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Abstract—Secure multicast communication is important for 
applications such as pay-per-view distribution. LKH has been 
proposed to distribute a shared secret key in a way that scales 
efficiently for groups with many members. However, the 
efficiency of LKH depends critically on whether the key tree 
remains balanced. For applications such as video streaming or 
online teaching, several multicast sessions might be related in one 
way or another. In this paper, we consider the balance of the key 
tree and treat related multicast sessions as a whole. Our 
approach shows significant improvement over traditional method 
and trades off additional rekeying costs for similar computation 
power at members’ side compared to existing related approach. 
Two optimisations are also proposed to further enhance the 
efficiency of our algorithm.  

Keywords- secure multicast, group key management, secure 
group communication 

I.  INTRODUCTION 
IP multicast [1] enables efficient group communication by 

allowing the sender to transmit a single copy of data, with 
network elements such as routers and switches making copies 
as necessary for the receivers. This solves the scalability issues 
at the sender side and allows better utilisation of network 
resources such as bandwidth and buffer space.  

In order for IP multicast to scale to virtually any group size, 
it relies on a single group address to identify the set of 
recipients rather than explicitly listing them. However, this 
anonymous receiver model prevents the content providers from 
charging the members. The only way to provide controlled 
access to data is to encrypt the multicast data and distribute the 
encryption key to the members. If the membership is dynamic, 
this shared encryption key has to be updated and redistributed 
to all authorised members securely every time there is a change 
in the group membership in order to provide forward and 
backward secrecy. Forward secrecy means a departing member 
cannot obtain information about future group communication, 
and backward secrecy means that a joining member cannot 
obtain information about past group communication. Changing 
of keys, also known as rekeying, is necessary even when there 
is no change in membership to prevent the key from being 
compromised after long period of usage. A number of scalable 
approaches [2, 3, 4, 5, 6, 7] have been proposed, and one in 
particular, logical key hierarchy (LKH) [2, 3] is analysed in 
this paper. The trusted entity, which is responsible for 
distributing the key to the members, is known as group 
controller (GC). 

In LKH, there are two types of keys: Traffic Encryption 
Key (TEK) and Key Encryption Key (KEK). In short, TEK is 
the group key, which is used to encrypt the multicast data while 
KEK is used to provide scalable rekeying. The efficiency of 
LKH depends critically on whether the key tree remains 
balanced. A key tree is considered balanced if the distance 
from the root to any two leaf node differs by not more than one 
[8, 9]. If the key tree becomes unbalanced, the distance from 
the root to a leaf node can become as high as N, where N is the 
number of members. In other words, some group members 
might require up to N decryptions if any of its siblings departs 
from the multicast group.  

Within LKH, two types of groups, data group (DG) and 
service group (SG), have been defined in [10, 11]. A DG is a 
set of members who receives the same single data stream. The 
information distributed in each DG is encrypted with the TEK. 
A SG is a set of members who entitles the same privileges and 
receives the exactly same set of data stream. This is because in 
existing group applications such as video streaming and online 
teaching, some members might subscribe to several similar 
DGs at the same time. Figure 1 illustrates a multicast video 
encoded in cumulative layers for heterogeneous receivers. Each 
receiver subscribes to a subset of layers in such a way that the 
total capacity of the subscribed layers does not exceed the 
receiver’s capacity. In this illustration, BL, EL1 and EL2 are 
the DGs and SGBL are members in DGBL excluding those in 
DGEL1 and DGEL2. For SGEL1, it consists of the members in 
DGEL1 excluding those in DGEL2 and SGEL2 are members in 
DGEL2. 

If the above multicast sessions are considered using 
traditional method, each DG will be considered separately, 
which leads to inefficiency in term of key storage at both GC 
and members side [10, 11].  In addition, the rekeying costs are 
higher [11, 12]. The term rekeying cost refers to the total 
number of keys to be unicast or multicast out to the members 
when the GC spawns a rekey. 

 

EL1EL2 BL

BL - Base Layer
EL - Enhancement Layer

 
 

Figure 1. Multicast video encoded in cumulative layers 
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In this paper, we consider all related multicast sessions as a 
whole to minimise key storage and rekeying costs needed by 
the GC and members. In addition, we also take the balance of 
key tree into consideration to allow similar key storage among 
members and preserve the rekeying scalability of LKH; this 
means each member needs at most log k N decryptions when 
any of its siblings departs rather than N decryptions (worst 
case) in an unbalanced LKH. The rest of this paper is organised 
as follows. In section II, we provide the background material of 
LKH and explain how an unbalanced key tree affects the GC 
and members in term of key storage and rekeying costs. 
Related works are examined in this section too. In section III, 
we discuss how our Multi-Layers Balanced LKH (MLB-LKH) 
constructs the key tree for the related multicast sessions. The 
simulation results of our proposed algorithm with traditional 
and existing approaches are presented in section IV, followed 
by the conclusion in section V. 

II. RELATED WORK 
In LKH, the GC maintains a tree of keys, where the internal 

nodes of the tree hold the KEKs and the leaf nodes correspond 
to the group members. Each leaf node holds an individual key 
associated with that one member. Each member receives and 
maintains a copy of the individual key associated with its leaf 
node and the KEKs corresponding to each ancestor node in the 
path from its parent node to the root. All group members share 
the key held by the root of the tree, also known as TEK, as 
shown in Figure 2. 

For a balanced key tree with outdegree, k, each member 
stores log k N + 1 keys while the GC stores all (kN - 1)/(k - 1) 
keys. For example, in Figure 2, member U1 knows K1, K2, K5 
and member U7 knows K1, K4 and K11. In this example, K1 is 
the TEK, which is used to encrypt the multicast data, K2 to K4 
are the KEKs for rekeying purposes and K5 to K13 are the 
individual keys associated with the group members on the leaf 
nodes. 

When a member is removed from the group, the GC must 
change all the keys in the path from this member’s leaf node to 
the root to achieve forward secrecy.  All the other members 
that remain in the group must update their keys accordingly, 
namely change the keys in the intersection between the path 
from their leaf nodes to the root and the path from the removed 
member’s leaf node to the root.  In particular, this means that 
every remaining member will learn the new TEK. When the 
key tree is balanced, the rekeying cost is k log k N – 1 keys. For 
example, suppose member U9 in Figure 2 is departing, all the 
keys he stores (K1, K4), except for his individual key, must be 
changed. The GC first encrypts the new K4, K4’, with K11 and 
K12 for member U7 and U8 respectively. Finally, it encrypts 
K1’ with the respective TEKs for all the group members. 

If backward secrecy is required, then a join operation is 
similar to a remove operation in which the keys that the joining 
member receives must be different from the keys previously 
used in the group. The rekeying cost is 2 log k N keys when the 
key tree is balanced. Suppose member U9 is joining the group, 
the GC first encrypts K4’ for member U7 and U8. Then it 
encrypts K1’ with K1 for member U1 and U8. Finally, it 
encrypts K4’ and K1’ with K13 for member U9.  

The efficiency of LKH depends critically on whether the 
key tree remains balanced. A key tree is considered balanced if 
the distance from the root to any two leaf node differs by not 
more than one. For a balanced key tree with N leaf nodes, the 
height from the root to any leaf node is log k N. However if the 
key tree becomes unbalanced, the distance from the root to a 
leaf node can become as high as N. Figure 3 shows an 
unbalanced key tree. First of all, we can see that key storage 
among members varies from 3 to 5 rather than 4 in a balanced 
LKH. Secondly, U1 or U2 needs 4 decryptions if any of its 
siblings departs rather than log 2 7 decryptions in a balanced 
LKH and lastly, the rekeying cost for an unbalanced LKH is 7 
keys rather than 2 log 2 7 keys in a balanced LKH when U1 or 
U2 departs since K1, K2, K4 and K8 need to be changed. In 
this example, the difference between balanced and unbalanced 
LKH varies slightly as the group size is small. In cases where 
the group consists over several thousands or millions of 
members such as pay-per-view, this effect can be very obvious.   

Centralised multi-group key management scheme has been 
proposed in [10, 11] which considers related multicast sessions 
as a whole. There are three steps in the scheme. First, a subtree, 
known as SG-subtree, is constructed for each SG with the leaf 
nodes being the users of that particular SG. Next, a subtree, 
known as DG-subtree, is constructed for each DG. Finally, the 
leaf nodes of DG-subtrees and roots of SG-subtrees are 
connected to generate the key tree. Our approach differs from 
theirs as we are able to trade-off additional rekeying costs in 
order to obtain a balanced key tree. This is because we try to 
preserve the scalability of LKH by spreading the computation 
power equally among the members. Furthermore, if we 
properly place the members in the key tree, these additional 
rekeying costs can be considered as quite insignificant.  
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Figure 2. Logical key tree 
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Figure 3. Unbalanced key tree 
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III. MULTI-LAYERS BALANCED LKH (MLB-LKH) 
In this section, we discuss how we can minimise the key 

storage and rekeying costs for several related multicast sessions 
within LKH. Since the efficiency of LKH depends on the 
balance of the key tree, we trade-off additional rekeying 
messages for a balanced key tree. Figure 4 shows how the 
video encoded in cumulative layers in Figure 1 can be mapped 
onto our MLB-LKH. Each member not only receives the KEKs 
on its path to root but the TEKs that are used to encrypt the 
respective layers as well. It can be seen that the GC needs to 
multicast the TEK of EL1 twice. 

The placement of the members in MLB-LKH is important 
since proper placement can minimise the number of rekeying 
messages needed by the members. As shown in Figure 4, all 
SGs form at least one key tree of its own and related SGs are 
placed side by side. As the multicast sessions might be 
dynamic, the GC must place the joining members according to 
their SGs. The worst case rekeying cost is 2 log k N + m if a 
joining member subscribes to the DG on the highest layer, 
where m is the highest layer in DG. Similarly for a depart 
event, the worst case rekeying cost is k log k N + m if the 
departing member departs from the DG on the highest layer. 

Switching between SGs is normal when a member requires 
additional service or does not require that service anymore. The 
only way is to treat that member as a departing member in the 
old SG and a joining member in its desired SG. For example, a 
member might wish to subscribe for a higher quality multicast 
video due to the ample amount of bandwidth. The worst case 
rekeying cost happens when the two SGs have no interception 
other than the root as shown in Figure 5(a). The rekeying cost 
is (k + 2)(log k N – 1) – 1. Suppose there is an interception 
along the path as shown in Figure 5(b), the best rekeying cost is 
(k + 2)(log k N – l – l) – 1. 

Some multicast applications such as military 
communications not only require the group key to be changed 
immediately after each membership changes, it may even be 
necessary to stop data flow while such groups are being 
rekeyed [13]. Therefore, in order to reduce the latency needed 
by members who subscribe more layers than others, one 
method is to perform pseudo random function (PRF) on TEK 
in the highest affected layer to generate TEK in the lower layer. 
Assume the highest affected SG is m, the members in SGm 
need to perform m PRF, F m (TEKm) = TEK0, to obtain all the 
necessary TEKs for the multicast sessions as shown in Figure 
6. As for the required KEKs, it can take its time to decrypt the 
necessary rekeying messages while receiving the multicast data 
at the same time. For example in Figure 4, one member in 
SGEL1 is departing; both TEKBL and TEKEL1 need to be 
changed. The members in SGEL1 just need to receive the new 
TEKEL1, TEKEL1’, and perform PRF on it to get TEKBL’.  

IV. SIMULATIONS AND PERFORMANCE COMPARISON 
For simulation purpose, we adopted the scenario where the 

multicast video is encoded with 4 cumulative layers. We use a 
binary key tree with members ranging from 0 to 8096 and the 
members are dividing into 2/16, 6/16, 7/16 and 1/16 for each 
layer respectively. 

 
Figure 4. Mapping of video encoding in cumulative layers on MLB-LKH 
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Figure 5. (a) Worst case and (b) Best Case of switching between SGs 

 

 
Figure 6. Generation of TEK using one-way chain 

 

Figure 7 shows the key storage for the GC and group 
members. The GC’s storage in LKH grows at the faster rate 
compared to MLB-LKH. This is because in LKH, each 
multicast session is considered separately and this causes a lot 
of unnecessary keys to be stored by the GC. Although there are 
several work on minimisation of key at the GC side, which can 
minimise these effects [14, 15], the members still require a 
significant amount of storage if each multicast session is 
considered separately; the more services the members 
subscribe to, the more redundant keys the members need to 
store. As for MLB-LKH, the difference in key storage between 
the members is at most m. From Figure 7(b), we can see that in 
LKH, the members in the highest layer store thrice the number 
of keys than the members in MLB-LKH. 

For both approaches, once the number of members exceeds 
1000, the members’ storage grows at a much slower rate. This 
is because the total number of members that can be 
accommodated double each time for every increment in height. 
However, the number of members in the key tree has 
significant effects on the GC side since it needs to store the 
individual key of all group members as well as KEKs. 

In Figure 8 and 9, we look at the effects of individual join 
and depart event in LKH and MLB-LKH. When the affected 
member is in layer 2 or higher, the rekeying cost for LKH is at 
least twice compared to MLB-LKH. Similarly as before, the 
higher the affected layer, the higher the rekeying costs. For 
both algorithms, the rekeying cost for joining member is higher 
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Figure 7. (a) GC storage and (b) members storage for LKH and MLB-LKH 
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Figure 8. LKH rekeying costs - (a) joining and (b) departing 
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Figure 9. MLB-LKH rekeying costs - (a) joining and (b) departing 

 

compared to departing member because we started with a 
completely balanced LKH for all layers. In this example, the 
rekeying cost for joining and departing member in each layer 
for LKH and MLB-LKH is 2 log 2 N0 + 2 and 2 log 2 N0 – 1 
respectively, where N0 is the number of members in the key 
tree. 

As it is common for members to subscribe additional 
services or unsubscribe unwanted services, Figure 10 and 11 
investigate all possibilities of switching for both algorithms. 
Usually, the rekeying cost for LKH is better compared to 
MLB-LKH when the group member switches by one layer 
regardless of whether that member is joining or departing. This 
is because only one key tree in LKH needs to be rekeyed for 
such changes whereas two SGs in MLB-LKH are affected. As  
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Figure 10. LKH switching - (a) Low to high and (b) High to low 
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Figure 11. MLB-LKH switching - (a) Low to high and (b) High to low  

 

for other switching possibilities, MLB-LKH tends to 
outperform LKH when two or more key trees in LKH are 
affected. 

There is another optimisation that can be used to reduce the 
rekeying costs and latency when a member, Ux→y, switches 
from SGx to SGy, where keys in SGx are a proper subset of 
keys in SGy. Rather than treating Ux→y as a departing member 
in SGx and a joining member in SGy as before, the GC can 
multicast the new TEK of SGy, TEK’SGy, encrypted with the 
current TEK of SGy, TEKSGy, to the existing members in SGy 
and unicast TEK’SGy to Ux→y encrypted with its individual key. 
This is because all the other TEKs and KEKs are unaffected. 
However, this optimisation requires the GC to keep records of 
the members who perform such switching. The actual 
switching of Ux→y takes place when there is a join, depart or 
other form of switching events. A point to be noted is that 
TEK’SGy does not need to be able to generate the TEK below it 
using PRF because all the other keys still remain the same. 

Although centralised multi-group key management scheme 
considers related multicast sessions as a whole, our approach 
differs from theirs by trading off rekeying costs for similar key 
storage and number of decryptions among members. Suppose 
there are a lot of related multicast layers and if the higher layer 
is very heavily populated compared to the lower layer, the 
number of decryptions that are needed can be quite significant 
for centralised multi-group key management scheme. Reducing 
the number of decryptions might reduce the waiting latency as 
data flow might stop until all the remaining members get the 
keys.  
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For the simulation, we adopted the scenario where the 
video is encoded with 5 cumulative layers. Binary key tree 
with three different group sizes are used. The splitting of the 
members are 0.05%, 0.1%, 0.1%, 0.3% and 0.45% for each 
layer respectively.  

From Figure 12, we can see the difference between the 
lowest and highest layer for centralised multi-group key 
management is around 10 keys. This means that every member 
that is joining or departing the highest layer will need 10 
additional decryptions compared to the member that is joining 
or departing in the lowest layer. Furthermore, the rekeying cost 
will be higher as explained in section II. As for MLB-LKH, the 
difference between the lowest and highest layer is just the 
number of layers in the multicast session.  

V. CONCLUSION 
In this paper, we have discussed how LKH is used to secure 

multicast communication. First, we described how LKH can be 
used to secure a multicast session for a group of members. 
From there, we extended this idea to secure several related 
multicast sessions. In addition, we have also taken the balance 
of LKH into consideration. 

If related multicast sessions are considered as a whole, the 
total number of keys needed in the key tree and the rekeying 
costs are greatly reduced. For our simulation using video 
encoded with 4 cumulative layers, the key storage at the GC 
and members’ side is reduced by at least half. As for the 
individual join and depart rekeying costs, the higher the 
affected layer, the higher the rekeying costs. In the case of 
MLB-LKH, the difference in rekeying costs for a join or depart 
event is at most m. However, we observe that when a member 
switches by one layer, regardless of whether that member is 
joining or departing the group, the rekeying cost is generally 
lower for LKH due to the fact that only that layer key tree 
needs to be rekeyed whereas two SGs in MLB-LKH are 
affected. For other switching possibilities, MLB-LKH tends to 
be better than LKH. However, MLB-LKH requires proper 
placement of members in the key tree in order to minimise the 
rekeying costs. Most importantly, the members must be 
grouped according to their SGs. When compared to centralised 
multi-group key management scheme, we trade-off rekeying 
costs for a balanced key. This not only allows the member to 
have similar key storage but similar number of decryptions 
whenever there is change in group membership.  

Two optimisation techniques are proposed to further 
enhance our algorithm. Since it might be necessary for some 
multicast applications to stop data flow during rekeying, one 
method to reduce latency is to perform PRF on the TEK in 
highest affected layer to get the TEK in the lower layer. As for 
KEKs, the members can take its time to decrypt the rekeying 
messages while receiving the multicast data. Another 
optimisation is when a member switches between layers, where 
keys in the old layer are a proper subset of the keys in the new 
layer. The GC just needs to generate another TEK for the new 
layer and send it to the existing members in that layer and the 
joining member. 
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Figure 12. Number of key held by members at different layers: (a) Centralised 

multi-group key management scheme and (b) MLB-LKH 
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