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Abstract— We consider semi-blind data detectors for OFDM
systems over fast fading channels. Three maximum-likelihood
(ML) data detectors (MLD) are derived assuming exact channel
correlation. The first two exploit the correlation among pre-
DFT and post-DFT received signals and the third one average
the ML metric over channel impulse response (CIR). We show
that the first two MLDs for input data symbols are given by
an integer least-squares (LS) minimization problem, which can
be efficiently solved by V-BLAST detection (suboptimal) or by a
sphere decoder (SD) (optimal). We contribute a low-complexity
near-ML SD and an iterative detector for the third MLD. Despite
its low complexity, MLD1 performs robustly for normalized
Doppler rates less than 3%, which meets the requirement of
many practical systems. With iterative detection, both MLD1
and MLD3 can exploit time-diversity.

I. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) di-
vides the transmission bandwidth into many narrow sub-
channels which are transmitted in parallel. If the channel
is time-invariant, channel equalization can be easily accom-
plished by a single-tap frequency equalizer. OFDM is sensitive
to Doppler spread and carrier frequency offset (CFO), which
destroys the subcarrier orthogonality and gives rise to Inter-
Carrier-Interference (ICI). In OFDM, CFO can be estimated
by either training-based or blind techniques and can be
compensated. Without estimating the carrier offset, transmit
precoding can be employed to suppress its impact on ICI.
On the other hand, Doppler-induced ICI appears to be more
challenging. The effects of ICI are analyzed in [1], where
central limit theorem arguments are used to model ICI as a
Gaussian random process and to quantify its impact on the bit
error rate (BER). Bounds on signal-to-interference-and-noise
ratio (SINR) (due to ICI) are given in [2].

Many channel estimation algorithms have been proposed
for compensating time-varying channels and the Doppler-
induced ICI. When the OFDM block duration is much smaller
than the channel coherence time (relatively mild Doppler),
the channel remains approximately constant over an OFDM
symbol, and its estimation has been thoroughly studied in [3],
[4] (and references therein). When the OFDM symbol duration
is less than 10% of the channel coherence time, the channel
varies linearly [5] and can be estimated by linear interpolation

between two channel estimates acquired by training blocks. In
[6], an MMSE channel estimator and a successive interference
cancellation (SIC) scheme with optimal ordering are proposed.
Since the channel is time-varying, it is difficult or complicated
to estimate the channel impulse response (CIR) directly. The
principal motivation of this paper is therefore to derive semi-
blind data detectors. That is, input data symbols are detected
without first estimating the CIR.

In this paper, we derive three MLDs by using the maximum-
likelihood principle. The term ”semi-blind” is used since we
assume the channel correlation and noise variance are known
at the receiver. The first two MLDs exploit the correlation
among pre-DFT and post-DFT received samples. The third
one averages the maximum likelihood (ML) function over
the CIR. Exhaustive search of the resulting solution space
yields the ML solution but has exponential complexity in
the number of subcarriers and is computationally prohibitive.
When fdT < 0.03, the cost function of the first two MLDs
can be written in quadratic form. The vertical Bell Labs
layered space time (V-BLAST) [7] algorithm can be used
to suboptimally solve the quadratic form. However, near ML
performance is given by the sphere decoder (SD) [8]. When
fdT < 0.03 in MLD1 or MLD3, we give an iterative detection
algorithm, which is a variant of both exhaustive search and
greedy algorithms.

Notation: (·)T and (·)H denote transpose and conjugate
transpose. The set of complex K × 1 vectors is denoted
by CK . A M -ary signal constellation is denoted by Q. A
complex Gaussian variable with mean µ and variance σ2 is
denoted by z ∼ CN (µ, σ2). The discrete Fourier transform
(DFT) matrix of size N ×N is given by F = 1/

√
N [ej 2π

N kl],
k, l ∈ 0, 1, · · · , N−1, j =

√−1. The diagonal matrix formed
by a vector A is AD.

II. SYSTEM MODEL

A. OFDM baseband model

The binary source data are grouped and/or mapped into the
multi-phase symbols from a finite constellation Q, which are
modulated by inverse DFT (IDFT) on N parallel subcarriers.
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The resulting time domain samples are

x(n) =
1√
N

N−1∑
k=0

Xkej(2πkn/N), n = 0, · · · , N − 1

where Xk ∈ Q. Note that Xk, k = 0, 1, . . . , N −1, are called
modulation symbols and the term “OFDM symbol” is used to
denote the entire sequence {x(0), x(1), · · · , x(N − 1)}. The
input symbol duration is Ts and the OFDM symbol duration
T = NTs. These samples are appropriately pulse shaped to
construct the time domain signal x(t) for transmission.

A guard interval, inserted to prevent inter-frame interfer-
ence, includes a cyclic prefix of {x(Ng − 1), · · · , x(N − 1)}
where Ng is the number of samples in the guard interval (Ng

is assumed to be larger than the delay spread of the channel).
The composite response which includes transmit and receive
pulse shaping and the physical channel response between the
transmitter and receiver may be modelled as [3]

h(t) =
L−1∑
l=0

hl(t)δ(t − τl) (1)

where hl(t) ∼ CN (0, σ2
l ) and τl is the delay of the l-th tap.

Typically, it is assumed that τl = lTs and this results in a
finite impulse response filter with an effective length L. The
received signal after sampling can be represented as

y(n) =
L−1∑
l=0

hl(n)x(n − l) + w(n)

=
1√
N

L−1∑
l=0

hl(n)
N−1∑
k=0

Xkej(2πk(n−l)/N) + w(n)

(2)

where w(n) is Additive White Gaussian Noise (AWGN).
At the receiver, the guard interval is removed and DFT
demodulation is performed, resulting

Yk =
1√
N

N−1∑
n=0

y(n)e−j(2πkn/N), k = 0, 1, 2, · · · , N − 1.

=
1√
N

N−1∑
n=0

L−1∑
l=0

hl(n)x(n − l)e−j(2πkn/N) + Wk

=XkHk + αk + Wk

(3)

where Hk = 1/N
∑N−1

n=0

∑L−1
l=0 hl(n)e−j2πkl/N , Wk =

1/
√

N
∑N−1

n=0 w(n)e−j2πnk/N and

αk =
1
N

N−1∑
m=0,
m�=k

Xm

N−1∑
n=0

(
L−1∑
l=0

hl(n)e−j2πml/N )ej2πn(m−k)/N .

The αk’s represent ICI caused by the channel time-variation.

B. Channel model

A wide-sense stationary uncorrelated scattering (WSSUS)
channel (1) is characterized by its power delay profile (PDP)
and scattering function. We assume that hl(t) has the same
normalized correlation function rt(∆t). Hence

rhl
(∆t) = E{hl(t + ∆t)h∗

l (t)} = σ2
l rt(∆t). (4)

The autocorrelation function of the channel is

E{hl1(t + ∆t)h∗
l2(t)} = σ2

l1rt(∆t)δ(l1 − l2). (5)

From Jakes’ model [9], rt(∆t) = J0(2πfd∆t). J0(·)
denotes the zeroth-order Bessel function of the first kind, and
fd is Doppler frequency in hertz. We define frequency domain
correlation as

rf (∆f) =
L−1∑
l=0

σ2
l e−j2π∆fτl . (6)

Clearly rt(∆t) is dependent on the Doppler frequency, while
rf (∆f) depends on the PDP.

III. MAXIMUM LIKELIHOOD DATA DETECTION IN A FAST

FADING CHANNEL

A. MLD 1

This estimator exploits the correlation among pre-DFT
received samples. The correlation between y(n1) and y(n2)
in (2) can be written as

Ryy(n1, n2) = E{y(n1)y∗(n2)}

=
1
N

N−1∑
k1=0

N−1∑
k2=0

Xk1X
∗
k2

ej2πk1n1/Ne−j2πk2n2/N

× rt [(n1 − n2)Ts]
L−1∑
l=0

σ2
l e−j2π(k1−k2)l/N + σ2

nδ(n1 − n2)

=
1
N

N−1∑
k1=0

N−1∑
k2=0

Xk1X
∗
k2

ej2πk1n1/Ne−j2πk2n2/N

× rt [(n1 − n2)Ts] rf

(
k1 − k2

NTs

)
+ σ2

nδ(n1 − n2)

=rt [(n1 − n2)Ts] fH
n1

XDRfXH
Dfn2 + σ2

nδ(n1 − n2)
(7)

where XD = diag{X0,X1, . . . , XN−1}, the frequency do-
main correlation matrix [Rf ]i,j = rf (i − j)/(NTs) for i =
0, 1, . . . , N −1, j = 0, 1, . . . , N −1, and fi is the i-th column
of DFT matrix F. The second equality follows from (5) while
the third equality follows from (6).

Unfortunately Ryy cannot be written in compact matrix
form. Instead, we use the Taylor-series expansion of rt(∆t) =
r0 + r1∆t + r2(∆t)2 + . . .. Since rt(∆t) is an even function,
r2k+1 = 0 for k = 0, 1, . . .. For Jakes’ model, the zeroth-
order Bessel function of the first kind can be expanded as
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J0(2πx) ≈ 1 − (πx)2. Hence,

rt [(n1 − n2)Ts] =J0(2πfdTs(n1 − n2))

�1 − (πfdT (n1 − n2)/N)2

=1 + r2(n1 − n2)2
(8)

where r2 = −(πfdT/N)2 and fdT is the normalized Doppler
frequency. When πfdT < 0.1 or fdT < 0.03, the second
term can be neglected, i.e., rt [(n1 − n2)Ts] = 1. Therefore,
the autocorrelation matrix Ryy of the received signal y (y =
[y(0), . . . , y(N − 1)]) can be written as

Ryy = FHXDRfXH
DF + σ2

nIN . (9)

The probability density function of y conditional on the
transmitted data is therefore

p(y|XD) = (πN det(Ryy))−1 exp(−yHR−1
yy y). (10)

Provided |Xk| = 1, the determinant of Ryy can be
expressed as

det(Ryy) = det(XD) det(Rf + σ2
nIN ) det(XH

D)

= det(Rf + σ2
nIN ).

(11)

The determinant of Ryy is thus independent of XD, when
Xk’s are from constant modulus constellation. Ignoring terms
that are independent of XD, we find that maximizing the log
likelihood function is equivalent to minimizing the following
cost function

X̂D = arg min
XD

yHR−1
yy y

= arg min
XD

yHFHXD(FLRhFH
L + σ2

nIN )−1XH
DFy.

(12)

Solving (12) is equivalent to solving

x̂ = arg min
x∈QN

xT YH
D (Rf + σ2

nIN )−1YDx∗ (13)

where x = [X0,X1, . . . , XN−1]. Eq. (13) gives the MLD1.
For fdT < 0.03, the cost function (13) remains the same,
which means (13) is robust for normalized Doppler frequen-
cies less than 0.03.

When fdT > 0.03, the first order Taylor-series expansion is
not accurate. In Section IV, we contribute an iterative detector
to solve this problem.

B. MLD 2

This estimator exploits the correlation among post-DFT
received samples. The correlation between Yk1 and Yk2 in
(3) can be written as

E{Yk1Y
∗
k2
}

=E{Xk1Hk1H
∗
k2

X∗
k2

+ Xk1Hk1α
∗
k2

+ αk1H
∗
k2

X∗
k2

+ αk1α
∗
k2

+ Wk1W
∗
k2
}

(14)

From (3), (5) and (6), we have

E{Hk1H
∗
k2
}

=
1

N2

N−1∑
n1,n2=0

L−1∑
l1,l2=0

E{hl1(n1)h∗
l2(n2)}e−j2πk1l1/Nej2πk2l2/N

=
1

N2

N−1∑
n1=0

N−1∑
n2=0

rt [(n1 − n2)Ts]
L−1∑
l=0

σ2
l e−j2π(k1−k2)l/N

=
1

N2
rf

(
k1 − k2

NTs

) N−1∑
n1=0

N−1∑
n2=0

rt [(n1 − n2)Ts]

=σ2
ICIrf

(
k1 − k2

NTs

)
(15)

where σ2
ICI = 1/N2

∑N−1
n1=0

∑N−1
n2=0 rt [(n1 − n2)Ts]. We as-

sume that the information symbols are statistical independent
or equivalently E{Xk1X

∗
k2
} = δ(k1 − k2), which yields

E{αk1H
∗
k2

X∗
k2
} =

1 − δ(k1 − k2)
N2

(
L−1∑
l=0

σ2
l

)

×
N−1∑
n1=0

N−1∑
n2=0

rt[(n1 − n2)Ts]e−j2πn1(k1−k2)/N .

(16)

E{Xk1Hk1α
∗
k2
} = E{αk2H

∗
k1

X∗
k1
}∗ can be obtained simi-

larly. The correlation of the ICI terms can be obtained as

E{αk1α
∗
k2
}

=

(
L−1∑
l=0

σ2
l

)
{δ(k1 − k2) − 1

N2

N−1∑
n1=0

N−1∑
n2=0

rt[(n1 − n2)Ts]

× [e−j2πn1(k1−k2)/N + (1 − δ(k1 − k2))

× e−j2πn2(k1−k2)/N )]}
(17)

Therefore, the autocorrelation matrix of Y can be written as

RY Y = σ2
ICI(XDRfXH

D + σ2
enIN ) (18)where

σ2
en =

((∑L−1
l=0 σ2

l

) (
1 − σ2

ICI

)
+ σ2

n

)
σ2

ICI

. (19)

σ2
en can be considered as the equivalent noise variance, which

incorporates the effect of ICI. For sufficiently large N , Y can
be modelled as Gaussian via the central limit theorem. Hence,
similar to (13), MLD2 for x is given by

x̂ = arg min
x∈QN

xT YH
D (σ2

ICIRf + σ2
enIN )−1YDx∗. (20)

C. MLD 3
Eq. (2) can be written in matrix form as

y = Xh + w (21)

where y = [y(0), y(1), . . . , y(N − 1)]T , h =
[h(0)T ,h(1)T , . . . ,h(N − 1)T ]T where h(n) =
[h0(n), h1(n), . . . , hL−1(n)]T , w = [w(0), w(1), . . . , w(N −
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1)]T and X is given at the top of the fifth page. The received
symbol vector y is Gaussian with mean Xh and covariance
matrix σ2

nIN . The likelihood function for the unknown
parameters X and h is given by

Λ(y|X ,h) = exp
{
− 1

σ2
n

‖y −Xh‖2

}
. (22)

We evaluate the marginal likelihood function Λ(y|X ),
which is the average of Λ(y|X ,h) with respect to h and can
be expressed as

Λ(y|X ,h) = Eh{Λ(y|X ,h)}. (24)

Using [10, p. 595, eq. (B-3-20)] and dropping irrelevant
factors, (24) becomes

Λ(y|x, ε) = exp
{
yHXGXHy

}
(25)

where G = (XXH + σ2
nR−1

h )−1/σ2
n and Rh = E{hhH} is

the N ×N autocorrelation matrix of h and can be computed
using (4)-(6). The ML estimate of X can be obtained as

X̂ = arg max
X

yHXGXHy. (26)

This gives the MLD3. Since G depends on X and X cannot
be separated from G, it is difficult to write (26) in quadratic
form. The iterative algorithm in Section IV is used to solve
(26).
Remarks:

• The MLDs (13) (20) and (26) need the knowledge of
Rf , rt(·) and σ2

n. Since the channel covariance matrix
remains unchanged over a long period, the MLDs need
not estimate it every data block. The BER by the channel
covariance mismatch is concealed in noise in low SNR,
while in high SNR such mismatch dominates the BER.
Hence σ2

n is chosen corresponding to a high SNR value.
• The MLD1 does not contain fd, so it is robust to rt(·)

mismatch when fdT < 0.03.

IV. LOWER COMPLEXITY DETECTION ALGORITHMS

A. V-BLAST detection
The MLDs (13) and (20) can be solved by using V-BLAST

detection algorithm [7]. They have the general form as

x̂ = arg min
x∈QN

xT Gx∗

= arg min
x∈QN

xT MHMx∗ (27)

where the positive definite matrix G can be Cholesky factored
as G = MHM. The problem (27) can be reformulated as

x̂ = arg min
x∈QN

‖Mx∗‖2 (28)

The cost function in (28) is similar to that in BLAST MIMO
systems. Hence, V-BLAST can be adapted to solve (28).
We omit the details for brevity. As V-BLAST suffers from
error propagation, more accurate detection algorithm needs to
be derived. We use SD algorithm [8] and Schnorr-Euchner
strategy [11] with our data detectors. Details are omitted for

brevity. When fdT > 0.03, (13) is not valid. Neither MLD1
nor MLD3 can be written in quadratic form. Note that even
fdT > 0.03, the solution quality of (13) and (20) is usually
good. We thus choose these solutions as the initial estimate
denoted by x(0), where the superscript (i) denotes the i-th
iteration. The vector x is partitioned into several groups. Let
the size of group be denoted by S and the number of groups
is M . In the i-th iteration, when it proceeds to the m-th group
gm = {X(m−1)S+1, . . . , XmS}, all the other M − 1 groups
are fixed and gm is chosen as

ĝm = arg max
gm∈QS

f(gm|g1, . . . ,gm−1,gm+1, . . . ,gM ) (29)

where f(·) is the corresponding cost function in (26). Then it
proceeds to the m + 1-th group and so on. The same process
continues until no element in x(i) changes in the (i + 1)-th
iteration. It is evident when M = N , this detector reduces to
exhaustive search. Since the initial vector is usually good and
when M = 1 it reduces to the greedy algorithm. We choose
M to be 1 or 2 to ensure good performance.

V. SIMULATION RESULTS

We now test the proposed MLDs via computer simulations.
We assume the following system specifications:

• Both the data and pilot symbols are chosen from the
binary phase-shift keying (BPSK).

• The carrier frequency of the OFDM system is 5GHz and
the data rate is 3MHz.

• The 6-ray COST 207 TU model with the PDP
[0.189, 0.379, 0.239, 0.095, 0.061, 0.037] and delay pro-
file [0.0, 0.2, 0.5, 1.6, 2.3, 5.0]µs is considered [12]. Each
path is a complex Gaussian random process indepen-
dently generated with the classical Doppler spectrum
based on the inverse discrete fourier transform method
in [13]. All the paths are rounded to integer and we do
not consider leakage. The channel correlation matrix is
assumed perfectly known at the receiver.

• The number of subcarriers N = 32. 4 pilots are inserted
to solve the phase ambiguity.

We set M = 1 in the iterative detector and compare the
proposed detectors with an ideal, reference least-squares (LS)
detector, which is assumed to have perfect CIR.

Figs. 1-3 compare the BER performance of different MLDs
with perfect CIR for Doppler frequency fdT = 0.005,
0.01, 0.1. The LS data detector with perfect CIR is used
as a benchmark1. The MLD ID denotes MLD with iterative
detection. When fdT = 0.005 (Fig. 1), all the proposed MLDs
perform well and close to each other. The gap between the
MLD1 with SD and the ideal LS detector is less than 0.5 dB at
BER=10−3 and no error floor is observed. When fdT = 0.01
(Fig. 2), all our proposed MLDs with SD are comparable with
the benchmark in high SNR, which shows that they exploit

1The LS data detector is not the optimal detector for fast fading channels,
which can be exploit the time diversity.
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X =




x(0), x(1), . . . , x(N − L + 1)
x(1), x(2), . . . , x(N − L + 2)

. . .
x(N − 1), x(1), . . . , x(L − 2)


 (23)
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Perfect CIR LS
MLD1 V−BLAST
MLD1 SD
MLD1 ID
MLD3 ID
MLD2 V−BLAST
MLD2 SD

Fig. 1. BER comparison, fdT = 0.005

time-diversity induced by fast fading [6]. With V-BLAST our
MLDs approach the benchmark in high SNR. Figs. 1, 2 verify
that MLD1 performs robustly when fdT < 0.03.

When the normalized Doppler frequency is as large as
0.1 (fdT = 0.1), all our proposed MLDs without iterative
detection show an error floor (Fig. 2). The error floor of MLD1
is larger than that of MLD2. The error floor of V-BLAST is
larger than that of SD. With iterative detection, MLD1 and
MLD3 perform better than the benchmark. At BER=0.002,
the gain is 3.5 dB. Both MLD1 and MLD3 exploit the time-
diversity.

5 10 15 20 25 30
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SNR(dB)

B
E

R

Perfect CIR LS
MLD1 V−BLAST  
MLD1 SD       
MLD1 ID       
MLD3 ID       
MLD2 V−BLAST  
MLD2 SD   

Fig. 2. BER comparison, fdT = 0.01

VI. CONCLUSION

We derive semi-blind data detectors for OFDM systems
in fast fading channels, exploiting the knowledge of channel
correlation and noise variance. The first two MLDs exploit the
correlation among pre-DFT and post-DFT received samples.
The third one averages the ML function over the CIR. The pro-
posed MLDs are implemented by low-complexity V-BLAST

or SD algorithms. We also give an iterative detector, which is
a variant of both exhaustive search and greedy algorithms. The
proposed data detectors perform robustly when fdT < 0.03.
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Fig. 3. BER comparison, fdT = 0.1
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