
Multi-Layers Balanced LKH

Wee Hock Desmond Ng, Zhili Sun
Centre for Communication Systems Research

University of Surrey
Guildford, Surrey, GU2 7XH, United Kingdom

{W.Ng | Z.Sun} @surrey.ac.uk

Abstract—Secure multicast communication is important for
applications such as pay-per-view distribution. LKH has been
proposed to distribute a shared secret key in a way that scales
efficiently for groups with many members. However, the
efficiency of LKH depends critically on whether the key tree
remains balanced. For applications such as video streaming or
online teaching, several multicast sessions might be related in one
way or another. In this paper, we consider the balance of the key
tree and treat related multicast sessions as a whole. Our
approach shows significant improvement over traditional method
and trades off additional rekeying costs for similar computation
power at members’ side compared to existing related approach.
Two optimisations are also proposed to further enhance the
efficiency of our algorithm.

Keywords- secure multicast, group key management, secure
group communication

I. INTRODUCTION
IP multicast [1] enables efficient group communication by

allowing the sender to transmit a single copy of data, with
network elements such as routers and switches making copies
as necessary for the receivers. This solves the scalability issues
at the sender side and allows better utilisation of network
resources such as bandwidth and buffer space.

In order for IP multicast to scale to virtually any group size,
it relies on a single group address to identify the set of
recipients rather than explicitly listing them. However, this
anonymous receiver model prevents the content providers from
charging the members. The only way to provide controlled
access to data is to encrypt the multicast data and distribute the
encryption key to the members. If the membership is dynamic,
this shared encryption key has to be updated and redistributed
to all authorised members securely every time there is a change
in the group membership in order to provide forward and
backward secrecy. Forward secrecy means a departing member
cannot obtain information about future group communication,
and backward secrecy means that a joining member cannot
obtain information about past group communication. Changing
of keys, also known as rekeying, is necessary even when there
is no change in membership to prevent the key from being
compromised after long period of usage. A number of scalable
approaches [2, 3, 4, 5, 6, 7] have been proposed, and one in
particular, logical key hierarchy (LKH) [2, 3] is analysed in
this paper. The trusted entity, which is responsible for
distributing the key to the members, is known as group
controller (GC).

In LKH, there are two types of keys: Traffic Encryption
Key (TEK) and Key Encryption Key (KEK). In short, TEK is
the group key, which is used to encrypt the multicast data while
KEK is used to provide scalable rekeying. The efficiency of
LKH depends critically on whether the key tree remains
balanced. A key tree is considered balanced if the distance
from the root to any two leaf node differs by not more than one
[8, 9]. If the key tree becomes unbalanced, the distance from
the root to a leaf node can become as high as N, where N is the
number of members. In other words, some group members
might require up to N decryptions if any of its siblings departs
from the multicast group.

Within LKH, two types of groups, data group (DG) and
service group (SG), have been defined in [10, 11]. A DG is a
set of members who receives the same single data stream. The
information distributed in each DG is encrypted with the TEK.
A SG is a set of members who entitles the same privileges and
receives the exactly same set of data stream. This is because in
existing group applications such as video streaming and online
teaching, some members might subscribe to several similar
DGs at the same time. Figure 1 illustrates a multicast video
encoded in cumulative layers for heterogeneous receivers. Each
receiver subscribes to a subset of layers in such a way that the
total capacity of the subscribed layers does not exceed the
receiver’s capacity. In this illustration, BL, EL1 and EL2 are
the DGs and SGBL are members in DGBL excluding those in
DGEL1 and DGEL2. For SGEL1, it consists of the members in
DGEL1 excluding those in DGEL2 and SGEL2 are members in
DGEL2.

If the above multicast sessions are considered using
traditional method, each DG will be considered separately,
which leads to inefficiency in term of key storage at both GC
and members side [10, 11]. In addition, the rekeying costs are
higher [11, 12]. The term rekeying cost refers to the total
number of keys to be unicast or multicast out to the members
when the GC spawns a rekey.

EL1EL2 BL

BL - Base Layer
EL - Enhancement Layer

Figure 1. Multicast video encoded in cumulative layers

10150-7803-8938-7/05/$20.00 (C) 2005 IEEE

Authorized licensed use limited to: University of Surrey. Downloaded on April 13,2010 at 14:37:39 UTC from IEEE Xplore. Restrictions apply.

In this paper, we consider all related multicast sessions as a
whole to minimise key storage and rekeying costs needed by
the GC and members. In addition, we also take the balance of
key tree into consideration to allow similar key storage among
members and preserve the rekeying scalability of LKH; this
means each member needs at most log k N decryptions when
any of its siblings departs rather than N decryptions (worst
case) in an unbalanced LKH. The rest of this paper is organised
as follows. In section II, we provide the background material of
LKH and explain how an unbalanced key tree affects the GC
and members in term of key storage and rekeying costs.
Related works are examined in this section too. In section III,
we discuss how our Multi-Layers Balanced LKH (MLB-LKH)
constructs the key tree for the related multicast sessions. The
simulation results of our proposed algorithm with traditional
and existing approaches are presented in section IV, followed
by the conclusion in section V.

II. RELATED WORK
In LKH, the GC maintains a tree of keys, where the internal

nodes of the tree hold the KEKs and the leaf nodes correspond
to the group members. Each leaf node holds an individual key
associated with that one member. Each member receives and
maintains a copy of the individual key associated with its leaf
node and the KEKs corresponding to each ancestor node in the
path from its parent node to the root. All group members share
the key held by the root of the tree, also known as TEK, as
shown in Figure 2.

For a balanced key tree with outdegree, k, each member
stores log k N + 1 keys while the GC stores all (kN - 1)/(k - 1)
keys. For example, in Figure 2, member U1 knows K1, K2, K5
and member U7 knows K1, K4 and K11. In this example, K1 is
the TEK, which is used to encrypt the multicast data, K2 to K4
are the KEKs for rekeying purposes and K5 to K13 are the
individual keys associated with the group members on the leaf
nodes.

When a member is removed from the group, the GC must
change all the keys in the path from this member’s leaf node to
the root to achieve forward secrecy. All the other members
that remain in the group must update their keys accordingly,
namely change the keys in the intersection between the path
from their leaf nodes to the root and the path from the removed
member’s leaf node to the root. In particular, this means that
every remaining member will learn the new TEK. When the
key tree is balanced, the rekeying cost is k log k N – 1 keys. For
example, suppose member U9 in Figure 2 is departing, all the
keys he stores (K1, K4), except for his individual key, must be
changed. The GC first encrypts the new K4, K4’, with K11 and
K12 for member U7 and U8 respectively. Finally, it encrypts
K1’ with the respective TEKs for all the group members.

If backward secrecy is required, then a join operation is
similar to a remove operation in which the keys that the joining
member receives must be different from the keys previously
used in the group. The rekeying cost is 2 log k N keys when the
key tree is balanced. Suppose member U9 is joining the group,
the GC first encrypts K4’ for member U7 and U8. Then it
encrypts K1’ with K1 for member U1 and U8. Finally, it
encrypts K4’ and K1’ with K13 for member U9.

The efficiency of LKH depends critically on whether the
key tree remains balanced. A key tree is considered balanced if
the distance from the root to any two leaf node differs by not
more than one. For a balanced key tree with N leaf nodes, the
height from the root to any leaf node is log k N. However if the
key tree becomes unbalanced, the distance from the root to a
leaf node can become as high as N. Figure 3 shows an
unbalanced key tree. First of all, we can see that key storage
among members varies from 3 to 5 rather than 4 in a balanced
LKH. Secondly, U1 or U2 needs 4 decryptions if any of its
siblings departs rather than log 2 7 decryptions in a balanced
LKH and lastly, the rekeying cost for an unbalanced LKH is 7
keys rather than 2 log 2 7 keys in a balanced LKH when U1 or
U2 departs since K1, K2, K4 and K8 need to be changed. In
this example, the difference between balanced and unbalanced
LKH varies slightly as the group size is small. In cases where
the group consists over several thousands or millions of
members such as pay-per-view, this effect can be very obvious.

Centralised multi-group key management scheme has been
proposed in [10, 11] which considers related multicast sessions
as a whole. There are three steps in the scheme. First, a subtree,
known as SG-subtree, is constructed for each SG with the leaf
nodes being the users of that particular SG. Next, a subtree,
known as DG-subtree, is constructed for each DG. Finally, the
leaf nodes of DG-subtrees and roots of SG-subtrees are
connected to generate the key tree. Our approach differs from
theirs as we are able to trade-off additional rekeying costs in
order to obtain a balanced key tree. This is because we try to
preserve the scalability of LKH by spreading the computation
power equally among the members. Furthermore, if we
properly place the members in the key tree, these additional
rekeying costs can be considered as quite insignificant.

K1

K2 K4

K5 K6 K7 K8 K10 K12 K13

TEK :

KEK :

Individual
Key :

U1 U2 U3 U4 U5 U6 U7 U8 U9

K3

K11K9

Figure 2. Logical key tree

K1

K2 K3

K4 K5 K6 K7

K8 K9 K10 K11

K12 K13

U1 U2

U3 U4 U5

U6 U7

Figure 3. Unbalanced key tree

1016

Authorized licensed use limited to: University of Surrey. Downloaded on April 13,2010 at 14:37:39 UTC from IEEE Xplore. Restrictions apply.

III. MULTI-LAYERS BALANCED LKH (MLB-LKH)
In this section, we discuss how we can minimise the key

storage and rekeying costs for several related multicast sessions
within LKH. Since the efficiency of LKH depends on the
balance of the key tree, we trade-off additional rekeying
messages for a balanced key tree. Figure 4 shows how the
video encoded in cumulative layers in Figure 1 can be mapped
onto our MLB-LKH. Each member not only receives the KEKs
on its path to root but the TEKs that are used to encrypt the
respective layers as well. It can be seen that the GC needs to
multicast the TEK of EL1 twice.

The placement of the members in MLB-LKH is important
since proper placement can minimise the number of rekeying
messages needed by the members. As shown in Figure 4, all
SGs form at least one key tree of its own and related SGs are
placed side by side. As the multicast sessions might be
dynamic, the GC must place the joining members according to
their SGs. The worst case rekeying cost is 2 log k N + m if a
joining member subscribes to the DG on the highest layer,
where m is the highest layer in DG. Similarly for a depart
event, the worst case rekeying cost is k log k N + m if the
departing member departs from the DG on the highest layer.

Switching between SGs is normal when a member requires
additional service or does not require that service anymore. The
only way is to treat that member as a departing member in the
old SG and a joining member in its desired SG. For example, a
member might wish to subscribe for a higher quality multicast
video due to the ample amount of bandwidth. The worst case
rekeying cost happens when the two SGs have no interception
other than the root as shown in Figure 5(a). The rekeying cost
is (k + 2)(log k N – 1) – 1. Suppose there is an interception
along the path as shown in Figure 5(b), the best rekeying cost is
(k + 2)(log k N – l – l) – 1.

Some multicast applications such as military
communications not only require the group key to be changed
immediately after each membership changes, it may even be
necessary to stop data flow while such groups are being
rekeyed [13]. Therefore, in order to reduce the latency needed
by members who subscribe more layers than others, one
method is to perform pseudo random function (PRF) on TEK
in the highest affected layer to generate TEK in the lower layer.
Assume the highest affected SG is m, the members in SGm
need to perform m PRF, F m (TEKm) = TEK0, to obtain all the
necessary TEKs for the multicast sessions as shown in Figure
6. As for the required KEKs, it can take its time to decrypt the
necessary rekeying messages while receiving the multicast data
at the same time. For example in Figure 4, one member in
SGEL1 is departing; both TEKBL and TEKEL1 need to be
changed. The members in SGEL1 just need to receive the new
TEKEL1, TEKEL1’, and perform PRF on it to get TEKBL’.

IV. SIMULATIONS AND PERFORMANCE COMPARISON
For simulation purpose, we adopted the scenario where the

multicast video is encoded with 4 cumulative layers. We use a
binary key tree with members ranging from 0 to 8096 and the
members are dividing into 2/16, 6/16, 7/16 and 1/16 for each
layer respectively.

Figure 4. Mapping of video encoding in cumulative layers on MLB-LKH

A B

level 0

level l

.

.

.

A B

(a) (b)
Figure 5. (a) Worst case and (b) Best Case of switching between SGs

Figure 6. Generation of TEK using one-way chain

Figure 7 shows the key storage for the GC and group
members. The GC’s storage in LKH grows at the faster rate
compared to MLB-LKH. This is because in LKH, each
multicast session is considered separately and this causes a lot
of unnecessary keys to be stored by the GC. Although there are
several work on minimisation of key at the GC side, which can
minimise these effects [14, 15], the members still require a
significant amount of storage if each multicast session is
considered separately; the more services the members
subscribe to, the more redundant keys the members need to
store. As for MLB-LKH, the difference in key storage between
the members is at most m. From Figure 7(b), we can see that in
LKH, the members in the highest layer store thrice the number
of keys than the members in MLB-LKH.

For both approaches, once the number of members exceeds
1000, the members’ storage grows at a much slower rate. This
is because the total number of members that can be
accommodated double each time for every increment in height.
However, the number of members in the key tree has
significant effects on the GC side since it needs to store the
individual key of all group members as well as KEKs.

In Figure 8 and 9, we look at the effects of individual join
and depart event in LKH and MLB-LKH. When the affected
member is in layer 2 or higher, the rekeying cost for LKH is at
least twice compared to MLB-LKH. Similarly as before, the
higher the affected layer, the higher the rekeying costs. For
both algorithms, the rekeying cost for joining member is higher

1017

Authorized licensed use limited to: University of Surrey. Downloaded on April 13,2010 at 14:37:39 UTC from IEEE Xplore. Restrictions apply.

0 2000 4000 6000 8000 10000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4 GC Storage (4 Layers)

Number of Members

N
u

m
b

e
r

o
f

k
e

y
s
 s

to
re

d
LKH
MLB−LKH

0 2000 4000 6000 8000 10000
0

10

20

30

40

50

60
Members Storage (4 Layers)

Number of Members

N
u
m

b
e
r

o
f
k
e
y
s
 s

to
re

d

LKH(1)
LKH(2)
LKH(3)
LKH(4)
MLB−LKH(1)
MLB−LKH(2)
MLB−LKH(3)
MLB−LKH(4)

Figure 7. (a) GC storage and (b) members storage for LKH and MLB-LKH

0 2000 4000 6000 8000 10000
0

20

40

60

80

100

120
LKH Joining Costs

Number of Members

N
u

m
b

e
r

o
f

re
k
e

y
in

g
 m

e
s
s
a

g
e

s

Layer 0
Layer 1
Layer 2
Layer 3

0 2000 4000 6000 8000 10000
0

20

40

60

80

100
LKH Departing Costs

Number of Members

N
u
m

b
e
r

o
f
re

k
e
y
in

g
 m

e
s
s
a
g
e
s

Layer 0
Layer 1
Layer 2
Layer 3

Figure 8. LKH rekeying costs - (a) joining and (b) departing

0 2000 4000 6000 8000 10000
0

5

10

15

20

25

30

35
MLB−LKH Joining Costs

Number of Members

N
u
m

b
e
r

o
f
re

k
e
y
in

g
 m

e
s
s
a
g
e
s

Layer 0
Layer 1
Layer 2
Layer 3

0 2000 4000 6000 8000 10000
0

5

10

15

20

25

30
MLB−LKH Departing Costs

Number of Members

N
u

m
b

e
r

o
f

re
k
e

y
in

g
 m

e
s
s
a

g
e

s

Layer 0
Layer 1
Layer 2
Layer 3

Figure 9. MLB-LKH rekeying costs - (a) joining and (b) departing

compared to departing member because we started with a
completely balanced LKH for all layers. In this example, the
rekeying cost for joining and departing member in each layer
for LKH and MLB-LKH is 2 log 2 N0 + 2 and 2 log 2 N0 – 1
respectively, where N0 is the number of members in the key
tree.

As it is common for members to subscribe additional
services or unsubscribe unwanted services, Figure 10 and 11
investigate all possibilities of switching for both algorithms.
Usually, the rekeying cost for LKH is better compared to
MLB-LKH when the group member switches by one layer
regardless of whether that member is joining or departing. This
is because only one key tree in LKH needs to be rekeyed for
such changes whereas two SGs in MLB-LKH are affected. As

0 2000 4000 6000 8000 10000
0

10

20

30

40

50

60

70

80
LKH Switching (Low to High)

Number of Members

N
u
m

b
e
r

o
f
re

k
e
y
in

g
 m

e
s
s
a
g
e
s

0 to 1
0 to 2
0 to 3
1 to 2
1 to 3
2 to 3

0 2000 4000 6000 8000 10000
0

10

20

30

40

50

60

70
LKH Switching (High to Low)

Number of Members

N
u
m

b
e
r

o
f
re

k
e
y
in

g
 m

e
s
s
a
g
e
s

1 to 0
2 to 1
2 to 0
3 to 0
3 to 1
3 to 2

Figure 10. LKH switching - (a) Low to high and (b) High to low

0 2000 4000 6000 8000 10000
0

10

20

30

40

50

60
MLB−LKH Switching (Low to High)

Number of Members
N

u
m

b
e

r
o

f
re

k
e

y
in

g
 m

e
s
s
a

g
e

s

0 to 1
0 to 2
0 to 3
1 to 2
1 to 3
2 to 3

0 2000 4000 6000 8000 10000
0

10

20

30

40

50

60
MLB−LKH Switching (High to Low)

Number of Members

N
u

m
b

e
r

o
f

re
k
e

y
in

g
 m

e
s
s
a

g
e

s

1 to 0
2 to 1
2 to 0
3 to 0
3 to 1
3 to 2

Figure 11. MLB-LKH switching - (a) Low to high and (b) High to low

for other switching possibilities, MLB-LKH tends to
outperform LKH when two or more key trees in LKH are
affected.

There is another optimisation that can be used to reduce the
rekeying costs and latency when a member, Ux→y, switches
from SGx to SGy, where keys in SGx are a proper subset of
keys in SGy. Rather than treating Ux→y as a departing member
in SGx and a joining member in SGy as before, the GC can
multicast the new TEK of SGy, TEK’SGy, encrypted with the
current TEK of SGy, TEKSGy, to the existing members in SGy
and unicast TEK’SGy to Ux→y encrypted with its individual key.
This is because all the other TEKs and KEKs are unaffected.
However, this optimisation requires the GC to keep records of
the members who perform such switching. The actual
switching of Ux→y takes place when there is a join, depart or
other form of switching events. A point to be noted is that
TEK’SGy does not need to be able to generate the TEK below it
using PRF because all the other keys still remain the same.

Although centralised multi-group key management scheme
considers related multicast sessions as a whole, our approach
differs from theirs by trading off rekeying costs for similar key
storage and number of decryptions among members. Suppose
there are a lot of related multicast layers and if the higher layer
is very heavily populated compared to the lower layer, the
number of decryptions that are needed can be quite significant
for centralised multi-group key management scheme. Reducing
the number of decryptions might reduce the waiting latency as
data flow might stop until all the remaining members get the
keys.

1018

Authorized licensed use limited to: University of Surrey. Downloaded on April 13,2010 at 14:37:39 UTC from IEEE Xplore. Restrictions apply.

For the simulation, we adopted the scenario where the
video is encoded with 5 cumulative layers. Binary key tree
with three different group sizes are used. The splitting of the
members are 0.05%, 0.1%, 0.1%, 0.3% and 0.45% for each
layer respectively.

From Figure 12, we can see the difference between the
lowest and highest layer for centralised multi-group key
management is around 10 keys. This means that every member
that is joining or departing the highest layer will need 10
additional decryptions compared to the member that is joining
or departing in the lowest layer. Furthermore, the rekeying cost
will be higher as explained in section II. As for MLB-LKH, the
difference between the lowest and highest layer is just the
number of layers in the multicast session.

V. CONCLUSION
In this paper, we have discussed how LKH is used to secure

multicast communication. First, we described how LKH can be
used to secure a multicast session for a group of members.
From there, we extended this idea to secure several related
multicast sessions. In addition, we have also taken the balance
of LKH into consideration.

If related multicast sessions are considered as a whole, the
total number of keys needed in the key tree and the rekeying
costs are greatly reduced. For our simulation using video
encoded with 4 cumulative layers, the key storage at the GC
and members’ side is reduced by at least half. As for the
individual join and depart rekeying costs, the higher the
affected layer, the higher the rekeying costs. In the case of
MLB-LKH, the difference in rekeying costs for a join or depart
event is at most m. However, we observe that when a member
switches by one layer, regardless of whether that member is
joining or departing the group, the rekeying cost is generally
lower for LKH due to the fact that only that layer key tree
needs to be rekeyed whereas two SGs in MLB-LKH are
affected. For other switching possibilities, MLB-LKH tends to
be better than LKH. However, MLB-LKH requires proper
placement of members in the key tree in order to minimise the
rekeying costs. Most importantly, the members must be
grouped according to their SGs. When compared to centralised
multi-group key management scheme, we trade-off rekeying
costs for a balanced key. This not only allows the member to
have similar key storage but similar number of decryptions
whenever there is change in group membership.

Two optimisation techniques are proposed to further
enhance our algorithm. Since it might be necessary for some
multicast applications to stop data flow during rekeying, one
method to reduce latency is to perform PRF on the TEK in
highest affected layer to get the TEK in the lower layer. As for
KEKs, the members can take its time to decrypt the rekeying
messages while receiving the multicast data. Another
optimisation is when a member switches between layers, where
keys in the old layer are a proper subset of the keys in the new
layer. The GC just needs to generate another TEK for the new
layer and send it to the existing members in that layer and the
joining member.

1 2 3 4 5
10

15

20

25

30

Layers

N
u

m
b

e
r

o
f

k
e

y
s

Centralised Multi−Group Key Management Scheme

10000 members
100000 members
1000000 members

1 2 3 4 5
14

16

18

20

22

24

26

28

30

Layers

N
u

m
b

e
r

o
f

k
e

y
s

MLB−LKH

10000 members
100000 members
1000000 members

Figure 12. Number of key held by members at different layers: (a) Centralised

multi-group key management scheme and (b) MLB-LKH

REFERENCES

[1] S. .E. Deering, “Host Extensions for IP Multicasting”, RFC 1112, IETF,
Aug 1989.

[2] D.M. Wallner and E.J. Harder and R.C. Agee, “Key management for
multicast issues and architectures”, RFC 2627, Jun. 1999.

[3] C. Wong, M. Gouda and S. Lam, “Secure group communication using
key graphs”, IEEE/ACM Trans. Networking, Vol. 8. pp. 12-23, Feb.
2000.

[4] S. Mittra, “Iolus: A framework for scalable secure multicasting”, In
Proc. ACM SIGCOMM, Vol. 27, pp. 277-288, Sept. 1997.

[5] D. . Balenson, D. McGrew and A. Sherman, “Key Management for large
dynamic groups: One-way function trees and amortised initialisation”,
Internet Draft, draft-irtf-smug-groupkeymgmt-oft-00.txt. Aug. 2000.

[6] M. Valdvogel, G. Caronni, D. Sun, N. Weiler and B. Plattner, “The
versakey frameworks: versatile group key management”, IEEE JSAC
(Special Issue on Middleware), Vol. 17, No. 9, pp. 1614-1631, Sept
1999.

[7] I.Chang, R. Engel, D. Kandlur, D. Pendarakis, D. Saha, “Key
management for secure Internet multicast using boolean function
minimization techniques. IEEE INFOCOM, Mar. 1999

[8] M.J. Moyer, J.R. Rao, P. Rohatgi, “Maintaining balanced key trees for
secure multicast”, Internet Draft, draft-irtf-smug-key-tree-balance-00.txt,
Jun. 1999.

[9] J. Pegueroles, F. Rico-Novella, “Balanced Batch LKH: New proposal,
implementation and performance evalution”, IEEE Symposium on
Computers and Communications (ISCC), Jun. 2003.

[10] Y. Sun, K.J. Ray Liu, “Multi-layer management for secure multimedia
multicast communications”, IEEE Iternational Conference on
Multimedia and Expo (ICME), Vol. 2, pp. 205-208, Jul. 2003.

[11] Y. Sun, K.J. Ray Liu, “Scalable hierarchical access control in secure
group communications”, IEEE INFOCOM, Hong Kong, Mar. 2004.

[12] M. P. Howarth, S. Iyengar, Z. Sun, H. Cruickshank, “Dynamics of key
management in secure satellite multicast”, IEEE JSAC, Feb 2004.

[13] B. DeCleene, L. Dondeti, S. Griffin, T. Hardjono, D. Kiwior, J. Kurose,
D. Towsley, S. Vasudevan, C. Zhang, “Secure group communication for
wireless networks”, In Proc. MILCOM, Oct. 2001.

[14] Y. Tseng, “A scalable key management scheme with minimizing key
storage for secure group communications”, International Journal of
Network Management, Nov. 2003.

[15] J. Pegueroles, J. Hernandez-Serrano, F. Rico-Novella, M. Soriano,
“Adapting GDOI for balanced batch-LKH”, Internet Draft, draft-irtf-
gsec-gdoi-batch-lkh-00.txt, Jun. 2003.

1019

Authorized licensed use limited to: University of Surrey. Downloaded on April 13,2010 at 14:37:39 UTC from IEEE Xplore. Restrictions apply.

