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Abstract— Providing random access function in peer-to-peer
on-demand video streaming is a challenging task, due to not
only the asynchronous user interactivity but also the unpre-
dictability of group dynamics. In this paper, we propose VMesh,
a distributed peer-to-peer video-on-demand (VoD) streaming
scheme which efficiently supports random seeking functionality.
In VMesh, videos are divided into segments and stored in peers
in a distributed manner. An overlay mesh is built upon peers
to support jumping forward/backward, pause and restart during
playback. Our scheme utilizes the large total storage capacity of
peers to improve the segment supply so as to support interactive
commands in a scalable manner. Through simulation, we show
that our system outperforms a recent work, P2VoD. VMesh also
has low segment missing rate under random member join/leave.
In addition, the system achieves low joining and seeking latencies
which are crucial requirements in an interactive VoD system.

I. INTRODUCTION

With the popularity of broadband Internet access, there has
been increasing interest in media streaming services. Video-
on-demand (VoD) is one of such services where movies are
delivered to desktops of distributed users with low delay and
free interactivity (in terms of pause, jump forward/backward,
etc.). However, providing VoD with traditional client-server
model where each client has a dedicated stream from a
VoD server is not scalable to large number of clients. This
is mainly due to heavy server load and limited network
bandwidth at the server side. Despite many proposals on
scalable media streaming using IP multicast, providing such
services is still challenging due to the lack of widely deployed
multicast-capable networks and dedicated proxy servers [1],
[2]. Recently, peer-to-peer (P2P) technologies have provided
scalable solutions to many applications, e.g., multicasting and
file sharing among distributed users [3], [4]. In this paper,
we propose a novel P2P technique to provide interactive VoD
service.

In P2P systems, cooperative peers self-organize themselves
into overlay networks via unicast tunnels.! Each peer (called
overlay node) in an overlay network acts as an application-
layer proxy, caching and relaying data for other peers. In

This work was supported, in part, by the Direct Allocation Grant in
HKUST (DAGO05/06.EG10) and by the Research Grant Council in Hong Kong
(HKUST6156/03E).

UIn this paper, we use “client” and “peer” interchangeably.

addition, by sharing their resources such as storage and
network bandwidth, the capacity of the whole system is greatly
increased as compared to traditional client-server architecture.
Recent research shows that it is feasible to support large-scale
media streaming in the Internet using P2P approach [5]-[13].

Though P2P approach has been shown to be quite successful
for on-demand media streaming, its support to user interactiv-
ity is still challenging due to the following reasons:

e Request asynchrony — User requests come at different
times, so different users are receiving different segments
of the media. Therefore, simply multicasting the stream
using ALM does not fulfill all the user requests.

e Peer dynamics — Users in the system may join or leave
at any time, or even suddenly fail. Hence, there is a need
for an efficient mechanism which is resilient to dynamic
peer-to-peer environment.

o Unpredictable interactivity — Users may jump forward,
backward, pause and resume the video at any time. This
means that the parents (or “suppliers”) of a user may need
to be changed quite frequently.

Though P2P file swarming systems like BitTorrent may be
used to download the whole media objects before playback,
this introduces long startup delay for playback [4]. Though
there has been much work on providing on-demand video
service in P2P networks (i.e., low startup delay) [7]-[11],
[13], few tackle the important problem — user interactivity —
which we focus in this paper. As opposed to previous work,
ours also uses storage instead of sliding window buffering to
reduce the complexity.

We propose a novel P2P scheme called VMesh to support
interactive VoD service. VMesh utilizes the large total storage
capacity of peers to improve the supply of video segments
so as to support the large interactive demand in a scalable
manner. In VMesh, videos are divided into smaller segments
(identified by segment IDs) and stored in peers distributed over
the network. An overlay mesh is built upon peers to support
playback and interactive functionalities during playback. A
peer may store one or more video segments in its local storage.
It keeps a list of the peers who have the previous and the next
video segments. Following the list, its children can quickly find
the peers who have the next requested segments. Furthermore,
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a peer also keeps a list of peers who store the same segment
for load balancing purpose. If a node is loaded, it redirects
some of its children to other peers on its list. In order to
provide failure tolerant streaming service, a client connects to
multiple parents who have stored the segment of interest and
hence can stream the video in parallel and collaboratively.
The parents could be searched for in the P2P network using
distributed hash table (DHT) with the key comprising video
ID and segment ID [14]-[16].
VMesh has the following desirable properties:

o Scalability — the system is scalable to large number
of users with low server bandwidth requirement. It is
completely decentralized, without the need of a server
to organize overlay nodes.

o Efficiency — users could start playing the media with
low delay (without downloading the whole movie).

« Failure resilience — the system is robust to node and link
failures to offer continuous streaming.

« Interactivity support — users can interact with the media
at any time.

This paper is organized as follows. We give a detail de-
scription of our scheme in Section II. Next, we present our
experimental results in Section III. Finally, we conclude the
paper in Section IV.

II. SCHEME DESCRIPTION

In this section, we first describe VMesh, followed by our
scheme on distributed storage of video. Finally, we introduce
our random storage overlay mesh mechanism and its feedback-
based maintenance.

A. VMesh Description

A video server stores a collection of videos for user access.
Videos are divided into multiple segments, say 5 minutes per
segment. For example, if the video bit rate is 1 Mbps, each
segment is of size only 36 MBytes, which is usually available
from local storage of most peers. Since the video segments
are distributed among peers, VMesh makes use of DHT built
among the users to bootstrap a new video streaming session. A
peer randomly stores video segment(s) in its local storage. The
segment would be used to stream to another peer of interest.

An overlay mesh called video mesh (VMesh) is built among
the peers. A peer keeps pointers (i.e., the IP addresses)
pointing to the peers which store the next video segment, the
previous video segment or the same video segment as what the
peer stores (this is for redirection to achieve load-balancing).

Figure 1 illustrates the idea of VMesh. In the figure, a circle
represents a storage peer and the number inside represents the
ID of the segment it holds. A storage peer holds a few video
segments and keeps a list of peers who have the next / previous
/ current segments for random seeking and load balancing
purposes. The overlay links are used to redirect users to the
appropriate parents who store the next requested segments.
In case of joining or jumping, a VoD client in our system
searches its parents using DHT and gets the stream from
those parents. In the traditional “cache-and-relay” paradigm

next-segment ———>
previous-segment ———¢

current-segment

storage peer @

Fig. 1. In VMesh, storing peers hold various video segments and at the
same time, they keep a list of peers who possess the next / previous / current
segments for random seeking and load balancing purposes.

proposed in previous work, a VoD client relies on the content
resides in the buffers of its parents. If the parents jump to
another position in the video, the peer needs to search a new
parent again. In contrast, each storage peer in VMesh would
not change the video segments it stores and shares during its
lifetime, and hence its activities (i.e., jumping) do not affect
its children.

All peers register the search keys of their stored video
segments in the DHT built among all the users. A new joining
client performs the following procedure:

1) It searches for the segment of its interest using the DHT.

2) It contacts the returned list of peers and requests for the
segment.

3) The contacted peers, if they have enough user capacity
and bandwidth, become the client’s parents for sending
the requested segment. (Close parents are preferred for
efficiency.?) Multiple parents are used for fault tolerance
purpose. There are many scheduling algorithms for
packet assignment with multiple parents [5], [12]. We
consider simple round-robin scheduling in this paper.

4) When the client nearly consumes its current segment, it
requests from its current parents for their lists of peers
holding the next segment. It then contacts the peers in
the returned list for continuous streaming.

5) If the client wants to jump to another video position
which is not far away from the current one, it can simply
follow its forward/backward pointers in the video mesh
to contact the new parents. On the other hand, if the new
position is too far away, it triggers another DHT search
for the segment corresponding to the new position.

B. Distributed Video Storage using DHT

Network locations of the parents are quite important for
efficient data dissemination. If the parent-child relationships
are casually decided, there may be triangular routing between
peers, wasting much network resources and increasing link
stress. To address this, VMesh takes the network locations of
the peers in the system into consideration.

2Close parents can be selected from the list by measuring their round-trip
times using simple ping utility.
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(a) An example of Hilbert curve map-
ping from two-dimensional space to one-
dimensional space.

16 bits 8 bits 16 bits

Hashed media info Video Segment ID | SFC mapped coordinates

(b) The 40-bit DHT search key consists of three parts: hashed media informa-
tion, video segment ID and space filling curve mapped network coordinates
of the peer.

Fig. 2. The Hilbert curve mapping is used for mapping 2-D network coordinates
of peers to 1-D numbers and the mapped numbers are put into the DHT search
keys.

The network location of a peer can be obtained using a
network coordinate system like GNP and Vivaldi [17], [18].
Such system gathers ping measurements among peers and
landmarks, and returns multi-dimensional coordinates in an
Euclidean space. In order to search for parents with close
network locations, we put this locality information into the
DHT keys of the segments registered by the peers. Since
most DHTs in structured overlays use a one-dimensional space
for keys while coordinates are multi-dimensional, we need a
mapping from the multi-dimensional coordinate space R¢ to
the one-dimensional DHT key space $t. We apply space filling
curve (SFC), such as Hilbert curve, for such mapping because
SEC is locality preserving (i.e., if two points in the multi-
dimensional space are close, their corresponding mapped one-
dimensional distance is also close) [19]. Figure 2(a) shows
how Hilbert curve maps a two-dimensional space to a one-
dimensional space.

With the mapped coordinates, each peer constructs its 40-bit
DHT key consisting of media information and its segment ID
as well.> As shown in Figure 2(b), the DHT key is constructed
by combining the fields in the order of importance. The most
important field is the media information, followed by the
video segment ID, and then the SFC-mapped coordinates.
The media information is hashed for the purpose of balancing
DHT load among peers. Each peer registers its own key for
its stored video segment in the DHT. At the same time, it
searches for its parents using DHT search keys constructed
by segment ID and its own mapped coordinates. Most DHT's
can be modified to reply queries with multiple peers whose

3The length of the DHT key can be extended to accommodate larger
systems. The 16-bit hashed media information can already accommodate to
about 65000 media objects in the system.

[ new client
@ storage peer

Fig. 3. Searching for the first video segment to kick off a new video streaming
session.

keys are numerically closest to the search key. Since the peer’s
own mapped coordinates are used in the search key, multiple
parents closest to the requesting peer are returned. The peer
can then connect to them as its parents and request for the
stream.

Figure 3 illustrates how a new client receives the requested
video stream in VMesh. Firstly, it searches for the first segment
of the requested video stream using DHT. Then, based on our
design of DHT search key, the closest available storage peers
reply and begin to serve the requesting client.

C. Video Mesh and its Feedback-based Maintenance

Upon entering the system, a new client may start viewing
its video. Using its residual bandwidth, it also downloads
some random segments for storage. After the video segment is
completely downloaded, the client registers its segment(s) in
the DHT. As shown in Figure 1, a peer needs to keep three lists
of peer pointers (i.e., peers’ IP addresses): next-segment-list,
previous-segment-list and current-segment-list.

The lists could be easily obtained by searching the previous
/ next / current segment IDs from other peers using the DHT
built among them. The pointers in the lists are used to redirect
a peer’s children to some other parents during playback for
load-balancing purpose. In the case of normal playback, when
a child nearly consumes the whole segment, it requests for
some pointers in the next-segment-list from its current parents.
Upon receiving the request, some pointers are sent to the
child peer so as to allow it to get the next segment from
other parents. In case of random seeking a favorite scene in a
movie, users usually jump forward and backward in the video.
Short-distance jumps, say within 10 minutes, can be satisfied
by both the next-segment-list and previous-segment-list from
its current parents. The current-segment-list is used when the
parent’s load is too heavy. Requesting peers are redirected to
other peers who keep the same video segment. These lists
can also reduce control messaging overhead by avoiding DHT
searching for new parents by the client each time a segment
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is nearly used up. Instead, the storage peers search only once
and keep the list.

Though searching in DHT is not an expensive operation,
keeping all the pointers in the lists current requires frequent
updates which may be uneconomical. We eliminate this kind
of messaging overhead by employing a feedback-based mecha-
nism for maintaining the pointers in the lists. Children of peers
are responsible for checking the validity of the pointers sent by
their parents. If the percentage of invalid or failed pointers is
greater than a certain threshold ¢, the child reports the situation
to its parent. Upon receiving such failure report, the parent
needs to update the pointers in its list by searching for the
corresponding segment using DHT again. The advantages of
this passive updating mechanism are twofold: 1) The storage
peers need not keep track of all pointers in their lists, which
may be very costly. 2) Some failed pointers may become valid
again because the failure may be transient.

Each list only contains at most k pointers. A peer does not
need to keep all the qualified parents (i.e., the peers who store
the segments of interest) in its lists. Due to our design of the
DHT search key, the lists should contain the qualified parents
whose locations are close to the client. Therefore, children of
a peer are likely redirected to close parents during playback
or jumping.

III. PERFORMANCE EVALUATION

We evaluate the performance of VMesh with various pa-
rameter settings, and also compare it with other overlay on-
demand streaming systems, in particular, P2VoD [11]. P2VoD
organizes nodes into multi-level clusters according to their
joining time, and the data stream is forwarded along the
overlay tree built among the peers. Each host receives data
from a parent in its upper cluster and forwards it to its children
in its lower cluster. A new node tries to join the lowest cluster
or forms a new lowest cluster. If it fails to find an available
parent from the tree and the server has enough bandwidth,
it directly connects to the server. In our experiment, we use
Smallest Delay Selection for P2VoD’s parent selection process.
And, we set the system parameter KX = 6 and the cache
size M B to be 5 minutes of video in the system (K is the
maximum number of clients allowed in the first generation of
each video session). For details of the protocol, readers may
refer to [11].

We build VMesh on top of a public Chord implementation
[20]. In our simulations, the length and bit rate of a movie
are 120 minutes and 1 Mbps, respectively. Each segment is
5 minutes long and of size about 36 MBytes. Each peer
stores one video segment at its local storage. The peers
participating in the system follow a Poisson arrival, each being
randomly attached to a router node and request the video
from the beginning. Group size, i.e. the total number of peers
in a measurement session, varies from 200 to 12800. The
underlying network topology is created using GT-ITM [21].
The whole network consists of 4080 routers and about 20000
links. In case a new client is unable to find available parent(s),
the client is rejected to be served.
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Fig. 5. Average jumping latency.

Figure 4 shows the joining latency in terms of hop count
in P2VoD and VMesh. Note that we have observed negligible
rejection rate in both systems with our settings. We hence do
not discuss rejection rates in the following. From the figure,
the join latency in P2VoD increases almost linearly with the
group size, while that in VMesh only increases in logarithmic
scale. In P2VoD, a new node first sequentially searches the
second lowest cluster to find a parent with enough bandwidth.
If that fails, it forms a new cluster and sequentially searches the
lowest cluster to find a parent with enough bandwidth. If that
fails again, it tries to connect to the server directly. With more
nodes in the system, a new node usually needs to search more
nodes for an appropriate parent. On the other hand, in VMesh,
a new node can quickly locate nodes with the first several
segments through DHT routing. The searching time via DHT
is shown to be O(log N) where N is the number of nodes in
the system. The latency is hence significantly reduced.
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Figure 5 compares the jumping (forward or backward)
latency in the two systems. As shown in the figure, the jumping
latency in P2VoD increases much more quickly than that in
VMesh. P2VoD has not been specially optimized for quick
jumping. If a user initiates a jumping request, the node needs
to sequentially search its upper or lower clusters. In the case
of a large group of users, the number of clusters is very large
and the search cost is high. In VMesh, however, a jumping
request and a joining request are almost the same. In either
case, the node searches for a certain segment through the
DHT network. For a short-distance jump request, a client
could request from its current parents for peers who have
the previous/next segment. The searching time can be further
improved.

Figure 6 shows the segment missing rate (SMR) in a
dynamic network. A data segment is considered missing if
it is not available at a node till the playback time, and the
SMR for the whole system is the average ratio of the missed
segments at all the participating nodes in the session [8].
As the figure shows, VMesh achieves much smaller SMR
(below 5%) than P2VoD (around 14%). With error resilient
coding techniques such as interleaving, such a loss rate can be
efficiently masked [22]. Since P2VoD uses a single overlay tree
for data delivery, the error rates for the nodes are increasing
down the tree. Each P2VoD node maintains a large number of
peer information, including its parent, children and siblings in
the same cluster. If a node loses some segments because of
background traffic, it needs to request for retransmission from
its parent. In VMesh, however, we adopt a different approach
to address this problem. Using multiple parents, while one of
the parents fails to deliver its assigned packets, the remaining
ones could be immediately requested to recover the missing
packets. In addition, with DHT searching, multiple parents
that store the desired segment can be found in one search.
In case of data loss from some parents, the others can be
quickly contacted for recovery. Furthermore, each storing peer
maintains a few pointers to peers storing the same segment.
This can also help its children quickly locate a new qualified
parents in case of node failure.

IV. CONCLUSIONS AND DISCUSSIONS

Providing interactive VoD service in P2P network is chal-
lenging, not only due to the asynchronous user access pattern
but also the unpredictability of group dynamics and user
interactivity. In this paper, we propose a novel scheme called
VMesh to support interactive VoD service in P2P networks.
VMesh utilizes the large storage capacity of peers to amplify
the supply of videos so as to easily support the large demand in
a scalable manner. In VMesh, videos are divided into smaller
segments and stored in peers distributed over the Internet.
A video mesh is built upon peers to support playback and
jumping forward/backward during playback. A peer, who has
a video segment stored in its local storage, connects to the
peers who have the same, the previous and the next video
segments. As a result, its children can be redirected to the peers
who have the required segments. In order to provide failure

0.2 T T

e P2VoD
0.18} —e—VMesh |
0.16 b
0.14r L@ e g

0.12} e 1

0.08 ]
0.06 1

Segment Missing Rate
o

0.04r 1

o.ozc/\W,

200 400 600 800 1000 1200 1400 1600 1800 2000
Time (unit: sec)

Fig. 6. Average segment missing rate.

tolerant streaming service, a client in the system connects to
multiple parents who have stored and are able to stream the
requested video segments in parallel and collaboratively. The
parents could be searched in the P2P network via distributed
hash table (DHT) technique using the key comprised of video
ID and segment ID.

Unlike the previous work, in which a peer depends on
what resides in the buffers of its parents, if the parents
jump to another position in the video, the peer needs to
search a new parent again. In VMesh, parent activities do not
affect the children unless the parent shutdowns the service.
Through simulation, we show that our system outperforms a
recent research work, P2VoD. We show that the system has
low segment missing rate under random member join/leave
and random injection of background network traffic, which
means that the video quality is good in the presence of group
dynamics and bandwidth fluctuation. In addition, the system
achieves very low joining and seeking latency which is crucial
to the performance of an interactive VoD system.

Adding pointers to peers which are storing video segments
far away from the current playback position can help a user
seek a far away position more efficiently, instead of searching
using DHT. In our future work, we will investigate how to add
other pointers in the mesh and the effect of adding them. Also,
in our current implementation, storage peers randomly choose
video segments to download. Since a popular segment is more
in demand than the others, it is better to balance the supply
and demand in a strategical manner. The performance may be
improved if storage peers could choose to download a video
segment according to its popularity. However, how to obtain
the popularity of each segment in a video and how to update it
dynamically are very challenging in P2P VoD system. We will
also look for solutions for this in the future. Implementing the
system and testing it in PlanetLab (a worldwide testbed for
Internet deployment) is also our future work.
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