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Abstract— We investigate how quickly phase transitions
can occur in one-dimensional geometric random graph
models of MANETs. In the case of graph connectivity,
we show that the transition width behaves like n−1 (when
the number n of users is large), a significant improvement
over general asymptotic bounds given recently by Goel
et al. for monotone graph properties. We also discuss a
similar result for the property that there exists no isolated
user in the network. The asymptotic results are validated
by numerical computations. Finally we outline how the
approach used here could be applied in higher dimensions
and for other graph properties.

Keywords: Geometric random graphs, MANETs, Thresh-
old functions, Phase transition, Zero-one laws, Poisson
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I. INTRODUCTION

Over the past few years, geometric random graphs have pro-
vided a useful abstraction for studying large wireless networks
[9, 12, 13, 15]. In that line of work, much attention has focused
on the following basic model where n points are distributed
uniformly and independently in the unit cube [0, 1] d (in Rd)
for some positive integer d. Given a fixed threshold τ > 0,
two points are said to be directly connected if their Euclidean
distance is less than τ . This notion of connectivity gives rise
to an undirected geometric random graph, denoted G d(n; τ).

As discussed in the monograph by Penrose [17, Chap. 1]
(and references therein), these geometric random graph models
(and variations thereof) are of wide applicability in statistical
physics, cluster analysis and hypothesis testing. In the context
of wireless networks, with d ≤ 3, we interpret the n points
as users equipped with a transmitter/receiver of transmission
range τ . In first approximation, if we neglect details of channel
behavior, it is reasonable to model two users as communicating
with each other if their Euclidean distance is less than τ . This
approach has been taken by a number of authors, e.g., [5, 6,
7, 9, 12, 13, 15].

Of particular interest for wireless networking is the prop-
erty that the graph Gd(n; τ) be (path) connected. Because
no explicit expression is available for the probability that
Gd(n; τ) is connected, except in the one-dimensional case
(d = 1), attention turns instead to the situation with n large
as representing the regime of practical relevance – After all,
designing and running wireless networks are more pressing
tasks when the number of users is large in relation to available

resources. Interestingly enough, randomizing user locations
makes it possible for many properties of Gd(n; τ) (including
connectivity) to reveal a typical behavior when n becomes
large.

This manifests itself as follows: Consider a monotone
increasing graph property A defined in the usual manner
[1, 14],1 graph connectivity being such a property. For each
n = 2, 3, . . ., let PA(n; τ) denote the probability that A
occurs in Gd(n; τ). The mapping τ → PA(n; τ) is monotone
increasing with 0 < PA(n; τ) < 1 in some finite interval and
PA(n; τ) = 1 outside it. As earlier simulation results already
indicate for various properties of interest [5, 6, 7, 15], there
exists a phase transition from PA(n; τ) � 0 to PA(n; τ) � 1
as τ varies across some critical range. A natural question
therefore consists in estimating how quickly this transition is
taking place.

To address this issue, for each n = 2, 3, . . ., we define

τA(n; a) = inf (τ > 0 : PA(n; τ) ≥ a) , a ∈ (0, 1) (1)

and whenever a lies in the interval (0, 1
2 ), we set

δA(n; a) = τA(n; 1 − a) − τA(n; a).

The transition width δA(n; a) measures how quickly PA(n; τ)
climbs from level a to level 1−a, thereby giving an indication
of the sharpness of the phase transition. Given the rather
complex dependence of δA(n; a) on n and a, it is desirable
to find asymptotic bounds (if nothing else) on its behavior for
large n.

A similar line of inquiry has been carried out extensively for
Bernouilli graphs (also known as Erdős-Renyi graphs) [3, 8].
Recently, Goel et al. [11] have derived such asymptotic bounds
for any monotone graph property in G d(n; τ). For any such
property A, their results imply that δA(n; a) = o(1), a fact
captured by the terminology that the monotone property A
has a sharp threshold. However, these general results do leave
open the question as to whether these asymptotic bounds can
be further sharpened for specific monotone graph properties,
hopefully in cases of practical importance.

Here, we tackle this issue mainly for the probability of graph
connectivity and for the probability of no isolated user. For
ease of telling the story, we restrict the discussion to one-
dimensional geometric random graph models for MANETs,

1The case of monotone decreasing gaph properties can be discussed mutatis
mutandis.



i.e., d = 1; such models have been investigated in the
references [5, 6, 7, 10] which contain some of the results we
needed. Our main result takes the form of exact asymptotic ex-
pansions (in n) for the thresholds [Theorem 3.1 and Theorem
5.1]. This leads to transition widths of order n−1 with known
preconstants, so that these graph properties are very sharp
indeed! Such information can be leveraged in network design
when network connectivity and node isolation are important
concerns.

Some may construe the one-dimensional case (d = 1) as
being perhaps too limited or not too relevant to practice.
However, we stress that the main contribution of the paper lies
in identifying an approach of wide applicability to establish
sharp asymptotics: The key ingredients are the availability of a
Poisson paradigm complementing the “zero-one” law usually
occuring for many graph properties.

The paper is organized as follows: The model and pre-
liminaries are given in Section II. The analytical results of
two monotone network properties, namely connectivity and
nonexistence of isolated users, are presented in Section III and
Section V, respectively. In Section IV, we explain how the ap-
propriate “zero-one” laws and companion Poisson convergence
lead to the correct asymptotics for the threshold width. Some
limited numerical validation of the asymptotics is provided
in Section VI. In Section VII we briefly contrast our results
against the results of Goel et al.; we also provide a rough
roadmap to establish similar results in higher dimensions
(d ≥ 2) and for other graph properties. A proof of Theorem
3.1 is relegated in Appendix.

A word on the notation in use: The indicator function of an
event E is simply 1 [E], and we use the notation

P→ n (resp.
=⇒n) to signify convergence in probability (resp. convergence
in distribution) with n going to infinity.

II. MODEL AND PRELIMINARIES

The one-dimensional model has been considered by a num-
ber of authors [5, 6, 7, 10]. To define it, let {U i, i = 1, 2, . . .}
denote a sequence of i.i.d. rvs distributed uniformly in the
interval [0, 1].

For each n = 2, 3, . . ., we think of U1, . . . , Un as the
locations of n nodes (or users), labelled 1, . . . , n, in the
interval [0, 1], Given a fixed distance τ > 0, two nodes are
said to be directly connected if their distance is at most τ ,
i.e., nodes i and j are connected if |Ui − Uj | ≤ τ , in which
case an undirected edge is said to exist between these two
users. This notion of connectivity gives rise to an undirected
geometric random graph denoted G(n; τ).

We introduce the rvs Xn,1, . . . , Xn,n which denote the
location of these n users when arranged in increasing order,
i.e., Xn,1 ≤ . . . ≤ Xn,n with the convention Xn,0 = 0 and
Xn,n+1 = 1. Also define

Ln,k := Xn,k − Xn,k−1, k = 1, . . . , n + 1.

Obviously Ln,1 + . . . + Ln,n+1 = 1. The rvs Xn,1, . . . , Xn,n

are the order statistics associated with the n i.i.d. rvs

U1, . . . , Un. It is well known [4, Eq. (6.4.3), p. 135] that for
any fixed subset I ⊆ {1, . . . , n}, we have

P [Ln,k > tk, k ∈ I] =

(
1 −

∑
k∈I

tk

)n

+

, tk ∈ [0, 1], k ∈ I.

with the notation xn
+ = xn if x ≥ 0 and xn

+ = 0 if x ≤ 0.
On several occasions, we shall find it convenient to consider

the {0, 1}-valued rvs χn,1(τ), . . . , χn,n+1(τ) defined as the
indicator functions

χn,k(τ) := 1 [Ln,k > τ ] , k = 1, . . . , n + 1.

III. CONNECTIVITY

Fix τ > 0 and n = 2, 3, . . .. The geometric random graph
G(n; τ) is said to be (path) connected if every pair of users
can be linked by at least one path over the edges of the graph,
and we write

Pc(n; τ) := P [G(n; τ) is connected] .

Obviously, the graph G(n; τ) is connected if and only if
Ln,k ≤ τ for all k = 2, . . . , n, so that

Pc(n; τ) = P [Ln,k ≤ τ, k = 2, . . . , n] . (2)

The closed form expression

Pc(n; τ) =
n−1∑
k=0

(−1)k

(
n − 1

k

)
(1 − kτ)n

+ (3)

was obtained by Desai and Manjunath [5] (as Eqn (8) with
z = 1 and r = τ ). Related expressions were also derived
earlier by Godehardt and Jaworski [10].

Fix a in the interval (0, 1). For each n = 2, 3, . . ., the
mapping τ → Pc(n; τ) can be shown to be strictly monotone.
This property guarantees the existence and uniqueness of
solutions to the equation

Pc(n; τ) = a, τ ∈ (0, 1). (4)

Let τc(n; a) denote this unique solution, and whenever a lies
in the interval (0, 1

2 ), we set

δc(n; a) := τc(n; 1 − a) − τc(n; a).

The main result concerning the behavior of τ c(n; a) for large
n is given first.

Theorem 3.1: For every a in the interval (0, 1), it holds that

τc(n; a) =
log n

n
− 1

n
log
(

log
(

1
a

))
+ o

(
n−1

)
. (5)

Theorem 3.1 is established in Appendix. The desired result
on the width of the transition interval flows as an easy
corollary.

Corollary 3.2: For every a in the interval (0, 1
2 ), we have

δc(n; a) =
C(a)

n
+ o

(
n−1

)
(6)

with constant C(a) given by

C(a) = log
(

log a

log(1 − a)

)
. (7)



It is a simple matter to check that a → C(a) is de-
creasing on the interval (0, 1

2 ) with lima↓0 C(a) = ∞ and
lima↑ 1

2
C(a) = 0. These qualitative features are in line with

one’s intuition.

IV. HOW TO GUESS THE RESULT

We now present a plausibility argument which allows us to
guess the validity of Theorem 3.1, and which eventually paves
the way to its proof: Our point of departure is the “zero-one”
law available for the property of graph connectivity under the
asymptotic regime created by having n become large when
the threshold parameter is scaled appropriately with n. Here,
we need take a [0, 1]-valued sequence {τ(n), n = 2, 3, . . .}
of the form

τ(n) =
1
n

(log n + α(n)) , n = 2, 3, . . .

such that limn→∞ τ(n) = 0; this amounts to αn = o(n).
Under these conditions, it is known that

lim
n→∞ Pc(n; τ(n)) =

⎧⎨
⎩

0 if limn→∞ α(n) = −∞

1 if limn→∞ α(n) = +∞
(8)

This result follows from Theorem 1 in [2, p. 352], but can
also be derived by direct arguments based on first and second
moments [14, Eqn. (3.10), p. 55] [14, Remark 3.1, p. 55].

The convergence (8) identifies the critical scaling

τ�
c (n) =

log n

n
, n = 2, 3, . . .

as the threshold function which defines a boundary in the
space of scalings. Intuition suggests that mild fluctuations
about this boundary, say of the order n−1, are likely to hold
the key to the form of τ(n; a) for large n. To explore this
idea further, for each x in R, define the [0, 1]-valued sequence
{σ(n; x), n = 1, 2, . . .} by

σ(n; x) = min

(
1,

(
log n + x

n

)
+

)
, n = 1, 2, . . . (9)

so that
σ(n; x) =

log n + x

n
(10)

for n large enough. The next result complements the ”zero-
one” law (8) and can be easily extracted from Theorem 12 in
[10, p. 157].

Theorem 4.1: For each x in R, it holds that

lim
n→∞ Pc(n; σ(n; x)) = p(x) (11)

with
p(x) = e−e−x

. (12)

To see in what sense the convergence (11) underpins Theo-
rem 3.1, consider the following heuristic arguments: For each
x in R, the convergence (11) yields the approximation

Pc(n; σ(n; x)) � p(x)

for large enough n. The mapping p : R → R+ : x → p(x) is
strictly monotone and continuous with limx→−∞ p(x) = 0 and
limx→∞ p(x) = 1. Therefore, for each a in the interval (0, 1),
there exists a unique value, denoted xa, such that p(xa) = a.
In fact,

xa = − log (− log a) . (13)

Given a in the interval (0, 1), we find that

Pc(n; σ(n; xa)) � a

for large n. This suggests (but not quite yet proves) that
σ(n; xa) and τ(n; a) behave in tandem asymptotically, thereby
laying the grounds for the validity of (5) – Just insert (13)
into (10) and (12). These ideas form the basis for the proof
of Theorem 3.1 found in Appendix.

To gain some perspective on (11)–(12), we need to introduce
the notion of breakpoint user. For each i = 1, . . . , n, user i
is said to be a breakpoint user in the random graph G(n; τ)
whenever (i) it is not the leftmost user in [0, 1] and (ii) there
are no users in the random interval [Ui − τ, Ui]. The number
Bn(τ) of breakpoint nodes in G(n; τ) is given by

Bn(τ) =
n∑

k=2

χn,k(τ),

so that
Pc(n; τ) = P [Bn(τ) = 0] .

Theorem 4.1 is a mere byproduct of a stronger result on
Poisson convergence [10, Thm. 12, p. 157], namely that
Bn(σ(n; x)) =⇒n Π(e−x) where Π(µ) denotes a Poisson rv
with parameter µ. See also a similar result for the correspond-
ing model on the unit circle [16, Thm. 8, p. 172].

V. ISOLATED NODES

Similar arguments can be made for graph properties other
than the property of graph connectivity just discussed. Here
is another example: Fix τ > 0 and n = 2, 3, . . .. For each
i = 1, . . . , n, node i is said to be isolated in the random graph
G(n; τ) whenever |Ui − Uj| > τ for all j 	= i, j = 1, . . . , n.
In terms of the order statistics introduced earlier, we see that
the user at location Xn,k is isolated (i) if Ln,2 > τ for k = 1;
(ii) if Ln,k > τ and Ln,k+1 > τ whenever k = 2, . . . , n − 1;
and (iii) if Ln,n > τ for k = n. As a result, the total number
In(τ) of isolated nodes in G(n; τ) is given by

In(τ) = χn,2(τ) +
n−1∑
k=2

χn,k(τ)χn,k+1(τ) + χn,n(τ).

The probability Pi(n; τ) that there is no isolated node in
G(n; τ) is simply given by

Pi(n; τ) = P [In(τ) = 0] .

The distribution of In(τ) is computed in [10, Thm. 4, p. 148].
With r = 0 in these expressions we find

Pi(n; τ) (14)

=
k(τ)∑
k=0

(−1)k
k∑

j=j(τ)

(
n − k − 1

k − j

)(
k + 1

j

)(
1 − (2k − j)τ

)n



where k(τ) = min(n − 1, 
 1
τ �) and j(τ) = max(0, 2k −


 1
τ �, 2k − n + 1).
Fix a in the interval (0, 1). For each n = 2, 3, . . ., the

mapping τ → Pi(n; τ) being strictly monotone, the equation

Pi(n; τ) = a, τ ∈ (0, 1). (15)

admits a unique solution, denoted τi(n; a). The main result
concerning the behavior of τi(n; a) for large n parallels
Theorem 3.1.

Theorem 5.1: For every a in the interval (0, 1), it holds that

τi(n; a) =
log n

2n
− 1

2n
log
(

log
(

1
a

))
+ o

(
n−1

)
. (16)

For every a in the interval (0, 1
2 ), this leads readily to

δi(n; a) := τi(n; 1 − a) − τi(n; a)

=
C(a)
2n

+ o
(
n−1

)
(17)

with constant C(a) given by (7).
The proof of Theorem 5.1 is omitted due to space limi-

tations. However, that this proof follows a pattern similar to
that of Theorem 3.1 should come as no surprise in view of
the following observations: Here it is appropriate to consider
a [0, 1]-valued sequence {τ(n), n = 2, 3, . . .} of the form

τ(n) =
1
2n

(log n + α(n)) , n = 2, 3, . . .

such that limn→∞ τ(n) = 0 (whence αn = o(n)). Under these
conditions, it is known that

lim
n→∞Pi(n; τ(n)) =

⎧⎨
⎩

0 if limn→∞ α(n) = −∞

1 if limn→∞ α(n) = +∞
(18)

This follows from Theorem 2 in [2, p. 353], but can also be
derived by lengthy arguments using the methods of first and
second moments. This time the critical scaling is given by

τ�
i (n) =

log n

2n
=

1
2
τ�
c (n), n = 2, 3, . . .

and the complement to the “zero-one” law (18) takes the form

lim
n→∞ Pi(n;

1
2
σ(n; x)) = p(x), x ∈ R (19)

with p(x) given by (12).
Again (19) flows from a Poisson convergence result, namely

In(1
2σ(n; x)) =⇒n Π(e−x). Although we do not provide a

detailed proof of this fact due to space limitations, we offer
some pointers as to its validity: First, for small enough τ in
the interval (0, 1), we note that

E [In(τ)] = 2E [χn,1(τ)] + (n − 2)E [χn,1(τ)χn,2(τ)]
= 2(1 − τ)n + (n − 2)(1 − 2τ)n

for all n = 2, 3, . . ., whence

lim
n→∞E

[
In

(
1
2
σ(n; x)

)]
= e−x = E

[
Π(e−x)

]
.

Next, the announced Poisson convergence holds if and only if
Jn(1

2σ(n; x)) =⇒n Π(e−x) with

Jn(τ) :=
n−1∑
k=2

χn,k(τ)χn,k+1(τ), n = 3, 4, . . .

for all τ > 0. This is so because χn,2(1
2σ(n; x)) P→ n0 and

χn,n(1
2σ(n; x)) P→ n0. The Poisson convergence paradigm is

now in place once we recognize that the rv Jn(1
2σ(n; x)) is

the sum of (n − 2) identically distributed indicator functions
which become vanishingly small and increasingly decorrelated
with n large. See also a similar result for the corresponding
model on the unit circle [16, Thm. 6, p. 169].

VI. NUMERICAL VALIDATION

Below we present some limited numerical results validating
the asymptotic results obtained here.

A. Evaluation

We consider n users which are uniformly and independently
distributed in the interval [0, 1], with n ranging from n = 1000
to n = 9000 in increments of 1000.

Given a in (0, 1), the threshold τc(n; a) is calculated by
solving the equation (3) which now takes the simpler form

a = Pc(n; τ) =
k(τ)∑
k=0

(−1)k

(
n − 1

i

)
(1 − kτ)n (20)

with k(τ) = min(n − 1, 
 1
τ �). In these calculations, some

care needs to be exercised owing to possible buffer overflow
associated with the evaluation of combinatorial coefficients.
To avoid computing directly the coefficients

(
n−1

k

)
, k =

0, 1, . . . , k(τ), we focus instead on evaluating the quantities
bk =

(
n−1

k

)
(1 − kτ)n, k = 0, 1, . . . , k(τ). Note that we

can calculate b0, b1, · · · , bk(τ) sequentially through the simple
recursion

bk+1 =
n − k − 1

k + 1

(
1 − τ

1 − kτ

)n

· bk

for all k = 0, 1, . . . , k(τ) − 1 with b0 = 1.
The asymptotics (5) and (6) suggest approximating τ c(n; a)

and δc(n; a) through the two quantities

τ∗
c (n; a) :=

log n

n
− 1

n
log
(

log
(

1
a

))
and δ∗c (n; a) :=

C(a)
n

.

Their accurracy is measured by the error variables ξ c(n; a) :=
|τc(n; a) − τ∗

c (n; a)| and εc(n; a) := |δc(n; a) − δ∗c (n; a)|.
We evaluate τi(n; a) through (14). Overflow issues are

circumvented by considering the quantities

cj =
(

n − k − 1
k − j

)(
k + 1

j

)
((1 − (2k − j)τ)n ,

which again can be computed iteratively but in decreasing
order. The quantities τi(n; a) and δi(n; a) are approximated
by τ∗

i (n; a) := τ∗
c (n; a)/2 and δ∗i (n; a) := δ∗c (n; a)/2, re-

spectively. The accuracy of these approximations is quantified
by the error variables ξi(n; a) = |τi(n; a) − τ∗

i (n; a)| and
εi(n; a) = |δi(n; a) − δ∗i (n; a)|.
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Fig. 1. Communication range and phase transition width when a = 0.1

B. Results

Below we display results for a = 0.1. The quantities
τc(n; a), τ∗

c (n; a), τi(n; a) and τ∗
i (n; a) are plotted in Fig.1(a).

The results for δc(n; a), δ∗c (n; a), δi(n; a) and δ∗i (n; a) are dis-
played in Fig.1(b). The symbols represent the numerical results
(as per computations explained above) and the lines represent
the approximations. It is plain that the approximations provide
highly accurate results. In addition, for a given n, τ i(n; a) and
δi(n; a) are about half of τc(n; a) and δc(n; a), respectively,
as expected from the asymptotic results.

We further investigate how accurate these approximations
are. By virtue of Theorem 3.1, Corollary 3.2, and Theorem 5.1,
the approximation errors, namely ξc(n; a), εc(n; a), ξi(n; a)
and εi(n; a) should be of order o(n−1). This is indeed reflected
by Table.I and Fig.2 upon noting that nξc(n; a), nεc(n; a),
nξi(n; a) and nεi(n; a) all go to zero as n grows large.
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Fig. 2. The asymptotic behavior of error variables

TABLE I

THE ASYMPTOTIC BEHAVIOR OF ERROR VARIABLES

n 100 1000 10000 100000
nξc(n; 0.1) 0.1022 0.0245 0.0046 0.0007
nεc(n; 0.1) 0.3213 0.0630 0.0106 0.0016
nξi(n; 0.1) 0.0446 0.0097 0.0013 0.0001
nεi(n; 0.1) 0.1364 0.0636 0.0247 0.0090

VII. DISCUSSION

For d = 1, the model considered by Goel et al. [11]
coincides with the one-dimensional situation considered here.
They show [11, Thm. 1.1] that for every monotone graph
property A, the corresponding transition width for property
A satisfies

δA(n; a) = O

(√
− log a

n

)
. (21)

The results obtained here for the property of graph connectiv-
ity and for the property of no isolated nodes markedly improve
on (21) in that exact asymptotics were provided and the rate
of decay (namely n−1) is found to be a lot faster than the
rough asymptotic bound given at (21).

These authors also show [11, Thm. 1.2] that there exists
some monotone graph property, say B, such that

δB(n; a) = Ω

(√
− log a

n

)
, (22)

in which case from (21) there exist positive constants C− and
C+ such that

C−

√
− log a

n
≤ δB(n; a) ≤ C+

√
− log a

n

for n sufficiently large. Obviously, graph connectivity and
node isolation cannot be such properties!

The discussion of Sections IV and V provides a roadmap to
deriving correspsonding results in higher dimensions (d ≥ 2)
and for other graph properties: For a given graph property
A, we first need to identify the critical threshold associated
with the “zero-one” law it satisfies. The effect of “small”
perturbations (of the property-specific appropriate order) from



the critical threshold can then be explored with the help
of the Poisson convergence paradigm. The resulting Poisson
convergence has its roots in the fact that many graph properties
can be captured through counting sums of many indicator
functions which become vanishingly small and increasingly
decorrelated with n large under the appropriate (perturbed)
scaling.

Poisson convergence is a common occurrence. A typical
example is the existence in Gd(n, τ) of at least one copy of a
given graph G; see [14, Chap. 3] for a discussion in the case of
Bernouilli graphs. For d ≥ 2, the properties considered here,
connectivity and node isolation, have similar critical thresholds
[2, 18]. For d = 2, with points distributed uniformly over a
disk of unit radius (rather than over a square), it is known
[12, 13, 18] that the critical threshold is such that

τ�(n)2 =
log n

n
, n = 2, 3, . . .

Moreover, Venkatesh [18] has recently shown that the number
of isolated users indeed converges to a Poisson rv Π(e−x)
when this critical scaling is perturbed to

σ(n; x) = min

(
1,

√(
log n + x

n

)
+

)
, n = 1, 2, . . .

It is reasonable to expect that Poisson convergence does hold
in arbitrary dimensions, although the authors are not aware of
its proof at this time. These issues will be pursued elsewhere.

REFERENCES

[1] N. Alon and J.H. Spencer, The Probabilistic Method (Second Edition),
Wiley-Science Series in Discrete Mathematics and Optimization, John
Wiley & Sons, New York (NY) 2000.

[2] M.J.B. Appel and R.P. Russo, “The connectivity of a graph on uniform
points on [0, 1]d,” Statisitcs & Probability Letters 60 (2002), pp. 351-
357.

[3] J. Bourgain and G. Kalai, “Influences of variables and threshold intervals
under group symmetries,” Geometric Functional Analysis, 1997.

[4] H.A. David and H.N. Nagaraja, Order Statistics (Third Edition), Wiley
Series in Probability and Statistics, John Wiley & Sons, Hoboken (NJ),
2003.

[5] M. Desai and D. Manjunath, “On the connectivity in finite ad hoc
networks,” IEEE Communications Letters 6 (2002), pp. 437-439.

[6] C.H. Foh and B.S. Lee, “A closed form network connectivity formula
one-dimensional MANETs,” 2004 IEEE International Conference on
Communications (ICC2004), Paris (France), June 2004.

[7] C.H. Foh, G. Liu, B.S. Lee, B.-C. Seet, K.-J. Wong and C.P. Fu, “Net-
work connectivity of one-dimensional MANETs with random waypoint
movement,” IEEE Communications Letters 9 (2005), pp. 31-33.

[8] E. Friedgut and G. Kalai, “Every monotone graph property has a
sharp threshold,” Proceedings of the American mathematical Society 124
(1996), pp. 2993-3002.

[9] E.N. Gilbert, “Random plane networks,” SIAM Journal 9 (1961), pp.
533-543.

[10] E. Goehardt and J. Jaworski, “On the connectivity of a random interval
graph,” Random Structures and Algorithms 9 (1996), pp. 137-161.

[11] A. Goel, S. Rai, and B. Krishnamachari, “Sharp thresholds for monotone
properties in random geometric graphs,” To appear in Annals of Applied
Probability. Preliminary version in ACM Symposium on Theory of
Computing, 2004

[12] P. Gupta and P.R. Kumar, “Critical Power for asymptotic connectivity
in wireless networks,” Chapter in Analysis, Control, Optimization and
Applications: A Volume in Honor of W.H. Fleming, Edited by W.M.
McEneany, G. Yin, and Q. Zhang, Birkhäuser, Boston (MA), 1998.
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APPENDIX

A PROOF OF THEOREM 3.1

Fix x in R. We restate (11) by noting that for each ε > 0,
there exists a finite integer n�(ε, x) such that

p(x) − ε < Pc(n; σ(n; x)) < p(x) + ε, n ≥ n�(ε, x). (23)

Now fix a in the interval (0, 1), and pick ε sufficiently small
such that 0 < 2ε < a and a + 2ε < 1. Repeatedly applying
(23) with x = xa+ε and x = xa−ε, we get

p(xa+ε) − ε < Pc(n; σ(n; xa+ε)) < p(xa+ε) + ε (24)

whenever n ≥ n�(ε, xa+ε), and

p(xa−ε) − ε < Pc(n; σ(n; xa−ε)) < p(xa−ε) + ε (25)

whenever n ≥ n�(ε, xa−ε). In the remainder of this proof,
all inequalities are now understood to hold for n ≥ n�(a; ε)
where we have set

n�(a; ε) = max (n�(xa), n�(ε, xa+ε), n�(ε, xa−ε)) .

where n�(x) denotes the finite integer beyond which the
representation (10) holds.

Since p(xa±ε) = a ± ε, the two chains of inequalities (24)
and (25) can be rewritten as

a < Pc(n; σ(n; xa+ε)) < a + 2ε

and
a − 2ε < Pc(n; σ(n; xa−ε)) < a.

Thus,

Pc(n; τc(n; a)) < Pc(n; σ(n; xa+ε)) < Pc(n; τc(n; a + 2ε))

and

Pc(n; τc(n; a − 2ε)) < Pc(n; σ(n; xa−ε)) < Pc(n; τc(n; a)),

and the strict monotonicity of τ → Pc(n; τ) yields

τc(n; a) < σ(n; xa+ε) < τc(n; a + 2ε)

and
τc(n; a − 2ε) < σ(n; xa−ε) < τc(n; a).

Combining these last two inequalities, we conclude that

σ(n; xa−ε) < τc(n; a) < σ(n; xa+ε). (26)

Upon writing

ξ(n; a) = τc(n; a) − σ(n; xa), n = 2, 3, . . . (27)



we obtain from (26) that

σ(n; xa−ε) − σ(n; xa) < ξ(n; a) < σ(n; xa+ε) − σ(n; xa)

with
σ(n; xa−ε) − σ(n; xa) =

xa−ε − xa

n

and
σ(n; xa+ε) − σ(n; xa) =

xa+ε − xa

n
.

As a result, xa−ε − xa ≤ lim infn→∞ (nξ(n; a)) and
lim supn→∞ (nξ(n; a)) ≤ xa+ε − xa. Given that ε can be
taken to arbitrary small, it follows that

lim inf
n→∞ (nξ(n; a)) = lim sup

n→∞
(nξ(n; a)) = 0

since
lim
ε↓0

(xa−ε − xa) = lim
ε↓0

(xa+ε − xa) = 0.

Thus, limn→∞ (nξ(n; a)) = 0, whence ξ(n; a) = o
(

1
n

)
.

Reporting into (27) leads to

τc(n; a) = σ(n; xa) + o(n−1), n = 2, 3, . . .

and the desired result readily follows from (9) and (13).


