
Time Driven Priority Router Implementation and
First Experiments

Mario Baldi, Guido Marchetto, Fulvio Risso
Dipartimento di Informatica, Politecnico di Torino, Italy

Email: {baldi, marchetto, risso}@polito.it

Giulio Galante, Riccardo Scopigno, Federico Stirano
Networking Lab, Istituto Superiore Mario Boella, Torino, Italy

Email: {galante, scopigno, stirano}@ismb.it

Abstract— This paper reports on the implementation of Time-
Driven Priority (TDP) scheduling on a FreeBSD platform. This
work is part of a TDP prototyping and demonstration project
aimed at showing the implications of TDP deployment in packet-
switched networks, especially benefits for real-time applications.
This paper focuses on practical aspects related to the implementa-
tion of the technology on a Personal Computer (PC)-based router
and presents the experimental results obtained on a testbed
network.

The basic building blocks of a TDP router are described
and implementation choices are discussed. The relevant results
achieved and here presented can be categorized into two types:
qualitative results, including the successful integration of all
needed blocks and the insight obtained on the complexity related
to the implementation of a TDP router, and quantitative ones,
including measures of achievable network utilization and of
jitter experienced on a fully-loaded TDP network. The outcome
demonstrates the effectiveness of the presented implementation
while confirming TDP points of strength.

I. INTRODUCTION

Circuit-switched networks are well suited for transporting
constant-bit-rate (CBR) real-time traffic with deterministic
delay guarantees owing to their strictly synchronous operation,
but may be highly inefficient for carrying bursty data traffic.

Packet-switched networks were designed for achieving high
resource utilization even with bursty traffic by exploiting the
statistical-multiplexing capability resulting from their asyn-
chronous operation. Unfortunately, they are pretty inefficient
in transporting real-time traffic, i.e., the network cannot be
fully loaded with such traffic. In fact, the currently widespread
approach for supporting delay and jitter-sensitive real-time
traffic relies on (i) differentiating traffic into at least a couple
of classes, (ii) giving higher priority to delay-sensitive traffic,
and (iii) keeping the amount of high-priority traffic small with
respect to the total network capacity [1]. Routers handle high-
priority packets expeditely so that they are not dropped and
experience a short queueing delay, which results in low end-to-
end delay and jitter. Nevertheless, this approach, besides lead-
ing to network resources’ under-utilization as a consequence
of (iii), cannot guarantee deterministic service to individual
real-time traffic flows (such as a videoconference or a phone
call).

Several solutions, including asynchronous transfer mode
(ATM) and Integrated Services [2], have been proposed
for providing flow-level quality-of-service (QoS) guarantees

over packet-switched networks, but they involve complicated
packet-scheduling algorithms (such as Weighted Fair Queuing)
and resource reservation procedures that, when implemented
on a per-flow basis, impose a significant performance and cost
toll on the entire network.

The Time-Driven Priority (TDP) packet-scheduling tech-
nique combines the efficiency of statistical multiplexing typ-
ical of asynchronous packet-switched networks with the pre-
dictability of synchronous circuit-switched networks. The re-
sult is a packet-scheduling technology that can guarantee
deterministic end-to-end delay performance even when heavily
loaded with real-time traffic, while still being able to let bursty
traffic dynamically share available network resources.

Nevertheless, TDP has only been investigated by means
of theoretical and simulative tools: the lack of a practical
implementation is currently a critical breakpoint in the de-
velopment of this technology. The primary objective of our
work has been then to implement TDP on a PC-based router
in order to demonstrate feasibility and provide a prototype for
measurements and further studies based on experiments.

The rest of the paper is organized as follows. Section II
introduces TDP. Section III provides a description of the
TDP implementation on a Personal Computer (PC) running
FreeBSD. Section IV describes the experimental testbed and
compares the performance of TDP and First-In First-Out
(FIFO) packet scheduling in terms of jitter when the network
is fully loaded. Finally, Section V concludes the paper.

II. TIME-DRIVEN PRIORITY: AN OVERVIEW

Implementing TDP for real-time packet scheduling requires
routers to be synchronized according to a common time
reference (CTR). The reminder of this section briefly describes
the CTR and how it is leveraged by TDP, and envisages
an incremental deployment scenario, which would allow for
the coexistence of TDP and legacy network technologies. An
extensive and detailed description of TDP is outside the scope
of this paper and is available in the literature [3], [4].

A. Common Time Reference Structure

The global common clock to which all packet switches are
synchronized has a basic time period called time frame (TF).
The TF duration may be derived, for example, as a fraction of
the coordinated-universal-time (UTC) second received from



a time-distribution system such as the global positioning
system (GPS), or other equivalent systems, such as the global
navigation system (GLONASS), the two-way satellite time
and frequency transfer (TWSTFT), and, in the future, Galileo.
Time frames are grouped into time cycles (TCs) and TCs are
further organized into super cycles, each of which typically
lasts one UTC second. TFs are partially or totally reserved
to each flow during a resource reservation procedure. The TC
provides the basis for a periodic repetition of the reservation,
while the super cycle offers a basis for reservations with a
period longer than a TC. This results in a periodic schedule
for packets to be switched and forwarded, which is repeated
every TC or every super cycle.

For example, in Fig. 1, the 250-µs time frame Tf is obtained
by dividing the UTC second by 4000; sequences of 100 time
frames are grouped into one time cycle, and runs of 40 time
cycles are comprised in one super cycle.

CTR from UTC
(Coordinated 

Universal Time)

1 2 100

Time
Cycle 0

1 2 100

Time
Cycle 1

1 2 100

Time
Cycle 39

Super-cycle 0
with 4k Time-frames

0
beginning 
of a UTC second

1
beginning 
of a UTC second

fTfTfT
fT fT

1 2 100

Time
Cycle 0

1 2 100

Time
Cycle 1

1 2 100

Time
Cycle 39

Super-cycle m
with 4k Time-frames

fTfTfT
fT fT

Fig. 1. Common time reference structure

B. Periodic Forwarding

The basic TDP operation is regulated by two simple rules:
(i) all packets that must be sent in TF t by a node must be
in its output ports’ buffers by the end of TF t − 1, and (ii) a
packet p transmitted in TF t by a node n must be transmitted
in TF t + dp by node n + 1, where dp is an integer constant
called forwarding delay, and TF t and TF t + dp are also
referred to as the forwarding TF of packet p at node n and
node n + 1, respectively. The value of the forwarding delay
is determined at resource-reservation time and must be large
enough to satisfy (i).

As exemplified in Fig. 2, which depicts the journey of a
packet from node A to node D along three TDP switches,
the forwarding delay may have different values for different
nodes, due to different propagation delays on different links
(e.g., Tab, Tbc, and Tcd), and different packet-processing times
in heterogeneous nodes (e.g., Tbb and Tcc). Moreover, two
variants of the basic TDP operation are possible. When node
n deploys immediate forwarding, the forwarding delay has the
same value for all the packets transmitted by node n. When
implementing non-immediate forwarding, node n may use
different forwarding delays for packets belonging to different
flows.

The periodic scheduling within each node results in a peri-
odic packet forwarding across the network, which is also re-
ferred to as pipelined forwarding for the ordered, step-by-step
fashion, with which packets travel toward their destination.
TDP guarantees that reserved real-time traffic experiences:

Fig. 2. Basic TDP operation

(i) bounded end-to-end delay [4], (ii) delay jitter lower than
two TFs1 [4], and (iii) no congestion and resulting losses.

Best-effort traffic can be transmitted during any unused
portion of a TF, i.e., links can be fully utilized even if flows
with reserved resources generate fewer packets than expected.

C. Incremental Deployment Scenario

Today, the Internet is mostly based on asynchronous packet
switches. Thus, especially in an initial deployment phase,
TDP routers would have to coexist and interoperate with
current asynchronous packet switches as depicted in Fig. 3.
Synchronous edge routers would control the access to the syn-
chronous TDP backbone by policing and shaping the incoming
traffic flows. Although TDP provides a maximum delay bound
when deployed end-to-end, it could also be beneficial when
confined to subnetworks: edge routers at the ingress of each
TDP subnetwork would eliminate the jitter experienced by
packets in the asynchronous network; then packets would
benefit from the controlled-delay service provided by the
synchronous subnetwork.

TDP
Network

Asynch
Network

Asynch
Network

UTC
from GPS

Variable delay Variable delayConstant delay

Constant delay

Fig. 3. Interoperation between TDP networks and asynchronous networks

D. Data Plane Operation

In any generic router data plane, packets are moved from
input ports to output ports going through three modules that
perform input processing, forwarding, and output processing.

1In the context of this paper the jitter is the difference between the
maximum and the minimum delay experienced from sender to receiver by
packets belonging to the same flow.



This section discusses the operations to be performed by a
TDP router in each module.

The input module is responsible for determining (1) whether
a packet should be scheduled according TDP and, if that is
the case, (2) its forwarding TF. Ultimately, the forwarding TF
at node n is determined based on (a) the forwarding TF at
node n − 1, and (b) the forwarding delay fixed at resource-
reservation time. In the incremental deployment scenario, edge
routers need to shape asynchronous traffic entering the TDP
network. Consequently, their input module also comprises
mechanisms to classify incoming packets, identify the data
flow they belong to, and select a forwarding TF, which
determines the output buffer where they will be stored by the
output module.

The forwarding module processes packets according to
the technology on which TDP is deployed, which does not
require any modification for supporting TDP. So, routing
may indifferently be based on conventional Internet-Protocol
(IP) destination-address-based routing, or multiprotocol label
switching (MPLS), or any other technology of choice. This
stems from the fact that TDP is just a packet-scheduling
technique that can be deployed in the context of any packet-
switching technology, without any requirements or impact on
the forwarding-module operation.

The output module deploys a per-TF, per-output queuing
system, where packets to be forwarded during the same TF
through the same interface are buffered in the same queue.
The queue in which each packet is stored is determined by
both the input module, which decides the forwarding TF, and
the forwarding module, which selects the output interface. The
output module is also responsible for the timely transmission
of all the packets stored in the queues to be flushed in the
current TF.

Summarizing, implementing TDP requires only very-limited
and straightforward modifications to the input and output
modules of currently-deployed routers.

E. Control Plane Operation

A signaling protocol must be chosen for performing re-
source reservation and selecting the TF in which packets
belonging to a given flow should be forwarded by each
router. Existing standard protocols and formats should be
used whenever possible. Many solutions have been proposed
for distributed scheduling in TDP networks [4], [5] and the
generalized MPLS (G-MPLS) control plane provides signaling
protocols suitable for their implementation. In the most popu-
lar provisioning models, such as ATM User-Network Interface
and Integrated Services [2], applications signal their QoS re-
quirements to the network for each flow (usually called micro-
flow); queuing algorithms used in these cases have to maintain
status information for each micro-flow, which is not scalable.
TDP immediate forwarding does not require per-micro-flow
status in intermediate nodes, thus having similar provisioning
scalability as the DiffServ model [1], where micro-flows are
aggregated in the network to improve scalability.

III. IMPLEMENTATION

One of the most common objections to TDP is that its
implementation is rather costly and critical because its working
principles are fundamentally different from those of existing
(and well-known) asynchronous packet-switched networks.
One of the objectives of the prototype is to demonstrate
that TDP has very-low computational complexity, its imple-
mentation requires a negligible effort when compared to the
implementation of a whole router and, moreover, TDP can be
easily integrated within the operating system of an existing
software router.

Our reference implementation is based on PC hardware
equipped with Ethernet NICs. We decided to use the FreeBSD
open-source operating system because it is a reference for
networking-related projects for historical reasons (the TCP/IP
network stack was first developed on the BSD platform), it is
well documented in [6], and comes with high-quality traffic-
management tools, such as the alternate queueing (ALTQ)
framework [7], [8]. Because ALTQ includes many packet-
scheduling policies such as FIFO, Weighted Fair Queuing
(WFQ), Class Based Queuing (CBQ), Hierarchical Fair Ser-
vice Curve (HFSC), TDP can be simply implemented as just
another scheduling discipline.

The current development version supports only immediate
forwarding and does not include signaling functions, so that
TFs and TCs are allocated statically by manual configuration.
Nevertheless, the prototype does not loose in generality and
we paid the utmost attention to accurately avoid any design
choice that could prevent us from adding signaling functions
and implementing non-immediate forwarding in the future.

A. Common Time Reference

Several CTR solutions can be envisioned and have been
proposed for TDP in the literature. The most appealing is
probably GPS because it is well known, it has worldwide
coverage, it is widely deployed, and economies of scale drive
costs down. Therefore, in our design, each router includes a
Symmetricom GPS-receiver Peripheral Computer Interconnect
(PCI) card that can generate interrupts at a programmable rate
ranging between less than 1 Hz and 250 kHz. Such interrupts
can be used to make sure that TFs begin exactly at the same
time at every router2. Two global variables, updated whenever
GPS-interrupts occur, are added to the FreeBSD kernel to track
the current TF and TC number.

B. Router Input Processing

The input module needs to determine the forwarding TF
of each packet at the previous router in order to compute its
forwarding TF at the current node. This could be achieved in
various ways, among which (i) attaching some sort of time
stamp to each packet, (ii) including a TF delimiter within the

2A certain error in the relative beginning of TFs is tolerated and is
way beyond the accuracy provided by the GPS receivers deployed in the
prototype. A more detailed discussion of synchronization issues and tolerance
on synchronization errors is outside the scope of this paper and will be
addressed by subsequent publications.



data stream, (iii) precisely measuring both the propagation de-
lay and the arrival time of each packet. Among these solutions,
(i) is deployed in the presented implementation, using the
differentiated-service (DS) field to carry a compressed time
stamp (encoded on two bits). Each TDP packet transmitted
on a link with a TDP router at the other end is tagged with
one of the following non reserved DS codepoints [1]: 0x0c,
0x1c, 0x2c, and 0x3c. Bits 0x0c are set in all TDP packets
to distinguish them from the others (i.e., those receiving a
best-effort or differentiated service), bit 0x10 is set to 1 (0)
in packets transmitted during odd (even) TFs, and bit 0x20
toggles its state every TC. This results in an alternating-bit
protocol for TF and TC identification, whose simplicity and
robustness properties are well known3.

Two variables maintained by TDP routers for each input
interface contain the number of the TF and TC during which
the last received packet was transmitted by the upstream node.
Each of these variables is updated every time the correspond-
ing bit in the DS codepoint of a packet has a different value
with respect to the one of the previous packet. When a node
has no packets (including non-TDP packets) to transmit during
a TF on a given link, it sends sequences of padding IP packets4

with TF and TC marking for keeping the router at the other
end “synchronized”5. This solution is elegant and effective
since (i) it does not require any new standard or protocol,
(ii) introduces very-limited computational overhead and no
transmission overhead, and (iii) is resilient to packet losses.

Dummynet [9] is a firewall extension for selecting packets
using programmable rules and pass them through objects
called pipes, which are used to emulate bandwidth and re-
source limitations, propagation delays and packet losses. In
the testbed, edge routers use Dummynet to classify incoming
asynchronous data flows and store packets until one TF before
they are fetched by the output module for transmission.

C. Router Output Processing

Let d be the maximum forwarding delay (in TFs) at a
node, Tf the TF duration (in seconds), C the output link
capacity (in bit/s). Given that the prototype has a minimum
packet-processing and switching time and the links deployed
in the testbed have negligible propagation delay, each output
interface should be equipped with nbuf = d + 1 queues, each
having a capacity of Tf · C bits. Adding one extra queue
simplifies the output-scheduler implementation as it ensures
that packets are never written into the queue from which the
scheduler is retrieving packets for transmission. Hence, TDP

3Such mechanism can be seen as the transmission of a time stamp composed
of the TC and TF number. However, in order to reduce the amount of
information transmitted, the time stamp is compressed by sending only the
least significant bit of both the TF and TC number, and by keeping state
information (the number of the last seen TF and TC) on the nodes.

4In the current prototype implementation, padding IP packets are addressed
to the router interface at the other end of the link, and contain an User-
Datagram-Protocol (UDP) message to the standard discard port (9). Other
implementation possibilities can be envisioned and devising the best solution
is left for future work.

5Notice that this does not introduce bandwidth waste since the transmission
link would anyway be idle.

buffering requirements are moderate: for example, less than
16 KB per output interface in the experiments presented in
Section IV (d = 4, C = 100 Mb/s, Tf = 250 µs).

Packets arriving at the output interface are enqueued in a
buffer determined as a function of the forwarding TF selected
by the input module (TF out), the current TF (TF curr), the
number of TFs per TC (nTF), and the buffer being currently
flushed (buf curr):

((TF out + nTF − TF curr) mod nTF) + buf curr) mod nbuf .

The interrupts generated by the GPS card at the beginning of
each TF are used for updating the local TF counter, for starting
packet transmission from the current output buffer, and, in
edge routers, for transferring the packets to be sent at the
beginning of the next TF from the corresponding Dummynet
queue to the correct output buffer.

D. Implementation Complexity and Limitations

TDP can be implemented by adding about 1000 lines of C
code to the FreeBSD kernel — networking subsystem, ALTQ,
and Dummynet. Considering that the FreeBSD networking
subsystem itself (i.e., with no QoS support) comprises more
than 14 000 lines of C code, this demonstrates that TDP
enables adding to existing routers support for deterministic
QoS for a negligible implementation complexity and cost.
Moreover, since it uses simple FIFO queues served in a cyclic
way, TDP does not need any network driver changes.

The PC architecture leads to several limitations that make
our implementation far from ideal. For example, TDP requires
that packets to be transmitted in a given TF are sent out
through all interfaces at the beginning of such TF. The
prototype, instead, due to the PC’s mono-processor and mono-
bus architecture, ends up serving all interfaces sequentially,
delaying the beginning of transmission on the various links.
Although such additional delay has a minor impact since it
is equivalent to having longer links, its variations affect the
number of bits that can be transmitted before the end of a TF.
The variation in the beginning of transmission on different
interfaces results from the combination of several latencies
that are outside the control of the operating system, such as
interrupt-servicing and bus-acquisition time. However, such
latencies become increasingly negligible as central processing
units (CPUs) and PC components evolve.

IV. EXPERIMENTS

Presenting experimental results obtained with the TDP
testbed has the main objective of validating the correctness
of the TDP implementation. These results can also be used to
highlight the benefits that might be gained by deploying TDP
on the Internet. To this purpose, a conventional (asynchronous)
IP network is compared with a TDP-enabled IP network in
terms of maximum jitter experienced by several traffic flows,
under link-saturation conditions. However, since this compar-
ison is not the primary focus of this paper — extensive TDP
evaluations are available in the literature [3]–[5], [10] — the
experiments are not aimed at providing a comprehensive and



exhaustive comparison between the performance of the two
technologies (i.e., articulated traffic scenarios are not consid-
ered). For example, all experiments are run with constant rate
flows of fixed-length packets in order to simplify the system
performance evaluation and the manual bandwidth reservation
in the complex traffic scenario introduced in Section IV-B.

A. Testbed Setup

The results presented in the reminder of this section are
obtained on a testbed consisting of four routers, named R1,
R2, R3, and R4 connected in the full-mesh topology shown
in Fig. 4. The traffic is generated using an Agilent N2X
RouterTester [11] equipped with 16 Fast Ethernet ports.

Each router is implemented with a PC based on the SiS
645 DX chipset, which supports a 32-bit 66-MHz peripheral
computer interconnect (PCI) bus version 2.2 as well as a
533-MHz front-side bus (FSB), and is equipped with a 2.4-
GHz Pentium IV CPU, and 256 MByte of 266-MHz double-
data-rate (DDR) synchronous dynamic random-access memory
(SDRAM). Router R1 is equipped with five network interface
cards (NICs): two for exchanging traffic with the RouterTester
and three for connecting the other nodes. Routers R2, R3, and
R4 feature four NICs each: one connecting to the RouterTester
and three connecting to the remaining routers. All NICs are
Intel PRO/1000 MT Gigabit Ethernet server adapters operating
at 100 Mb/s.

In the TDP configuration, each PC acts as an edge router
since it receives asynchronous traffic from the RouterTester,
while handling synchronous TDP traffic received on the other
interfaces from TDP routers. The CTR is obtained in each
router from a Symmetricom GPS card configured to generate
an interrupt at the beginning of each 250-µs TF aligned to
UTC (corresponding to a 4000-Hz IRQ-generation rate), and
each TC contains 60 TFs. The system clock IRQ frequency
is set to 100 Hz, this way, less than 5000 periodic IRQs are
received every second, keeping the IRQ-handling overhead
incurred by the CPU moderate.

R4

R1

R3

R2

f123

f1234

f412 f341

f234

Fig. 4. Experimental testbed setup

B. Traffic Scenarios

In order to have traffic traversing long multi-hop paths and
achieve high network utilization, each packet injected in the
network loops several times along a circular route before being
routed outside the network to the RouterTester. Therefore, all
routers run a FreeBSD 4.8 kernel modified to make IP routing
decisions based on both the destination address and the time-
to-live (TTL) fields.

More in detail, five UDP CBR traffic flows are injected
in the testbed network as shown in Fig. 4. The following
description contains references to flow-related variables; as
with the flow names in Fig. 4, the subscripts indicate the
list of routers the corresponding flow traverses. For example,
flow f1234 is injected on router R1, loops n1234 times along
the 4-hop path R1→R2→R3→R4→R1, and then is routed
back to the RouterTester through the same interface on R1 it
came from. Each experiment lasts 10 minutes for guaranteeing
statistically-significant measurements.

Since the maximum packet rate on 100-Mb/s Ethernet
interfaces ranges between 8127 packets per second (pps) and
148 809 pps as the IP packet size varies from 1500 bytes to
46 bytes, two traffic scenarios with different packet sizes are
deployed to assess the impact of the packet rate on the router
forwarding performance. In the first scenario, all flows consist
of 1002-byte IP packets (resulting in 1020-byte Ethernet
frames), whereas, in the second one, all flows comprise 482-
byte IP packets (resulting in 500-byte Ethernet frames).

In the first traffic scenario, each flow contributes 6.4 Mb/s
and loops 5 times through the network. This produces an
overall load of 96 Mb/s on each link traversed by flow f1234,
and 32 Mb/s on link R1→R3 and link R2→R4. Therefore,
each router forwards about 140 Mb/s corresponding to about
17 000 pps.

The second traffic scenario is a little bit more articulated:
each of the five flows injects 3.2 Mb/s in the network, but
n1234 = 5, n123 =n341= 10, and n234 =n412= 15. Again,
each of the links visited by flow f1234 transports 96 Mb/s,
whereas link R1→R3 and link R2→R4 carry 32 and 48 Mb/s,
respectively. The traffic forwarded by routers R1 and R3 is
approximatively 150 Mb/s, corresponding to about 35 000 pps,
whereas the traffic forwarded by R2 and R4 is approximatively
130 Mb/s, corresponding to about 32 000 pps.

When deploying conventional asynchronous packet switch-
ing, all flows are treated equally and a FIFO scheduling policy
is applied to each output queue. Given the homogeneity and
constant packet rate of the various flows in the experiments
run, performance indexes, such as delay and jitter, are not
expected to be significantly different from any other work-
conserving scheduling algorithm.

On the other hand, under TDP scheduling, all flows are
classified as TDP traffic and processed with the immediate
forwarding policy. The per-hop forwarding delay is 3 TFs in
the first scenario and 4 TFs in the second scenario. The extra
time needed in the second case is probably due to the larger
overhead incurred by the CPU for processing almost twice as
many packets per second as in the first case.



C. Experimental Results

The maximum jitter is measured for each flow. This is
computed as the difference between the maximum and the
minimum end-to-end delay observed during the whole ex-
periment on packets belonging to the same flow. The results
obtained are shown in Table I, for 1020-byte IP packets, and
in Table II, for 482-byte IP packets.

TABLE I

END-TO-END DELAY JITTER FOR 1002-BYTE IP PACKETS

Flow FIFO TDP
name [ms] [ms]
f1234 3.10 0.18
f123 1.97 0.32
f234 2.27 0.34
f341 2.27 0.36
f412 2.31 0.44

TABLE II

END-TO-END DELAY JITTER FOR 482-BYTE IP PACKETS

Flow FIFO TDP
name [ms] [ms]
f1234 3.58 0.15
f123 4.54 0.46
f234 4.05 0.40
f341 5.10 0.45
f412 3.98 0.42

In both scenarios TDP guarantees a deterministically bound-
ed jitter, that is an order of magnitude smaller (a few hundreds
microseconds) than that obtained with asynchronous operation
(a few milliseconds).

Furthermore, it is worth noting that no flow experienced any
packet loss in any scenario.

V. CONCLUSION

In this paper we provided a description of the first prototypal
implementation of a Time-Driven Priority (TDP) router. TDP
is a scheduling algorithm that uses a global common time
reference (CTR) for shaping packet forwarding inside the

network: the implementation of the TDP router was quite
simple and it was based on a personal computer with an open
source operating system (FreeBSD) equipped with NICs and
a GPS card (as CTR source).

The tests performed confirmed the validity of the implemen-
tation as it did not show any packet losses or jitter beyond
the TDP theoretical bound [4] at full network load. This
demonstrates that the time requirements of TDP do not hamper
its implementation on an existing routing platforms.

The main outcomes of this work are then a hands-on
confirmation of TDP points of strength and, more relevantly,
the feasibility of a router supporting TDP over a non real-time
architecture such as a PC.

ACKNOWLEDGMENTS

The presentation of this work was supported by the Euro-
pean Union under the E-Next Project FP6-506869. We would
like to thank Symmetricom for donating the four GPS cards
deployed in the experiments.

REFERENCES

[1] S. Blake et al., An Architecture for Differentiated Services, IETF Std.
RFC 2475, Dec. 1998.

[2] R. Braden, D. Clark, and S. Shenker, Integrated Service in the Internet
Architecture: an Overview, IETF Std. RFC 1663, July 1994.

[3] C.-S. Li, Y. Ofek, A. Segall, and K. Sohraby, “Pseudo-isochronous cell
switching in ATM networks,” Computer Networks and ISDN Systems,
vol. 30, 1998.

[4] C.-S. Li, Y. Ofek, and M. Yung, “Time-driven priority flow control
for real-time heterogeneous internetworking,” in Proc. IEEE (INFO-
COM’96), vol. 1, Mar. 24–28, 1996, pp. 189–197.

[5] M. Baldi and Y. Ofek, “Fractional lambda switching - principles of
operation and performance issues,” SIMULATION: Transactions of The
Society for Modeling and Simulation International, vol. 80, no. 7, July
2004.

[6] G. R. Wright and W. R. Stevens, TCP/IP Illustrated, Volume 2: The
Implementation. Addison-Wesley, 1995.

[7] “ALTQ.” [Online]. Available: http://www.csl.sony.co.jp/∼kjc/software.
html

[8] K. Cho, “A framework for alternate queueing: Towards traffic manage-
ment by PC-UNIX based routers,” in Proc. USENIX (Annual Technical
Conference’98), New Orleans, LA, June 1998.

[9] “Dummynet.” [Online]. Available: http://info.iet.unipi.it/∼luigi/
ip dummynet

[10] M. Baldi and Y. Ofek, “End-to-end delay analysis of videoconferencing
over packet-switched networks,” IEEE/ACM Trans. Networking, vol. 8,
no. 4, pp. 479–492, Aug. 2000.

[11] Agilent, “N2X RouterTester 900.” [Online]. Available: http://advanced.
comms.agilent.com/n2x


