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Abstract— It has been shown that a complex orthogonal design
that provides full diversity and full transmission rate is not
possible for more than two transmit antennas. This paper
presents a new class of quasi-orthogonal space-time block codes
using a group-theoretic method. The new designs can achieve full
diversity for quadrature phase-shift-keying modulation, like the
system using the rotated constellations. Based upon the analysis
of the new codes, a relaxed designing viewpoint for full diversity
is proposed for arbitrary signal constellations.

Keywords— Multi-antenna, space-time block codes, transmit
diversity, wireless communications.

I. INTRODUCTION

Transmit diversity has played an important role in various
areas of multi-antenna systems and the related disciplines.
Evidence suggests that space-time block codes (STBC) exploit
transmit diversity and reduce decoding complexity signifi-
cantly (see [8] and those references therein). The resulting
bit error rates (BER) are lowered dramatically by the simple
transmission schemes. Based upon the idea of orthogonizing
transmission matrices, Alamouti [1] first defined the STBC
transmission matrix from orthogonal designs for two transmit
antennas as (

z1 z2

−z†2 z†1

)
,

where z† stands for the complex conjugate of z. Later,
Tarokh, Jafarkhani, and Calderbank [7] presented a formal
setting for orthogonal designs by defining a T × N uni-
tary matrix with each entry coming from the symbol set{
±z1,±z†1, . . . ,±zK ,±z†K

}
, where T , N , and K represent

the block length, the number of transmit antennas, and the
number of constellation symbols, respectively. In particular,
a design is of full transmission rate (full rate) and minimal-
delay if K = T and T = N . Due to the unitary properties,
orthogonal designs ensure full diversity, and the corresponding
maximum-likelihood decoder can be simplified to a linear one.

It is proved in [7] that a complex orthogonal design with
minimal-delay cannot achieve full rate for more than two trans-
mit antennas. Therefore, Jafarkhani proposed quasi-orthogonal
space-time block codes (QOSTBC) in [3]. A QOSTBC is a
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STBC with minimal-delay that divides the columns of the
transmission matrix into pairs, where the columns within each
pair are not orthogonal but different pairs are orthogonal to
each other. In terms of the uncoded BER, the performance of
Jafarkhani’s QOSTBC shows that the quasi-orthogonal codes
perform better than the orthogonal codes in low signal-to-noise
ratios (SNR), but are surpassed by the orthogonal codes in
high SNRs. This is because QOSTBCs guarantee only half of
full-diversity order, and thus the slopes of corresponding BER
curves are not as steep as the orthogonal codes. Furthermore,
the decoder of these codes works with pairs of transmit
symbols instead of a single symbol as in the orthogonal
codes. Recently, Sharma and Papadias [5] and Su and Xia [6]
presented another scheme called rotation-based method. By
computing an angle φ and rotating the signal constellations,
the resulting system may have both full diversity and pairwise
maximum-likelihood decoding. Aside from preserving the
characters of QOSTBCs in low SNRs, the BER curve also
performs a better slope as steep as orthogonal codes. However,
the tradeoff is that the size and shape of signal constellations
become double and irregular since half of the transmit symbols
come from an extra constellation that is obtained from rotating
the original one with the phase difference φ.

This paper focuses on a new class of quasi-orthogonal
designs representable by a group-theoretic method on gen-
eralized quaternion group of order 16. For quadrature phase-
shift-keying (QPSK) modulation, these new QOSTBCs can
achieve full diversity as the system with a constellation rota-
tion [5] and [6]. Moreover, no extra rotated constellation is
needed. Taking advantage of several known results as well as
results derived in this paper concerning transmit diversity, we
are able to show how relaxed designing viewpoints for full
diversity are possible based upon the analysis of our matrices.
When compared with [5] and [6], our approach is capable of
providing the same BER performance, while only the simplest
multi-antenna encoding structure is used.

The rest of the paper is organized as follows. In Section II,
some observations between transmission codes and discrete
groups are introduced, which contribute the knowledge for
constructing our new quasi-orthogonal designs in Section III.
Section IV presents the experimental results. A conclusion is
given in Section V.
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II. RELATIONS BETWEEN FULL-RATE CODES AND

DISCRETE GROUPS

A complex STBC S (z1, . . . , zn) of size n is an n × n
matrix with entries the indeterminates ±z1, . . . ,±zn, their
conjugates ±z†1, . . . ,±z†n, or multiples of those indeterminates
by i where i2 = −1. Without loss of generality, the first row
of S (z1, . . . , zn) is set to (z1, . . . , zn). This result is latter
generalized to any field K with the conjugation replacing by
an automorphism of K and i replacing by a root of unit in K.

Given an STBC S (z1, . . . , zn), let ei be the row vector
(z1, . . . , zn) with zi = 1 and zj = 0 for j �= i, and e′i be the
row vector (z1, . . . , zn) with zi = i and zj = 0 for j �= i. We
have the following results.

Lemma 2.1: If the set

G := {±S (e1) , . . . ,±S (en) ,±S (e′1) , . . . ,±S (e′n)}
is a multiplicative group, then

C := {S (z1, . . . , zn) | z1, . . . , zn ∈ C}
is a ring with identity S (e1) over conventional matrix addition
and multiplication, where C is the field of complex numbers.

Proof: First observe that C is closed under addi-
tion because every entry of S (z1, . . . , zn) is linear. For
S (z1, . . . , zn) ,S (z′1, . . . , z

′
n) ∈ C, it is clear that

S (z1, . . . , zn) · S (z′1, . . . , z
′
n)

=

(
n∑

i=1

Re {zi} S (ei) + Im {zi} S (e′i)

)

·
(

n∑
i=1

Re {z′i} S (ei) + Im {z′i} S (e′i)

)

=
n∑

i,j=1

Re {zi}Re
{
z′j
}S (ei)S (ej)

+
n∑

i,j=1

Re {zi} Im
{
z′j
}S (ei)S

(
e′j
)

+
n∑

i,j=1

Im {zi}Re
{
z′j
}S (e′i)S (ej)

+
n∑

i,j=1

Im {zi} Im
{
z′j
}S (e′i)S

(
e′j
)

is also in C. Therefore, C is closed under multiplication, that
is, for any M1,M2 ∈ C we have M1 ·M2 ∈ C. Thus to evaluate
M1 · M2 we only need to know what its first row is. In fact,
if the i-th row of M ∈ C is (λ1, . . . , λn), then the first row
of S (ei) · M is (λ1, . . . , λn), and thus

S (ei) · M = S (λ1, . . . , λn) . (1)

From this, because the first row of S (λ1, . . . , λn) is
(λ1, . . . , λn), we get

S (e1) · S (λ1, . . . , λn) = S (λ1, . . . , λn) .

In other words, S (e1) is the identity matrix and the diagonal

entries of S (z1, . . . , zn) are either z1 or z†1, which means that
S (e1) is the identity of both G and C. Combining with the
addition and multiplication rules on matrices implies that C is
a ring with identity S (e1).

The following derivation shows an algorithm for deciding
the entries of S (z1, . . . , zn) if the multiplication rules of

G = {±S (e1) , . . . ,±S (en) ,±S (e′1) , . . . ,±S (e′n)}
are given. Suppose that

S (ei) · S (ek) = ±S (ej) .

We have that the i-th row of S (ek) is ±ej and hence the i-th
row of S (e′k) is ±e′j . This implies that

S (ei) · S (e′k) = ±S (e′j) .

In other words, the (i, j)-th entry of S (z1, . . . , zn) is ±zk

or ±z†k. More precisely, the (i, j)-th entry of S (z1, . . . , zn)
corresponding to the following four cases

(a)
{ S (ei) · S (ek) = S (ej)

S (ei) · S (e′k) = S (e′j)

(b)
{ S (ei) · S (ek) = −S (ej)

S (ei) · S (e′k) = −S (e′j)

(c)
{ S (ei) · S (ek) = S (ej)

S (ei) · S (e′k) = −S (e′j)

(d)
{ S (ei) · S (ek) = −S (ej)

S (ei) · S (e′k) = S (e′j)
are (a) : zk, (b) : −zk, (c) : z†k, (d) : −z†k, respectively.
Analogously, if

S (ei) · S (ek) = ±S (e′j) ,

then the i-th row of S (ek) is ±e′j . Thus the i-th row of S (e′k)
is ±ej which leads to

S (ei) · S (e′k) = ±S (ej) .

The (i, j)-th entry of S (z1, . . . , zn) corresponding to the
following four cases

(e)
{ S (ei) · S (ek) = S (e′j)

S (ei) · S (e′k) = −S (ej)

(f)
{ S (ei) · S (ek) = −S (e′j)

S (ei) · S (e′k) = S (ej)

(g)
{ S (ei) · S (ek) = S (e′j)

S (ei) · S (e′k) = S (ej)

(h)
{ S (ei) · S (ek) = −S (e′j)

S (ei) · S (e′k) = −S (ej)

are (e) : izk, (f) : −izk, (g) : iz†k, (h) : −iz†k, respectively.
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z1 z2 z3 z4
(−1)niz2 z1 ±(−1)niz4 ±z3

−z†
3 ±(−1)niz†

4 z†
1 ∓(−1)niz†

2
−z†

4 ∓z†
3 ±z†

2 z†
1

z1 z2 z3 z4
(−1)niz2 z1 ∓(−1)nz4 ∓iz3

−z†
3 ±(−1)nz†

4 z†
1 ∓(−1)nz†

2
−z†

4 ∓iz†
3 ±iz†

2 z†
1

z1 z2 z3 z4

−z†
2 z†

1 ±(−1)niz†
4 ∓(−1)niz†

3
(−1)niz3 ±(−1)niz4 z1 ±z2

−z†
4 ±z†

3 ∓z†
2 z†

1

z1 z2 z3 z4

−z†
2 z†

1 ±(−1)nz†
4 ∓(−1)nz†

3
(−1)niz3 ∓(−1)nz4 z1 ∓iz2

−z†
4 ±iz†

3 ∓iz†
2 z†

1
z1 z2 z3 z4

−z†
2 z†

1 ∓z†
4 ±z†

3
−z†

3 ±(−1)niz†
4 z†

1 ∓(−1)niz†
2

(−1)niz4 ∓z3 ∓(−1)niz2 z1

z1 z2 z3 z4

−z†
2 z†

1 ∓iz†
4 ±iz†

3
−z†

3 ±(−1)nz†
4 z†

1 ∓(−1)nz†
2

(−1)niz4 ±iz3 ±(−1)nz2 z1

TABLE I

THE 4 × 4 QUASI-ORTHOGONAL SPACE-TIME BLOCK CODES.

III. NEW QUASI-ORTHOGONAL DESIGNS FROM

GENERALIZED QUATERNION GROUP

This section presents new quasi-orthogonal space-time
block codes by applying the results (a) ∼ (h) discussed in
Section II on Q16, the generalized quaternion group of order
16 [2]. The group Q16 is generated by two elements a and b
where a is of order 8 and b is of order 4 with the relation

a4 = b2 and a · b = b · a−1.

Explicitly, we can write Q16 as{
1, a, a2, a3, a4, a5, a6, a7, b, ab, a2b, a3b, a4b, a5b, a6b, a7b

}
.

In Q16, a4 is the only element of order 2 and a, a3, a5, a7 are
those elements of order 8. All the other elements are of order 4
except the identity. Moreover, there is only one cyclic normal
subgroup of order 4 in Q16 which is generated by a2. Before
illustrating all the permutations between G and Q16, we first
give the following Lemma 3.1 and show the Example 3.2 later
for clearance.

Lemma 3.1: If

G = {±S (e1) , . . . ,±S (en) ,±S (e′1) , . . . ,±S (e′n)}
is a multiplicative group, then

N := {S (e1) ,S (e′1) ,−S (e1) ,−S (e′1)}
is a cyclic normal subgroup of G.

Proof: Recall that S (e1) is the identity matrix and the
diagonal entries of S (z1, . . . , zn) are either z1 or z†1. By
S (e′1) = S (ie1), S (e′1) is a diagonal matrix with (i, i)-
th entries being ±i for i = 1, . . . , n. Hence it is clear that
S (e′1)

2 = −S (e1), S (e′1)
3 = −S (e′1), and S (e′1)

4 =
S (e1), which means that N is a cyclic subgroup of G.
Therefore it suffices to show that N is normal. Since the i-th
row of S (e′1) is ±e′i, we may obtain

S (ei) · S (e′1) = ±S (e′i) . (2)

By using the similar argument as in (1), it boils down that

S (e′i) · M = S (iλ1, . . . , iλn) ,

where (λ1, . . . , λn) is the i-th row of M . In particular,

S (e′1) · S (ei) = S (iei) = S (e′i) . (3)

Thus combining (2) and (3) gives us that

S (ei) · S (e′1) · S (ei)
−1 = ±S (e′1) ∈ N,

for all i ∈ {1, . . . , n}. Consequently,

S (e′i) · S (e′1) · S (e′i)
−1 = S (e′1) · (±S (e′1)) · S (e′1)

−1 ∈ N,

for all i ∈ {1, . . . , n}. This implies that N is normal.

Therefore in the case that G ∼= Q16
‡, we have

{S (e1) ,S (e′1) ,−S (e1) ,−S (e′1)} ∼= {1, a2, a4, a6}
by Lemma 3.1. Note that S (e1) is the identity and −S (e1)
is of order 2 in G. Suppose that S (e2) is an element of order
8 in G. Then

S (e2)
2 = ±S (e′1) , (4)

hence ±S (e2) and ±S (e′2) are all the elements of G which
have order 8. This implies that

±S (e3) ,±S (e′3) ,±S (e4) ,±S (e′4)

are all elements in G of order 4 and thus

S (e3)
2 = S (e′3)

2 = S (e4)
2 = S (e′4)

2 = −S (e1) . (5)

Now consider the product S (e2) · S (e3). If

S (e2) · S (e3) ∈ {±S (e2) ,±S (e′2) ,±S (e3) ,±S (e′3)} ,

a contradiction likes

S (e2) or S (e3) ∈ {±S (e1) ,±S (e′1)}
would happen from (4) and (5). Similarly, if

S (e2) · S (e3) ∈ {±S (e1) ,±S (e′1)} ,

by (5) a contradiction

S (e2) ∈ {±S (e3) ,±S (e′3)} ,

‡The notation G1
∼= G2 is used to denote that there exists a group

isomorphism between G1 and G2.
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would be gotten, too. Therefore, we have

S (e2) · S (e3) ∈ {±S (e4) ,±S (e′4)} . (6)

Combining (3), (4), (5), and (6), the multiplication rules of
G can be completely determined. Using the consequences
(a) ∼ (h) derived in Section II, we can construct exactly eight
STBCs in the case that S (e2) has order 8. Applying similar
argument to the case that S (e3) and S (e4) is an element
of order 8, respectively, there are totally 24 STBCs of size
4 which represent Q16. The complete list is written down in
Table I, and it is clear that those STBCs are really quasi-
orthogonal.

Example 3.2: Suppose that S (e2)
2 = S (e′1) and S (e2) ·

S (e3) = S (e4) in (4) and (6), respectively. Combining
with (3) and (5), we obtain the multiplication rules of G as
the following tables.

· S (e1) S (e2) S (e3) S (e4)
S (e1) S (e1) S (e2) S (e3) S (e4)
S (e2) S (e2) S (e′1) −S (e′4) S (e3)
S (e3) S (e3) S (e4) −S (e1) −S (e2)
S (e4) S (e4) S (e′3) S (e′2) −S (e1)

· S (e1) S (e2) S (e3) S (e4)
S (e′1) S (e′1) S (e′2) −S (e′3) −S (e′4)
S (e′2) S (e′2) −S (e1) −S (e4) −S (e′3)
S (e′3) S (e′3) S (e′4) S (e′1) S (e′2)
S (e′4) S (e′4) −S (e3) S (e2) S (e′1)

In particular, S (e3) · S (e2) can be obtained through

S (e3) · S (e2) = −S (e′1) · S (e′1) · S (e3) · S (e2)
= −S (e′1) · S (e′3) · S (e2)
= −S (e′1) · S (e2) · S (e4) · S (e2)
= −S (e′1) · S (e4)
= −S (e′4) .

From (a) ∼ (h) in Section II, the corresponding QOSTBC is


z1 z2 z3 z4

iz2 z1 iz4 z3

−z†3 iz†4 z†1 −iz†2
−z†4 −z†3 z†2 z†1


 . (7)

IV. SIMULATION RESULTS AND DESIGNING VIEWPOINTS

In Fig. 1, the BER performance of our new codes is
presented at 2 bits/s/Hz. The simulation results of three other
transmission schemes are also shown. The simulation setup is
the same as the one used in [3], which uses QPSK constellation
for QOSTBCs and uncoded scheme, and uses 16-quadrature
amplitude modulation (QAM) for the rate- 1

2 orthogonal STBC
while the decoding is done by maximum-likelihood (ML)
decoding. According to our simulation results, all the 24 codes
perform equally well. Hence, only the SNR-BER curve for (7)
is shown to represent the new codes. It is known that in
general, QOSTBCs can achieve only half of full diversity.

Thus, the slopes of corresponding SNR-BER curves should
be less than the slopes of orthogonal STBCs, which implies
that orthogonal codes have better performance in high SNRs.
On the other hand, when the SNR is low, full-rate QOSTBCs
have lower BER than non-full-rate STBCs because of their
higher transmission efficiency. In Fig 1, it can be seen that
the QOSTBC proposed by Jafarkhani obeys the reasoning.
However, surprisingly, as can be observed from the figure,
the new code performs better than Jafarkhani’s QOSTBC,
especially in high SNRs. Moreover, the code shows consistent
3dB gain over the rate- 1

2 orthogonal STBC. This also implies
that the new code achieves full diversity order as orthogonal
designs do.

Further analysis of the difference matrices for these codes
explains the phenomenon more clearly, where a difference
matrix is defined as

S (z1, . . . , zn) − S (z′1, . . . , z
′
n) ,

with z1 . . . , zn, z′1, . . . , z
′
n being complex numbers in the given

constellations and not all zi’s are equal to z′i’s. Since it is
known in [4] that the rank of a difference matrix for any N =
T = K = 4 QOSTBC is either 2 or 4. In Table II, only the
numbers of rank 2 and rank 4 difference matrices are shown.
According to the table, all the difference matrices of the new
code between any two pairs of codeword matrices are with
full rank. Therefore, this code satisfies the rank criterion stated
in [8] and achieves full diversity when QPSK constellation is
used. On the contrary, there are 1040 difference matrices with
rank 2 for Jafarkhani’s code. Thus, the SNR-BER curves are
dominated by those pairs and the code can achieve only partial
diversity order.

The simulation at 3 bits/s/Hz using 8-PSK constellation
shows that the SNR-BER curves of our codes are identical to
the curve of Jafarkhani’s QOSTBC. Only half diversity order
is achieved. A similar analysis is done by examining the rank
and minimum determinant of the difference matrices between
all pairs of codeword matrices in 8-PSK constellation. The
results for both our new code and Jafarkhani’s code show that
although most of the difference matrices are full-rank, 24128
difference matrices are of rank 2. Thus, it is reasonable that
these two codes have exactly the same performance.

Another advantage of our codes is the low decoding com-
putational complexity due to their quasi-orthogonal structure.
As shown in [3], QOSTBCs can be decoded pairwisely.
For example, the first and second columns of the QOSTBC
in (7) are orthogonal to the remaining two columns. To
decode the symbol pairs z1, z2 and z3, z4 separately is an
optimal decoding scheme. Thus, there is no need to search all
possible symbol sequences at the receiver side. The resulting
computational complexity is much less than the computational
complexity of the typical ML detection.

The successful experience of constructing a full-diversity
design in QPSK constellation implies that to design a full-
diversity code for a specific constellation based on QOST-
BCs is feasible. The concept is called a relaxed designing
viewpoint. The advantages of the codes based on the relaxed
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No. of rank 2/4 difference matrices QPSK (total 44 × 44 − 1 = 32640 pairs) 8-PSK (total 84 × 84 − 1 = 8386560 pairs)

Jafarkhani’s code [3] 1040/31600 24128/8362432

New code 0/32640 24128/8362432

TABLE II

NUMBERS OF RANK 2 AND RANK 4 DIFFERENCE MATRICES IN TWO CONSTELLATIONS.
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Fig. 1. BER performance for MISO transmission schemes at 2 bits/s/Hz.

designing viewpoint can be explained in two respects. First,
since the codes satisfy the rank criterion in a given constel-
lation, full diversity can be achieved. On the other hand, the
ML decoding can be simplified by searching symbol pairs with
maximum likelihood because the codes are quasi-orthogonal
essentially. In [5] and [6], the quasi-orthogonal codes with
constellation rotations can also achieve full diversity. However,
an additional constellation has to be used for schemes with
rotated constellations. Our codes provide a simpler expression,
which achieves full diversity without constellation expansion.
And to exploit other full-rate, complex full-diversity designs
based on QOSTBCs for all other constellations becomes an
interesting open problem.

V. CONCLUSION

A novel approach of designing well-performed full-rate
quasi-orthogonal space-time block codes on simpler transmis-
sion architecture has been proposed. As far as the transmit
signal constellations are concerned, our approach makes it pos-
sible to construct full-diversity codes for QPSK modulation.
We believe the full-rate complex full-diversity designs for any
specific constellation can be constructed more efficiently based

on the relaxed designing viewpoint in the future.
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