODUCTION

The performance of a multiple-antenna communication sys-
tem depends on the nature of channel state information (CSI)
available at the transmitter and at the receiver. When the
transmitter has perfect CSI, a higher capacity link can be
achieved in the single user case, and there are other benefits
such as lower-complexity receivers and better system through-
put in a multiuser environment. However, the assumption that
the transmitter has perfect knowledge of multi-dimensional
channel could be unrealistic as in many practical systems the
channel information is provided to the transmitter througha
finite-rate feedback channel. There are several studies deal-
ing with how to feed back the channel information. Some
researchers have worked on feedback of channel information
in vector forms, for example, for MISO channels [1], [2], [3]
and for the principal eigen-mode of MIMO channels [4]. Only
recently, feedback of channel information in matrix forms
for MIMO channels have begun to be addressed [5], [6],
[7]. In this paper, we develop efficient transmit beamforming
techniques for MIMO spatial multiplexing (SM) systems with
finite-rate feedback.

The contributions of the paper are as follows. First, a
tractable measure of capacity loss due to finite feedback rate
is derived and used to design an optimal codebook of beam-
forming matrices in the context of a fixed number of spatial
channels with equal power allocation. The efficacy of the
approach is demonstrated by using it to design quantizers in
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a variety of MIMO contexts and evaluating their performance
through computer simulations. Then the challenging task of
analyzing the performance of MIMO systems employing such
finite-rate feedback techniques is undertaken, and interesting
analytical results are provided. A key feature of the analysis is
the connection to the complex matrix-variate beta distribution
and the approximation made of the Voronoi region associated
with each code point for analytical tractability. To compensate
for the degradation due to the equal power allocation assump-
tion, we also propose a multi-mode SM transmission strategy
wherein the number of data streams is determined based on
the average SNR. This approach necessitates generalization of
the codebook design methodology, and the overall approach
is shown to allow for effective utilization of the feedback bits.

We use the following notations.A† and AT indicate the
conjugate transpose and the transpose of matrixA, respec-
tively. ‖A‖F denotes the Frobenius norm of matrixA. An
m × n (m ≥ n) matrix A with A†A = In will be called
orthonormal column matrix. A > 0 means that matrixA
is positive definite.Ñr(µ,Σ) is the r-dimensional proper
complex Gaussian random vector with meanµ and covariance
Σ. Uniform distribution over a setS is denoted byU(S). The
function log(·) is the natural logarithm.

II. SYSTEM MODEL

A MIMO channel with t transmit andr receive antennas,
assuming flat fading in each antenna pair, is modeled by the
channel matrixH ∈ C

r×t. That is, the channel inputx ∈ C
t

and the channel outputy ∈ C
r have the following relationship:

y = Hx + η (1)

where η is the additive white Gaussian noise distributed by
Ñr(0, I). For this work, we assume1 t ≥ r and the rank ofH
is denoted bym. The singular value decomposition (SVD) of
H is given byH = UHΣHV †

H , whereUH ∈ C
r×m andVH ∈

C
t×m are orthonormal column matrices andΣH ∈ R

m×m

contains the singular valuesσ1 ≥ . . . ≥ σm > 0 of H. The
average transmit power is denoted byPT , i.e., E[x†x] = PT .

When perfect CSI is known at the receiver and the trans-
mitter, a water-filling based SM strategy is known to be
optimal. This means that information aboutVH and the power
allocation on the different channels/beams represented bythe
columns ofVH has to be fed back to the transmitter. With
only finite number of bits available for channel information

1The caset ≤ r can also be handled in a similar manner.



feedback, we concentrate first on representing the firstn (1 ≤
n ≤ m) column vectors ofVH . For notational convenience,
let us denote theith column vector ofVH by vi and define
the firstn column vectors ofVH asV , i.e., V = [v1, . . . , vn].
We also defineΣ = diag(σ1, . . . , σn), ann× n submatrix of
ΣH .

To formalize the problem, we assume that the MIMO system
has a feedback channel with a finite rate ofB bits per
channel update. A codebookC containingN, whereN = 2B ,
candidate beamforming matrices, i.e.,C = {V̂1, . . . , V̂N} with
V̂i being t × n orthonormal column matrices, is assumed
known to both the receiver and the transmitter. The design
of the codebook is a topic of this paper. The receiver selects
the optimum beamforming matrix̂V = Q(H) from the
codebookC based on the current channelH, and sends the
index of V̂ to the transmitter through the feedback channel.
This paper assumes feedback with no error and no delay and
focuses on the effect of finite-bit representation of the channel
information.

The channel information̂V = Q(H) is employed as the
beamforming matrix at the transmitter. That is, an information-
bearing symbol vectors = [s1, . . . , sn]T is transmitted asx =
V̂ s, resulting in the received signal

y = HV̂ s + η. (2)

Here we assume thats ∼ Ñn(0,Φ) and Φ = PT ·
diag(ϕ1, . . . , ϕn) with ϕi ≥ 0 and

∑

i ϕi = 1. The vector
ϕ = [ϕ1, . . . , ϕn] will be calledpower allocation information.
With perfect CSI at receiver, the optimum power allocation for
the equivalent channelHV̂ can be calculated at the receiver.
Instead of feeding back the power allocation information,
which reduces the bit budget for the beamforming matrix,
one can employ a simple equal power allocation strategy, i.e.,
ϕi = 1/n ∀i. For a givenn, with equal power allocation, the
mutual information betweens andy is given by

I(H, V̂ ) = log det(I + ρΣ2
HV †

H V̂ V̂ †VH) (3)

whereρ := PT /n. This paper mainly focuses on equal power
allocation because it is more amenable to optimum codebook
design, and results in minor performance degradation when
coupled with an efficient multi-mode SM transmission wherein
n is chosen based on the average SNR. The multi-mode SM
scheme is discussed more fully in Section V.

III. C ODEBOOK DESIGN FORBEAMFORMING MATRIX

In this section, we develop a general matrix quantization
(MQ) based design method for constructing the codebook of
beamforming matrices. We consider the case ofn = m in this
section, andn < m is discussed in Section V.

A. Capacity Loss Due to Finite Rate Feedback

After a little manipulation, (3) can be written as

I(H, V̂ ) = log det(I + ρΣ2
H)

+ log det
[

I − (I + ρΣ2
H)−1ρΣ2

H(I − V †
H V̂ V̂ †VH)

]

.
(4)

Here we notice that whenn = m, the first term isI(H,V ),
the mutual information with the perfect beamforming matrix
V at the transmitter, and the second term accounts for the
loss due to finite-bit representation ofV . Let us define the
capacity lossas the difference between the ergodic capacities
associated withV and V̂ , that is,

CL(H, V̂ ) = E
[

I(H,V )
]

−E
[

I(H, V̂ )
]

= E
[

IL(H, V̂ )
]

(5)

whereIL(H, V̂ ) := I(H,V ) − I(H, V̂ ), which is from (4)

IL(H, V̂ ) = − log det
[

I − Σ̃2
H(I − V †

H V̂ V̂ †VH)
]

(6)

whereΣ̃2
H := (I + ρΣ2

H)−1ρΣ2
H .

The following two approximations toIL(H, V̂ ) will be
considered: i) WhenPT ≪ 1 (low SNR), or whenV †

H V̂ V̂ †VH

is close toI (which is valid whenB is reasonably large), we
use the approximation− log det(I − A) ≃ − log(1 − trA) ≃
trA whenA is small. More specifically, when the eigenvalues
λi(A) ≪ 1 ∀i, we have

IL(H, V̂ ) ≃ tr
[

Σ̃2
H(I − V †

H V̂ V̂ †VH)
]

. (7)

ii) When PT ≫ 1 (high SNR), sincẽΣ2
H ≃ I,

IL(H, V̂ ) ≃ − log det
(

V †
H V̂ V̂ †VH

)

. (8)

The first approximation will be used in codebook design next
and the second for performance analysis in Section IV.

B. Codebook Design Criterion and Design Algorithm

For designing the beamforming-matrix codebook, a natural
design criterion is maximizing the expected mutual infor-
mation E[I(H, V̂ )] or, equivalently, minimizing the capacity
loss defined in (5). However, unfortunately using it directly
does not lead to an iterative design algorithm with monotonic
convergence property2, since generally there is no analytical
expression for the optimum code matrix as a function of a
given partition region in the channel space [5].

Instead of using the direct form of the capacity expression,
we consider the approximation to the capacity loss: from (7),
whenPT ≪ 1 or whenB is reasonably large,

CL ≃ E
[

trΣ̃2
H − tr(Σ̃2

HV †
H V̂ V̂ †VH)

]

. (9)

The second term inside the bracket in (9) can be written as
‖(VHΣ̃H)†V̂ ‖2

F . Therefore, minimizing the expectation of (9)
is equivalent to the following codebook design criterion.

New Design Criterion: Design a mappingQ (mathemati-
cally, Q : C

r×t → C) such that

max
Q(·)

E
∥

∥(VHΣ̃H)†Q(H)
∥

∥

2

F
(10)

where V̂ = Q(H) is the quantized beamforming matrix
(V̂ †V̂ = In).

This design criterion will be called thegeneralized MSwIP
(mean squared weighted inner-product) criterion since it can
be viewed as a generalization for MIMO channels of the

2Monotonic convergence means that an improved design is guaranteed at
every iteration.



MSwIP criterion that was developed for beamforming code-
book design (for MISO systems) in [3].

One of the virtues of the new design criterion is that itdoes
lead to an iterative design algorithm with guaranteed mono-
tonic convergence. The design algorithm is essentially similar
to the Lloyd algorithm in vector quantization (VQ) study,
which is based on two necessary conditions for optimality:
the neighborhood condition (NNC) and the centroid condition
(CC) [8]. The same approach is used here for designing the
codebook of beamforming matrices.

Design Algorithm:
1. NNC: For given code matrices{V̂i; i = 1, . . . , N}, the
optimum partition cells satisfy

Hi =
{

H ∈ C
r×t :

∥

∥(VHΣ̃H)†V̂i

∥

∥

2

F

≥
∥

∥(VHΣ̃H)†V̂j

∥

∥

2

F
,∀j 6= i

}

,
(11)

for i = 1, . . . , N , whereHi is the partition cell of the channel
matrix spaceCr×t for the ith code matrixV̂i.
2. CC: For a given partition{Hi; i = 1, . . . , N}, the optimum
code matrices satisfy

V̂i = arg max
V̂ (t×n) : V̂ †V̂ =In

E
[

∥

∥(VHΣ̃H)†V̂
∥

∥

2

F

∣

∣ H ∈ Hi

]

, (12)

for i = 1, . . . , N . Fortunately, the above optimization problem
has a closed-form solution as (see proof below)

V̂i = (n principal eigenvectors) ofE
[

VHΣ̃2
HV †

H |H ∈ Hi

]

.
(13)

Proof: The Frobenius norm in (12) can be expressed as
tr

(

V̂ †VHΣ̃2
HV †

H V̂
)

. By noting that under a given condition
H ∈ Hi, V̂ is a constant matrix, (12) can be rewritten as

V̂i = arg max
V̂ (t×n) : V̂ †V̂ =In

tr
{

V̂ †E
[

VHΣ̃2
HV †

H |H ∈ Hi

]

V̂
}

.

By applying Corollary 4.3.18 of [9, p. 191], we arrive at the
desired solution given in (13).

The above two conditions are iterated until the design objec-
tive E

∥

∥(VHΣ̃H)†Q(H)
∥

∥

2

F
converges. In practice, a codebook

is designed off-line using a sufficiently large number of train-
ing samples (channel realizations). In that case, the statistical
correlation matrixE

[

VHΣ̃2
HV †

H |H ∈ Hi

]

in (13) is estimated
with a sample average.

Encoding: For a given codebookC = {V̂1, . . . , V̂N}, the
receiver selects the optimum beamforming matrix from the
codebook based on the observed channelH so that the mutual
information is maximized, i.e.,̂V = arg max

V̂i ∈C

I(H, V̂i). It is

useful later in performance analysis to note that this encoding
scheme is equivalent to

V̂ = Q(H) = arg min
V̂i ∈C

IL(H, V̂i). (14)

By the encoding scheme, the channel matrix spaceC
r×t is

partitioned into{Ri; i = 1, . . . , N}, where

Ri =
{

H ∈ C
r×t : IL(H, V̂i) ≤ IL(H, V̂j),∀j 6= i

}

. (15)

C. Two Related Design Methods

The generalized MSwIP design method optimizes the code-
book for a particular SNR (orPT ). As a result, we may need
more than one codebook if the system has multiple operating
SNR points. Therefore, it would be interesting to find other
design methods that do not depend onPT .

1) Low SNR Region:Whenρ ≪ 1 (low SNR),σ̃i ≃ √
ρ σi;

henceΣ̃H ≃ √
ρ ΣH . Then, the original criterion (10) becomes

maxQ(·) E
∥

∥(VHΣH)†Q(H)
∥

∥

2

F
. It is interesting to see that

this design criterion is equivalent to maximizing the mean
squared channel norm (MSCN), that is,

max
Q(·)

E
∥

∥HQ(H)
∥

∥

2

F
. (16)

This design criterion (16) will be referred as theMSCN
criterion. The MSCN criterion is a reasonable choice by itself,
because naturally we can benefit by maximizing the gain of
the composite channel(HV̂ ).

2) High SNR Region:As the SNR increases (ρ → ∞),
Σ̃H → I; hence, the criterion (10) reduces to

max
Q(·)

E
∥

∥V †
HQ(VH)

∥

∥

2

F
(17)

where V̂ = Q(VH) is the quantized beamforming matrix
(V̂ †V̂ = In). Interestingly, the above design criterion (17)
can be intuitively explained using a distance between two
subspaces. It is equivalent tominQ(·) E

[

d2
c

(

VH ,Q(VH)
)]

,
where dc(VH , V̂H) is the chordal distancebetween the two
subspaces specified byVH and V̂H [10].

D. Design Examples

With the design methods developed above, we can obtain
an optimum codebook for any set of system parameters
(t, r, n,B). The performances of codebooks designed with the
three different design methods are compared in Fig. 1 in terms
of the ergodic channel capacity,CQ(V ) = E[I(H, V̂ )]. For
ease of comparison, all the capacities are normalized with
respect toCV = E[I(H,V )], the ergodic capacity with the
perfect beamforming matrix. As expected, in high SNR region,
the codebook optimized for high SNR region performs better
than that optimized for low SNR region; and in low SNR
region, the reverse relation holds. Moreover, the generalized
MSwIP method always results in a better performance than or
equal to any of the two in all the SNR range. Additionally, we
also compare with the codebook design method considered in
[7], wherein a codebook is designed using the algorithm de-
veloped for the non-coherent space-time constellation design.
We can see that the MSwIP method outperforms it in all the
cases considered, especially in the low SNR range.

IV. CAPACITY LOSS WITHQUANTIZED BEAMFORMING

In this section, we will analytically quantify the effect of
quantization of the beamforming matrix with a finite number
of bits on the channel capacity for thei.i.d. MIMO channel.
The considered MIMO system is modeled as

y =

√

PT

n
HV̂ s + η



where H has i.i.d. Ñ (0, 1) entries, s ∼ Ñn(0, I), η ∼
Ñr(0, I), and they are all independent. For analytical tractabil-
ity, we consider the high-SNR approximation to the capacity
loss using (8). We also confine our attention to the case where
the number of data stream equals to the rank of channel
matrix, i.e.,n = m. For the rest of this section, for notational
simplicity, the subscript inVH will be dropped. The high-SNR
approximation to the capacity loss will be denoted by

C̄L = EH

[

− log det
(

V †V̂ V̂ †V
)

]

. (18)

In high SNR region, sinceIL(H, V̂i) is well approximated
to − log det

(

V †V̂iV̂
†
i V

)

, the encoding scheme given in (14)
also can be rewritten as

V̂ = Q(V ) = arg max
V̂i ∈C

det
(

V †V̂iV̂
†
i V

)

. (19)

We denote the Stiefel manifold where random matrixV lies,
by Vn,t = {V ∈ C

t×n : V †V = In}. With the encoding
scheme (19), the Stiefel manifold is partitioned into{R̄i; i =
1, . . . , N} where

R̄i =
{

V ∈ Vn,t : det
(

V †V̂iV̂
†
i V

)

≥ det
(

V †V̂j V̂
†
j V

)

,∀j 6= i
}

.
(20)

Since from (19)V̂ = V̂i, ∀V ∈ R̄i, (18) can be expressed as

C̄L =
N

∑

i=1

P
(

V ∈ R̄i

)

EV ∈R̄i

[

− log det
(

V †V̂iV̂
†
i V

)

]

. (21)

In order to calculate (21), we need to know the conditional
statistics of a random matrixUi := V †V̂iV̂

†
i V given V ∈

R̄i. For that purpose, we start with the simpler but related
problem of theunconditional statistics of a random matrix
U0 := V †V0V

†
0 V , whereV ∼ U(Vn,t) andV0 is afixedmatrix

in Vn,t.3

A. Statistics ofU0 = V †V0V
†
0 V and γ0 = det(U0)

First we summarize related definitions and theorems from
multivariate statistical analysis that are germane to the anal-
ysis. A p × p random Hermitian positive definite matrixU
is said to have a multivariate beta distribution with parameter
(a, b), denoted asU ∼ B̃p(a, b), if its density is given by

f(U) =
Γ̃p(a + b)

Γ̃p(a)Γ̃p(b)
(detU)a−p det(I−U)b−p, 0 < U < Ip,

for a ≥ p, b ≥ p and f(U) = 0 elsewhere, wherẽΓp(n) is
the complex multivariate gamma function.

Theorem 1:If U ∼ B̃p(n1, n2) and U = T †T , whereT
is upper-triangular, thent211, . . . , t

2
pp are all independent and

t2ii ∼ β(n1 − i + 1, n2) for i = 1, . . . , p, whereβ(a, b) means
the beta distribution with parameters(a, b).

Proof: This can be proved by extending Theorem 3.3.3
in Muirhead [11] to the complex matrix case.

Theorem 2 (Distribution ofU0): A random matrixH has
i.i.d. Ñ (0, 1) entries, andV (t×m) is the right singular matrix

3It can be shown that for the channelH with i.i.d. Ñ (0, 1) entries, the
random matrixV is uniformly distributed overVn,t.

of H as defined in Section II. For a fixed orthonormal column
matrix V0 (t×m), the random matrixU0 = V †V0V

†
0 V has a

multivariate beta distributioñBm(m, t − m).
Proof: See [12] for detailed proof.

Corollary 1: det(U0) is distributed as the product of inde-
pendent beta variables, that is,γ0 = det(U0) ∼ ∏m

i=1 βi,
where βi ∼ β(m − i + 1, t − m) and are independently
distributed.

Proof: When U = T †T where T is upper-triangular,
det(U0) =

∏m
i=1 t2ii. Therefore, from Theorem 1 we arrive at

the desired result.
We can obtain the density function for a givenm although

it has a long and complicated form (e.g., [13]). Form = 2,
we have a relatively concise expression.

Corollary 2: Whenm = 2, γ0 has the following density.

fγ0
(x) =

Γ(t) Γ(t − 1)

Γ(2t − 4)
(1 − x)2t−5

2F1(t − 2, t − 3; 2t − 4; 1 − x)

(22)

Proof: See [13].

B. Approximate Density ofγ = det(V †V̂ V̂ †V )

Now let us look at the conditional density ofγi :=
det(V †V̂iV̂

†
i V ) given V ∈ R̄i. From the high-SNR encoding

given in (19) or (20), generally each partition cell has a com-
plicated shape. This geometrical complexity in the partition
cells makes it difficult to obtain the exact analytical form for
the conditional density ofγi.

However, whenN is large, sinceV is uniformly distributed
over Vn,t, P (V ∈ R̄i) ≃ 1/N for all i, and furthermore the
shapes of partition cells will be approximately identical.For
analytical tractability, we consider the following approxima-
tion for the partition cell.

R̄i ≃ R̃i :=
{

V ∈ Vn,t : det(V †V̂iV̂
†
i V ) ≥ 1 − δB

}

(23)

for someδB > 0, which will be determined as a function of
B usingP (V ∈ R̄i) = 1/N for all i, i.e.,

P (V ∈ R̄i) =

∫ 1

1−δB

fγi
(x) dx =

1

2B
. (24)

With the partition cell approximation (23) and from the
symmetrical property in the partition cells, we can usefγ0

in the place offγi
. Using the density function forγ0 (e.g.,

one derived in Corollary 2),δB can be numerically calculated
for a givenB. Although, in general there are overlaps in the
approximated partition cells, the analytical results fromthe
approximation turn out to be quite accurate even whenN
is small. Since the approximated cells̃Ri have the identical
geometrical shape, we can focus on a particular partition cell,
arriving at the following result.

Approximate Density: With the partition cell approximation
described in (23), the density function forγ := det(V †V̂ V̂ †V )
is approximated by atruncateddensity offγ0

(x), that is,

fγ(x) ≃ f̃γ(x) = 2Bfγ0
(x) 1[1−δB , 1)(x) (25)

where1A(x) is the indicator function having 1 ifx ∈ A and
0 otherwise.



C. Capacity Loss with Quantized Beamforming

Now we utilize the statistical results developed above to
analyze the problem of interest, the capacity loss analysis(18).
This can be written as̄CL =

∫ 1

0
[− log x] fγ(x) dx. For the

expectation, we will use the approximate densityf̃γ given in
(25) instead of the real densityfγ . And the new approximate
is denoted byC̃L, that is,

C̃L =

∫ 1

1−δB

[− log x] f̃γ(x) dx. (26)

For m = 2 (i.e., whent ≥ 2 andr = 2), using the density
fγ0

in Corollary 2 and the definition of the hypergeometric
function, a closed-form expression for the capacity loss can
be derived.

C̃L = 2B Γ(t) Γ(t − 1)

Γ(2t − 4)

∞
∑

k=0

(t − 2)k(t − 3)k

(2t − 4)k k! (k + 2t − 4)

[

(1 − δk+2t−4
B ) log(1 − δB) +

k+2t−4
∑

l=1

δk−l+2t−3
B

k − l + 2t − 3

]

(27)

where(a)k := a(a + 1) · · · (a + k − 1).
For a general case ofm ≥ 3, one can obtain the ap-

proximate capacity loss (26) easily with an efficient Monte
Carlo integration method which is described as follows: i) First
generate a large number of samples for the random variable
γ, each is just a product of independent beta distributed
random variables as shown in Corollary 1. ii) Take a subset
S = {γ > 1 − δB : P (γ > 1 − δB) = 1/2B}. iii) Average
over the subsetS for ES [− log γ], which is an estimate (26).

D. Numerical Results

Fig. 2 shows the capacity loss in bits per channel use for
(t = 4, r = 2) MIMO channels when the beamforming matrix
is represented withB = 1, . . . , 8. The analytical result is
from C̃L given in (27). The figure also includes simulation
results using the beamforming-matrix codebooks. It shows the
analytical result is close to the simulation result at high SNR
(e.g.,PT = 20, 10 dB). However, at low SNR (e.g.,PT = 0
dB) it deviates from the simulation result. This is because in
our analysis, with the high-SNR assumption, the effect of the
term Σ̃2

H = (I +ρΣ2
H)−1ρΣ2

H is ignored, which is on average
quite different fromI at low SNR (PT ). Therefore, the high-
SNR assumption results in higher values for capacity loss at
low SNR.

V. M ULTI -MODE SM TRANSMISSIONSTRATEGY

Equal power allocation on each of the parallel channels
is clearly inefficient at lower SNR. To overcome this limi-
tation, in this section, we present a multi-mode MIMO spatial
multiplexing transmission scheme that allows for efficient
utilization of the feedback bits. The transmission strategy is
described as follows:
1. The number of data streamsn is determined based on the

average SNR:n changes from 1 tom, the rank of the
channel, as SNR increases (see the example in Section V-
B).

2. In each mode, the simple equal power allocation overn
spatial channels is employed, thereby the entire feedback
bits are utilized in representing only useful beamforming
vectors without concerning about the power allocation over
the spatial channels.
The average SNR is assumed to change at a much slower

rate than the beamforming vectors, and so has to be updated
less frequently consuming much fewer bits. Therefore it canbe
assumed to be negligible overhead. The effectiveness of the
transmission strategy can be understood with a water-filling
argument. The transmission strategy can be understood with
a water-filling argument. That is, in low SNR region, only
the principal spatial channel is useful in most of the time;
and as the SNR increases, more spatial channels are getting
involved. The proposed scheme can be viewed as a rough and
indirect implementation of water-filling power allocationover
multiple spatial channels. With the multi-mode transmission
scheme, with perfect knowledge ofV (t×n) and equal power
allocation, we can achieve most of the capacity with perfect
CSI at transmitter over all the range of SNR. For finite-rate
feedback, only the relevant beamforming vectors are encoded
using the entire feedback bits. From the quantization point
of view, the multi-mode scheme increases the quantization
resolution by reducing the dimension of the beamforming
matrix in low SNR region.

In [7], another form of multi-mode SM scheme was studied
in which the mode is adapted using current channel condition
and the feedback bits are divided among multiple codebooks,
one for each mode. For the scenario envisioned, this is less
effective since it lowers the quantization resolution compared
to the scheme mentioned above.

A. Codebook Design for Beamforming Matrix (Whenn < m)

Let us define submatricesΣH =
[

Σ 0
0 Σ2

]

andVH =
[

V V2

]

whereΣ (n×n) andV (t×n). Using an approach
similar to that in Section III (for details refer to [12]), wehave
the following codebook design criterion:

max
Q(·)

E
∥

∥(V Σ̃)†Q(H)
∥

∥

2

F
(28)

whereV̂ = Q(H) is thet×n quantized beamforming matrix.
Also as in Section III-C, we have two related design methods,
each optimized for low and high SNR region.

B. Example

In Fig. 3, the performance of the multi-mode SM scheme
with a finite number of feedback bits (B = 8) is shown
for (t = 6, r = 4) MIMO in different modes. The number
of data streamsn is determined as follows:n = 1 when
PT < PT,1, n = 2 when PT,1 ≤ PT < PT,2, and n = 3
when PT ≥ PT,2, where PT,1 and PT,2 are the boundary
points (see the figure). To determine the mode, the transmitter
needs to know the operating SNR of the system, which is
assumed to be changing at a much slower rate than the channel
itself in most time-varying channel environments. Therefore,
only small additional feedback is necessary (e.g., to notify the
transmitter to increase or decrease the number of data streams).



VI. SUMMARY

We have investigated the codebook design problem associ-
ated with transmit beamforming in MIMO spatial multiplexing
systems with finite-rate feedback. Assuming a fixed number
of spatial channels and equal power allocation, we designed
the beamforming codebook by minimizing the capacity loss
resulting from the finite-rate feedback. The capacity loss,un-
der the assumption of a reasonably large number of feedback
bits or low SNR, was suitably approximated leading to an
iterative codebook design algorithm with monotonic conver-
gence property. The developed design algorithm is based on
the Lloyd algorithm in vector quantization study, but now has
as its objective matrix quantization to minimize capacity loss.
With the proposed method, we can design the optimum beam-
forming codebook for arbitrary number of transmit and receive
antennas, feedback bits, and any spatial correlation structure
in the channel. The effect on the MIMO channel capacity
of finite-rate feedback was analyzed assuming high SNR
and equal power allocation over the spatial channels. Central
to the analysis is the complex multivariate beta distribution
and simplifications of the Voronoi regions resulting from the
codebook. To compensate for the degradation due to the
equal power allocation assumption, we also proposed a multi-
mode spatial multiplexing transmission strategy that allows
for efficient utilization of the feedback bits by quantizingonly
relevant beamforming vectors.
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